

IN THIS ISSUE

JULY 1952

- REPORT ON ENGINE TESTS - S.M.A.E. CONTROL LINE ELIMINATORS - HALF SCALE WAKEFIELDS - PHOTONEWS SOLID GLIDERS - THEE.D. . 16 ON TEST - SPEED MODELS - LETTERS TO THE EDITOR

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/ member.php?u=107085

Digital Edition Magazines.

AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics. com/hpa plans/index.php

Diligence Work by HIsat.

SKYLEADA INTRODUCES

A beauty to watch in flight-just like the real thing.
Designed for all Point Five Engines, E.D. Baby. Elfin -5. Allbon Dart, Frog 50.

The construction is very simple which makes this the ideal model for the beginner.

Kit contains all the materials required to build the finished model.

PRICE 9s. 6d. INCLUDING P.T. For inexpensive aeromodelling insist on Skyleada Quality Kits and save money.

If you are a Beginner this is the kit to start onanybody can build it without previous experience.

If you are an experienced aeromodeller but want an easy-to-build model which will give you a good performance and stand up to plenty of knocks this is the kit.

Special features:
Complete kit conteins all materials required to build the finished model. including cement. rubber and a Skyleada fully shaped balsa propeller.
Step by step instruction leafles included with plan.
Exceptional periormance. Siurdy conseruction.
PRICE 5s. 3d. INCLUDING P.T.

> Manfd. by BRITISH MODEL AMRGRAFT MFC. CO. LTD.
> 180, LONDON ROAD, MITCHAM, SURREY

D.H.TIGER Мотн

> FRANK ROYLE plane. For many years the D.H. Tiger Moth was the standard trainer for R.A.F. pilots: it has leatured large in the Empire Traning Scheme; it has been adapted for Arctic flights with skis and has held its own in the tropics. More Tiger Moths have been bult than any other maching of its type in the world : more pilots have learned to fly with it than with any other machine. Mercury are proud to present their meticulously scaled version of this triumphant British masterpiece, and belleve that thoir kit reproduction of it will similariy oarn a place of esteem and affection in the minds of modellers everywhere, for this is the kit they have all been wailing for

VICKERS VALIANT

In production now for service with Bomber Command. Powered by 4 Rolls Royce Avon turbojet engines. All armament and performance details are still secret.

Soon you may be sceing one of these sleek bombers fly over your home. Soon, too, you'll have to settle the question of your carcer. Have you ever thought of piloting an aircraft like the Valiant or becoming one of the highly skilled technicians who
service it? Because if you have - the answer to your problem lies in the R.A.F's Apprenticeship Scheme. This is the way into the Royal Air Force specially devised for broys who want to be a jump ahead. Post the coupon now for further details.

There's a place for YOU in the R.A.E.

" The unbeatable ' 150 ' ! "- -is the name given to this FROG motor by contest fliers all over the world! And in price too, the " 150 " is best ! For only 49.6 including Tax YOU can have a precision built, contest proved. CLASS A motor which will never let you down. Take a speed range of 2,000 to 15,000 r.p.m., add to it absolute ease of starting and tough construction and you have the FROG " 150 "-the best of all!! See the FROG " 150 " at your local model shop today-remember the price-it is still only

$$
49 \mid 6
$$

FROG " 500 "--automatic choice of experts and winner of more contests than we can list here-is still Britain's best 5 C.C. motor. For tree-flight or C, ', for R/C or Ratio you
can do no better than "fita ' 500 "." Speeds, 4,000 to 15,000 r.p.m., weight 7% oz. $75 /$. Price including Tax

A new version of the famous FROG " 500 "with a high efficiency K.L.G. Mini Spark Plug for petrol working. Performance is similar to the "500RG" and weight only slightly more. The " $500 \mathrm{PE}^{\prime}$ " is ideal for all
R/C models. Price 75 / including Tax

Airscrews-
Precision moulded in tough plastic-ideal for all FROG motors. These are the most accurately designed and finished airscrews made in Britain-AND SUPPLIED AT THE LOWEST PRICES! Full details and prices below :8 in . diameter 5 in . pitch ... price $2 /-$ $8 \mathrm{in} . \quad . \quad 6 \mathrm{in}$.
$\because \quad 2$.
.. 2 -

6 in. .. 4 in. ., $2 /-$

Sole Americon Concessionaires :
AMERICAN TELASCO LTD.
166, Spring Road, Huntingdon, NEW YORK

for all flying scale jet planes Jetmaster outfit containing clip, fuel, wicks, mounting
and full instres spare parts

THE motor for young modellers!

JETEX 50 outfit
Containing Motor. Fusl. WIck: Mounting Clip. Spareparta, Accessorite and full inatructions.
SPECIHCATION-Theust 1ag. Motor run epprox. 15 vec. Weight 31 drams. length II". Diameter for, Weight
of fuel charge 3t droms.

Ask your dealer to show

you the range of Jetex QUALITY kits !

Dura-Jet	...	0	5
Mi-Jet		7	9
Jet.Ho Hydroplane	...	8	1
Vampire" 50 "		7	0
Vampire " 100 "	...	10	7
Race Car	...	14	9
Jet Craft		7	0
Flying Wing ...	\ldots	7	0
Meteor " 50 " ...		10	

Hot Dog	\ldots	4	3
Jeticopter " 50 "	..	7	0
Jericopter ' 100 "	...	10	7
Avro 7078	...	7	0
200 Contest Model	...	10	7
Zyra Space Ship			
with motor		13	4
yra Space Ship			
Less motor		7	0

Price $5:+1 / 1$ tax (includin and D (T finter mire

ONLY 2011
When fitted THRUST AUGMENTER (including tax)
Then fitted with the Augmenter GMENTER TUBE
 In foct, it is the only motor, in etc. flight jet models. sulable for free

The aurmenter tube, wh/ch boont

POWER

 and full instructions spare parts
. . . not just because the Mills saves you money from the moment you buy it : though today the economic advantage of this trouble-free engine is reason enough for the steadily growing demand.

The Mills, being built to last, also offers longer service at peak performance with quick and easier starting to give you more flights per hour.
P. 75
$6)^{19} \begin{gathered}\text { (without } \\ \text { cut-out) }\end{gathered}$
inc. Tax
S. 75

inc. Tax
1.3

THE
MILLS THROTTLE 813
inc. Tay

for Mr!! I 3 anlr

Editor: E. F. H. COSH

Consulcing Editar

A. F. HOULBERG, A.F.R.Ae.S.

Advertisamant Mansger

J. V. FOREESEUCKINGHAM

JULY 1952
VOL. II No. 7

Contents

megular features
HERE AND THERE
HOW IT WORKS 304
The Aaraplane 304
ACCENT ON POWER 306
MA. ENGINE TESTS No. 37. The E.D. 46 " Baby" MODEL TALK
TOPICAL TWISTS 310 314

PROTOTYPES WORTH MODELLING
No. 23. The Farrey Tipsy Juniar 318
LETTERS TO THE EDIPOR
NORTHERN NOTES
CLARK Y AEROFOIL
NEWS FROM THE SM.A.E. AND THF CIUBS

Cover SFosy

The first model to be seen on our cover in company with the now title panel. is an A 2 glider flown by J. Robinson. of the Thames Valley club in The K. \& M.A.A. Cup consest at Fairlop Aerodrome. Seen luunching the model in chis picture is fellow club member P. T. Taylor

THE JOURNAL OF THE SOCIETY OF MODEL AERONAUTICAL ENGINEERS

Published on the 20 th of each month prior to the date of issue by PERCIVAL MARSHALL \& COMPANY LTD. 23. GREAT QUEEN STREET. LONDON, W.C.2. Tel : Chancery 6681-4 Annual Subscription 20s. Od. post paid.

AT LASTPERHAPS:

 in Madide some conerern was expreseded by those comenected with the aircratt industry throughout the world. regarding the present serious shortage of technicians. Apparently far leo frw young men feel inclined today to make al carere in one of the branches of the industry.

Now at last the lult-sies aireraft people have become aware of a fact which has been quite obvious for many years, viz., that in the model aireraft movement there are thousands of young conthusiasts who. given the right sort of encouragement, would be very keen to take up aerobautical enginecring.

It was suggested at the conference that the aircraft industry might spensour a World (hanmpionships Merling in 1953, at which the Wakefield. Nordic A-2. Power and (: 1. cirnts would fe held. This. of course, is basically the same ideat as the model aircraft " (Olympies " propensal which was turned down by the F...I. Model (ommission last year. At that time we were not tow keen on the " Olympics" ielea, but bhis new sebeme goes much farther and if lionds are to be provided, as we undemtand is envisatged. to trampore and accommodate the National teams and to organise this meeting, then we are in full agrecsuent with the proposal. There is no dombe that it would ensure the largest possible International representation and what is more important in present world conditions, it would relicue the National boxdies of the beasy burden of raising funds to send their peams abroat-a task which is rapidly becoming incrasingly diffirult and in many cases innewsible.

We trune. however, that we shall the excused if we say that until we leam that the sheme is deffinitely going ahead. We shall keep our fineers firmly crossedi! Frankly, (luring onar incoty-odd years close connection with the model aircraft mutement, we have heard of many srhemes 10 sponsor model tlying and really " put it on the map." "They all canie to naught. We hope that this World Championship Meeting scheme does met end the same wat-it certamly deserses a better fate.

THE "M.E."
EXHIBITION
COMPETITIONS
As we have already ammouncel. The Model Engineer Exhibition will be held this year from Ortober 2oth-2gith. W'e feel sure that this date, clear of the content seasm, will ensure that the number of entries in the model aiscraft competition sections will be larger than cuer.

There will be competitions for the following catcgorics of aircraft models : rubber-driven: frec-tlight prower : control-line: sliders: non-Hying models : fiec-flight or control-line scale : radio control. In addition there are Junior sections for rubber, Irecflight power, control-line and glider models.
'There are a number of sperial contests worth the notice of moxel builders - contests that carry some valuable trophies. There is a special award of five guincas lor the best model in the competition sections buile from a " M...." plan, and the Model Xircraft Trade Association lias presented a cup to be won by the hest model made from a commercial kit.
We should also like 10 draw attention to the Club Team (hampionship. It secms surprising that this cvent has not been more pepular in the past, for there is a valuable silser cup to be awarded outright to the wionneng club entry of there models in any class, built be membere of an S.MA.A. Li. afliliated cluts.

Entry forms are now available and full details can be ohtained from the Exhibition Manager, The Wodel Engineer Fixhibition. 23. Great Queen Street. lamdons. W.(:.2.

BRITISH
 NATIONALS PRIZE FUND

For some years pasi, it has been customary for the organisers of largesesale competition events
such as the dritish Nationals to approach members of the irade for donations of prizes. These have usually taken the form of kits and engines, but for seme lime the S.M.S.E. has felt that ahhough these donations were greally appreciated. it was not ant chtircly satisfactory arrangement. Merlel fliers are staunch individualists and generatly have their own fads and fancies where chuice of commercial preslucts is concerned.

The S.M.A.E. therefore recenty approached the Pederation of Model . Acronamical Manufacturers and Wholesalers and suggested that instead of donations in kind from individual concerns. the Federation might make a cash domation to the Nationals prize fund on behalf of all member firms.

We are very pleased to announce that the Federation has agreed to donate go guineas for this purpose. and we feel sure that model flien everywhere will join with us in exteneling our thanks and appreciation to the lederation for this very generous gesture. It will ensure that at the British Nationals, to be held at Cosport, Hants. on dugust 3 rel and fth, the prize list will be even longer and more attractive than in previous vears and will help) in make this meeting an outstanding success.

It is to be understood that the donation will reprexent contributions from the wholesalc and manufacturing branches of the trade, and that no applications should now be made to them by affiliated clube for other prizes.

BACK TO THE OLD METHOD

Arter a singularly unsuccessful effort last year to run the Wake-
field Trials under " still air" conditions, the 1952 Trials will be held like any other contest during the morning and afternoon hours. Main reason for this is that it has not been pussible to find a suitable venue with accommodation available for an overnight stay.
'Ihis rather unexpected move has, we know, rather disconcerted several Wakefield enthusiasts who have becn roncentrating on "still air" motels ever since the Finnish Wakelield. Some of these models are definitely not suitable for windy, "daytime" conditions and presumably their designers are crossing their fingers and hoping for calm weather on " the day."

There is, of coursc, another side to this question. A goud " still air" model can also be a good "daytime" model and since " still air" is such a rare happening the wisdom of spending a lot of time and trouble in producing a model which is definitely only a "still air" machalne is debatable.

1T HAPPENS EVERY WEEK

Wic have scarcely attended a flying meeting where someone has not launched a model with the engine running backwards. The inevitable result, of course, is a marked reluctance on the part of the model to fly. Diesels and glow motors usually run equally well in either direction and in the excitement of getting the model airborne the fond owner ignores the fact that the " draught " is blowing forwards.

We had our doubts that the same thing could happen to a rubber model-but it did, and in a contest, too. The "victim" had loonhed in carsing a propeller the wrong way round. He realised this when lie had finished and usually wound the model up the opposite way to usual. In the heat of the competition he forgot, however. Hand launching the model with a mighty heave it promptly shot back straight into his face.

THE HAT TRICK

Model flying history was made in the Lady Shelley contest on May $4^{\text {th }}$, when A. K. Iucas of Pt . I'albot won the cup for the third year running. This is the first lime that anyonc has achieved the distinclion of a triple successive win in any S.M.A.E. contest since the foundation of the Society.

However this was not the only repeat performance this scason, for Graham Gates of the Southern Cross Club repeated his victory last year, by also winning this year's Pilcher Cup contest. This was perhaps an even greater triumph, for the number of entries in the Pilcher in both years was iruly formidable.

We congratulate these two enthusiasts on a remarkable achievement.

BILLY BUTLIN We recently had the opportunity PRESENTS... of mecting Mr. Milly Butlin and learning something of his plans to sponsur model aircraft contests at his holiday camps this year. He is ubviously very air-minded and spends the greater part of his time during the summer months flying between the six Butin camps in his private arroplane. It is also of interest to note that he has crossed the Atlantic by air no less than 86 times and it was during one of his visits to the Linited States last year that he first saw model aircraft flying and became "bitten by the bug."

He was very impreised by the performance of the models and brought back with him a number of American kit models. Shortly after his return from this trip he attended the Torkshire Evening News Mexdel Folying Festival at Sherburn-in-Flmet in September last and the attendance of some 10,000 spectators and contestants at this meeting confirmed his opinion that model dlying had great possibilities as an attraction. In typical fashion he decidod at once to organise model aircraft demonstrations and contests at his holiday ramps this summer.

The way in which a Butlin idea can " catch on" has been well dennonstrated by the current popularity of square dancing. Mr. Buslin first saw this in the States and it was his enthusiastic presentation ol it at his camps, that started the present craze.

Being the shrewd business man that he is, Billy Butlin has seen that among the tens of thousands of young people visiting the camps each summer, there is an cnorrmous potential interest in model flying, and the result has been the organisation of model flying events at these camps, as we have already repurted. Apart from the two big meetings, on June 22nd and September 21st, weekly contests are being arranged for the campers, using models provided by the management and flown under the guidance of an experienced modeller on the staff.

We feel that this venture might well provide the model aircraft muvement with the stimulant which it needs at the present time. We give it our wholchearted support-as indeed we would to any well planned scheme, which is aimed at attracting new recruits to our hobby.

Mr. Billy Butlin with one of the ready-made models which ore being provided for compers to fly under expert guidance

'ITHE first model Ponther was built soon after the Jetex " 100 " came on the market. The unit was mounted within the fuselage. completely enclosed except for a ducting arrangement made from cartridge paper and utilising the wing root intakes which were intended to carry air past the unit. Unfortunately, this first Panther proved too heavy to provide the sort of performance we expected and it was evident that the thrust from the " 100 " was not being used to advantage. By lowering the unit out into the wind into a position which brought the thrust line of the motor coincident with the lower contour line of the fuselage a marked improvement in thrust was obtained. After building a lighter version, with not quite so much dope used in finishing, the Panther flew very well and helped collect information which led to the construction of several smaller Jetex " 50 " models of jet fighters.

Fuselage

Cut the outline pieces from $\frac{1}{16}$ in. sheet balsa and pin in position on plan together with piece F_{15} and strip " X " of $\frac{1}{2} \times$ 立 in. Cement the formers in position using a piece of $3 / 32 \times 3 / 32 \mathrm{in}$. to line up the notches. The notches in formers F_{2} to F 8 may be cut slightly oversize in order to obtain a smoother stringer linc. Add $\mathrm{F}_{11}, \mathrm{~F}_{14}, \mathrm{~F}_{12}$, and F_{13}. Cement the $332 \times 3 / 32$ in. medium hard balsa stringers into the notches in the formers. then add F_{1}, which forms a base for the cockpit cover. Lift this side from the plan and construct the other. Cement on the two halves of the nose block, instal the piece of $\frac{z}{8}$ in. $\times \frac{1}{1}$ in. for the Jetex clip, then fine sandpaper the fuselage all over.

Wings

Pin the lower $3 / 32 \times 3 / 32 \mathrm{in}$. spar to the plan, then the trailing edge (after notching for the ribs). Cement the ribs in place, remembering to lean rib Rı inwards to obtain approximately in in. dihedral. Cement the leading edge in place and add the top spar Roughly shape the balsa blocks for the wing
tips, then cement in position and finish off with fine sandpaper. Although it is a little more awkward for covering it was found to improve the wing-to-fusclage join if the wings were assembled to the fuselage before covering. Check for equal dihedral each side. The original was covered with Jap, but lightweight rag tissuc has been used since and found to be just as effective. The wing-root fairings look very smouth if you are able to cover them with notepaper top and bottom. Water shrink the tissuc and make up a rough jig using several books to hold the nose and tail of the fuselage and the extreme tips of the wings ; this should prevent any severe warping taking place. Continuc sandpapering the fin, dorsal fairing and tailplane until all sawmarks have disappeared and they are glassy smooth, then cement them in place. Attach the cockpis cover by running a ncat fillet of cement around its edge while held in correct position on the fuselage. Clear dope the whole model holding the fuselage and wing tips as before until dry to stop warps. Make a "channel" from notepaper to fit into the arched recesses in formers F_{7} and $\mathrm{F} \%$ and extending from the rear edge of the clip to former 9 as shown on the plan. Use colour dope thinly and finish cither silver, silver grey or a very dark blue (almost black). Affix the American star insignia on cither side of the nose between F_{2} and F_{4} and on the port upper and starboard lower maimplanes. Try not to exceed an all up weight of 11 oz . There is a variety of cigar container made from aluminium and shaped like a torpedo, which when cut and fitted with a balsa tail cone, provides a realistic lightweight drop tank. With the model finished and complete, balance it roughly at the wing spar position, then start test gliding. If there is a slight breeze don't be satisficd with a liting, half-coming-back-towards-you glide; add weight to the nose until with a good hard hand launch the glide is fast, flat and straight. Now load up your " 100 " and try a power flight. You may have to remove some of the weight from the nose but remember the Panther flies fast so try to launch it that way.

FULL SIZE WORKING DRAWINGS ARE OBTAINABLEFROM YOUR LOCAL DEALER. OR GY POST FROM THE " MODEL AIRCRAFT" PLANS DEPARTMENT.
23, GREAT QUEEN STREET, LONDON W.C.2, 2. Nd., POST FREE.

CVRITICISM has come from several quarters Athat specialisation on Wakefield design has tended to eliminate the other types of rubber inodels. Not so many years ago the ultra-lightweight rubber joh was prominent in all " open rubber " contestsand gave a very good account of itself. There were also a goodly sprinkling of F.A.I. models, which again were capable of high flight times. But overall the Wakefield was still the more consistent and, at the present time, is pretty definitely top in performance. In fact, many rubber contest experts agree that if the Wakefield rules were made purely "open" they would still stick to inedels which would conform to the cxisting rules. That, in fact, is an interesting topic for club discussion. If the Wakeficld was made an "open" contest, would the best models still be of the same total arca as now and about the same weight?

There is something about a rubber driven duration model which has a lasting appeal to the serious model flier. Rubber duration is not the way to quick results. The relatively inexperienced modeller can get far better durations from a glider or a power model. After all, if you have a reasonably stable power model, a long motor run will more or less guarantee a long fight. With a glider, choose a nice sunny day and use a long towline and, provided the model tows straight, a " maximum " is more or less laid on.

With a rubber moxlel, discounting thermal flighes. height is something that has to be fought for. Your power is limited to a certain amount of rubber, for there is a limit to what the airframe will stand. It is a challenge to ingenuity and ability to use this limited amount of power to the best advantage.
'Then there is something about the way a rubber model flies and every satisfaction in watching a model continue to gain height over a period of, perhaps, two minutes before settling down into a glide. In that time a top class rubber model gets higher than a glider on a 328 ft . towline and a power model on a limited motor run. And it seems more of an achievement.

Specialisation on Wakcfields would not have been a bad thing but for the fact that rubber model flying once cheap, has now become relatively expensive. The modern Wakefield uses a 4 oz rubber motorat a cost of something like five shilling or more a motor. And perhaps one motor is good for three
contest flights. That alone docs not encourage the younger modellers with limited pocket money to take up Wakefields. Perhaps cost is one ol the main reasons why glider contest entries are showing a marked increase? Gliders, at least, are relatively inexpensive to operate.

Y'et practically all the advances in rubber model design have been concerned with Wakefieldsnew layouts, return gear systems, feathering propellers, and so on. Cltra-lightweight design, on the other hand, became more or less standardised some four or five years ago and ofters very little chance of "trying something different." The F.A.I. model was rather unfortunate "in-between" class which used a high proportion of rubber (like the Wakefield) and had no markedly superior performance. Most modellers who interested themselves in F.A.I. rubber contests, in facr, sonn found that a standard Wakefield was probably better than a special F.A.I. job--and one model (a Wakefield) to cover two types of contests was a far better proposition.

This is still no help to the younger enthusiast who genuinely cannot afford modern Wakefield fyingor for the rubler model enthusiast who would like to try out some of these " modern " ideas but have not the time to spend building dilferent layouts for test. But there was a clue to the answer in a recent issue of Moder. Aircraft. Kon Warring produced a half scale A-2 glider-quicker, easier and cheaper to build than a full size $\mathrm{A}-2$ - to test a certain layout (in this case a moment arm five times the wing chord
and a pery tiny tailplane area). Surely here is the answer to the would-be rubber model enthusiast -scaled down Wakefields, not necessarily hall size, so that he can try out some of these ideas at a fraction of the cost in cime and matcrials (including rubber) as compared with building "full size" Wakefields. In fact, we can forget the " Wakelield " tag entircly, if we wish, and think of these small rubler powered models as a rype of their own. 'There is no reason at all why some should not make excellent contest machines for "open" or I'A.I. cevents. Certainly they will prowide invaluable experience to any modeller wishing to take up rubber contest flying seriously at some later stage, or any type of nying model, for that matter. Despite the fact that many newcomers to the hobby since the war years started straight in with power model tying, rubber models still provide the best background knowledge, and experience, for the handling of all classes of frec flight models. So perhaps if we start cutting costs we can get back to this happy state of affairs.

Certainly the best rubber model for a beginner is a simple kit job designed on duration lines. The bugs will have been ironed out of the design and, properly buils, a consistent, if not high performance, is more or less guarantecd. 'This will teach the basic principles of handling any tupe of fying model and some of the peculiarities of rubber models in particular. 'I'hen is the time to try for something more ambitious.

How about a simple duration model on the lines

of the most favoured modern Wakefield layout? This is a diamond fusclage with a built-in pylon or "cabin" and simple wire skid undercarriage. Such a moxdel, buile with a normal frecwheeling propeller, will cost very little in time and materials and lead the way to further experiments. Properly trimmed it should also be capable of consistent flight times in excess of two minutes-and that is quite lung enough for most flying fields when there is any appreciable wind draft.

Plan 1 gives all the details you require to draw out and construct such a model. Lines have been simplified for ease of scaling up. ,'The tips of the wing and tailplane can be more rounded. for example. if you wish and other detail modifications incorporated. Stick to the main layout and proportions as far as possible, however.

For a sccond project, how about trying a long luselage model? In Wakefield sizes the length of the fuselage may be five or six feet, the purpose being to accommodate a long motor taut beetwen hooks. We can apply the same principles to a smaller model and get comparable results. Since such a model aloo provides an interesting example of simple design procedure the layout will be described in more detail.
The greatest " ceonomic" length for the long fuselage is 3 ft, since this is the standard stock length of strip wood. Longer strip is, of course, available, or shorter lengths can be jointed. but 36 in, is a gored upper limit for our projected design. Tentatively we will assume that 1 in . of this length will be lost
by the front motor hook and the rear rubber fitting will be 4 in . from the extreme rear. That leaves us a 31 in. motor length for the motor to be taut between heoks. Fig. 1.
Here we must guess at the power required. We will assume that we are going to use an eight strand motor of $\frac{1}{2} \mathrm{in}$. strip rubber, and adjust the propeller diameter accordingly. Such a motor calls for 248 in . or just under 7 yards of rubber which, when lubricated, will weigh about $1 \frac{1}{3} 0 \%$. and cost something like onc shilling and sixpence per motor, which is certainly not prohibitive. Had we buile a "full size " long-fuselage W'akefield the motor cost would be nearer six shillings each!
Now let us find propertions for the rest of the model. In this type of layout rubber weight should about equal airframe weight. That means the total weight of the finished model will be approximately 3 oz. Is we want this to be a model with " contest" performance we do not want to exceed the ininimum F.A.I. loading, which is 3.93 oz . per sq. ft. total area. This means that for a 3 oz . total weight the minimum total arka requircd is 110 sq . in. Actually, we can well afford to go a litele above this, 10 allow for any excess total weight beyond our estimated 3 oz., say up to 120 to $125 \mathrm{sq} . \mathrm{in}$. rotal.

To cross check, let us see how this fits in with the general proportions of a model of this layout. Span averages about two-thirds of the fuselage length. say 24 in . An aspect ratio of about 8 : I is desirable which, on such a wing would give a 3 in.
chord. This is bordering on the realms of inefficiency, $s \infty$ an increase in chord on $3 \frac{1}{1} \mathrm{in}$. would be beneficial, but the aspect ratio has droppeed to $7: 1$. Boosting the span by 2 in . brings us back in an aspert ratio of $7 \cdot 1$: 1 and a 91 sq. in. wing, which should be about right. (Fig. 2.)

To go with this a tailplane 30 sq . in. in area will be about right, so total area arrived at by this method works out at 121 sq . in. or within the limits of our original suecification. (Fig. 3).

If we position the wing with respect to the centre of gravity of the rubber motor we shoukl not be far out, for the motor is the heaviest component of the completed machine. Of the wher componemts both the wing and fusclage will approximately balance about the same point, whilst the propeller assembly at one end should balance out the tail unit weight at the other. (Fig. 4.) Wie can design the wing in a fixed position or make provision for fore and aft adjusment for trimming purposes.

There is scope for interesting experiment with regard to the wing position on such a layout. Nany successful models of this type have the point of balance cither on the trailing edge, or still farther aft. To achicve stability under power the wing position must then be raised well above the fuselage. 'Ihree possible alternatives are shown in Fig. \&. With the wing seated on top of the fuselage, locate the mid point of the wing behind the centre of gravity. Rasising the wing one third chord distance (125in.)
the wing can be located farther furward. With the wing at an extreme pylon height of 2.5 in., the trailing edye of the wing can be placed over the centre of gravity. These will be good initial pasitions for trimming and, of the three, the high pylon mounting will probably be best.

The remainder of the model then follows normal design and constructional practice. Again this is summarised in a simple plan- Mlan $2-$ where outline shapes have been kept as straightorward as possible for ease in scaling. Whe fuselage need only be a simple sefuare box of sufficient cross section to frovide adequate clearance for the rubher motor when wound. No particular difficulty should be experienced in keeping within the itoz. total airframe wright originally specified when, afier testing with the propeller size recommended. it may be found persible to reduce the power of the motor to six strands only, increasing the motor run and the overall "still air " performance.

For the third model in the serics a streamlinedslabsider is detailed in Plan 3. This is very similar to the "seale" of the other two models, all being based on typical Wakefield layouts and the three models should provide a very interesting comparison, if flown one against the other. The next step is then to try the same models our with feathering propellers, and so on. In fact, there is a considerable amount of scope with these " half-pint " size rubber models.

THE recent introdurtion of the B.O.A.C. jediner servire between london and Johannesburg has resuled in workd-wide public interest in the de Havilland Comet, and the appearance of a super-detailed $1 / 12$ scale model of this record-breaking aircraft at the British Industries Fair drew the crowds to the B.O.A.C. stand, where it was on display:

The model was huilt by Westway Models Letd., of Shepherds Bush, London, a lirm who specialise in this sype of display model, and our photographs show some of the constructional methods used in the production of large numbers of similar Comets in a variety of scales.

Fuselages are made from Perspex, moulded in two halves and cementerl together. Portions are masked before spray-painting, so that the fully detaited interior can be seen when the masks are stripped off. The rest of the moxel is caned from solid wood, generally lime.

Considerable interest in the "Come! " has been shown by the Royal family, and here Her Majesty the Queen and H.R.H. the Duke of Edinburgh are seen examining the scole model at the British Industries Foir.

Top: The main deck is built up separately and when completely fitted with furniture and equipment, is slid into the fuseloge before the nose section is altoched.
Above: Hand-carving one of the engine nacelles. The Perspex fuselage reveals the semi-circular supborts ready to receive the deck when completed.
Above left: An amozing degree of accurate detail is incorporated in the interior fitting, particularly on the complex instrument panels in the crew compartment.

Left : Large numbers of smaller '" Comets "' are also built, for display by airlines and trovel agencies, and here a batch of l'48-scole examples is being sproyed.

ITHE fucl system is still one of the major problems in today's speed flying. More good models and engines are held back by a faulty fuel tank than by any other one trouble.
The solution of this problem is very complex and depends more than anything else upon the individual model. for models of the same design and power very often will not operate well on the same fued tank. The one answer at the moment seems to be a tank narrow in width with enough height and length to hold sufficient fuct. In this way it is possible to control the flow of the fuel to the engine by moving the tank from side to side in the fusclage. Moving it inboard richens the engine, moving it outhoard leans the engine. Trial and error is the only way to determine the best Iocation.

One other way to assure good carburation is with the " pressure fuel" system. With this system the engine crankease pressure is used to force the fuel from the tank to the engine. About three pounds of pressure is available here which is enough to overcome any other force that might be present. In practice this system has its good points inasmuch as the furl consumption is reduced by about 50 per cent. due to almost perfect atomisation of the fuel as it leaves the carburettor. The engine runs with the necdle almost closed. Its other advantage is that you can be sure that the engine will run just the way you set it on the ground for the entire flight, thus eliminating the waiting for the engine to "come in." Its disadvantages are that there must not be any leaks in the entire system or it will not work and that you must install a pressure jet in your engine.

When using this system a tank of the tall thin variety should be used. All joints must be lapped and soldered well. The tank pressure inlet should blast against the inboard side of the tank to prevent boiling of the fuel and the tank should be mounted solidly so it does not shift in flight. A vent tube should be arranged for filling so that it can be plugged and sealed for flight.

The crankeasc pressure jet can be made in any way desired as long as it does not leak. The screw and nut idca is simple and works very well in practice. No matter what type engine is used, the jet should be open just as the venturi port is closed. This allows you to tap the peak pressure of the engine and yet it closes off sharply rnough so that it will not distract from the engine performance.

The operating procedure that works well with this set-up is to fill the tank to its brim and then put all hoses in place. They should be then clamped
to the tubing with soft wire or by some other means. With the needle shut completely off, the engine can then be started with a starter by lurning it up in the starter and slowly opening the needle until it starts. A good hot battery is a necessity here. I Yand starting is by far the best with chis system and the procedure here is to open the valve about one turs and prime the engine. 'l'hen crank it through until it cleans the prime out. If it fails to kerp running, repeat the procedure until it dors, opening the valve about $\frac{1}{3}$ turn at a time. Once the correct secting is found it should never vary, if it docs it is a sign of a leak somewhere and the trouble should be found immediately.

Fuel is the one itern that the modeller can be positive about, if he just takes the time to run a few simple bench tests and determines just how his engine runs on the various brands or his own concoctions.

As with everything else you must start someplace, so if you are going in buy the fuel ready made, a certain brand should be chosen and only this brand used. 'Ihe idea is that no matter what fuel you usc, your engine must be tatilured to that particular type and peak performance can only be had with that fucl unless you alter the set-up of your engine to accommodatc some other type.

There are two things that govern the performance of your engine with any given fuel; the glow plug and your engine's compression ratio. The glow plug is casy to play with and the compression ratio will require machine work, sn most modellers use the glow plug to tailor the engine. There are many brands of plugs now available and fortunately very few are alike. The difference lies in the heat range. So it is possible to find a very hot plug and also a very cold plug. For instance, the Ohlsson and McCoy plugs are very hot whereas the Arden and O.K. plugs are on the cold side, in between conics the Champions and many of the other types making the wide range.

As with glow plugs the fucls vary a lot too, some are very hot and others seem cool. As a rule the hot fuel contains more nitro methane than does the conl fucl, although there are other factors which can control this heat range. Nitro methane is the power ciement in the fucl so the more you can use without undue heating the more power you will obtain, the other power factor is compression ratio, here the higher the ratio the more power that can be expected. The only factors that control the use of these two items is the detonation of "preignition" which creates excessive heat and robs

the power from the engine. Detonation in our model engines is the so-called "cackle" we hear when the engine is running, when you hear an engine " cackling " you can rest assured that it is not developing its full power; another sign of this trouble, although usually the trouble is not as pronounced, is excessive heat sometimes marked by smoke rolling off the engine after it has stopped. Whatever the sign, inmediate steps should be taken because "detonation" not only robs you of power but it also can ruin your engine in extreme cases. You have threc possible cures for it, one is to reduce the compression ratio and this should only be used in extreme cases, another is to use a fuel with less nitro methane in it and the last is to use a colder glow plug. Reducing the nitro in a prepared fuel can be clone by adding castor oil to it or if it is an extreme casc by adding a 2: 1 mixture of castor oil and menthanol (wood alcohol).

A great many of the modellers have taken this fucl situation scriously enough so that they have obtained the help of a local chemist or perhaps a chemistry teacher. These people understand the properties of the various chemicals that you are using and can be of great help if you desirc to mix your
own fuel. The one thing to remember is 10 buy "chemically pure" ingredients and not the "commercial " grades, take care in mixing it by kecping away from fire, cigarettes, etc., and above all keep the fuel clean.

A good basic mixture to start with can be compiled with the following formula, this fuel will run cool and steady. You can play with it to see what you can gain by adding and detracting the various ingredients, however, try to maintain at least a 30 per cent. oil content.

Castor Oil (13aker AA)	\ldots	30	per cent.	
Nitro Methanc	\ldots	\ldots	25	$"$
Methariol	\ldots	\ldots	\ldots	44
Amyl Acctate ...	\ldots	\ldots	1	$"$

Flight Technique

One place that we can pick up miles per hour without any real work is in our method of flying, of course, this involves practice but we can make every flight made, a practice flight to improve our technique. Above all, every flight should be made on a pylon even if it is of only emporary nature for only in this manner are you going to master the art of getting around the thing in the casiest manner.

Take offs, whether hand launched or R.O.G., are very important for if you don't get successfully air-borne you cannot complete the flight. At all times the model should start with the wind blowing towards the tail of the morlel so that your run is down wind, every eflort should be made to have the model air-borne with the model on the down wind side so that the wind will help hold it out until speed is built up. You should do your best to hold the model as low as possible for at least a lap or until it has built up flying speed, this reduces the " spinning " tendencies. 'The landing is cqually important for a good "set down" can sive your model from damage as well as that precious prop you just reworked! When you first nolice that your engine is going to stop try to begin leading the model or whipping if possible, this helps maintain flying speed and allows you to have fult control for the contire landing. The landing should be made directly into the wind ancl this is best done by whipping the model until it is on the "up wind " leg where you can gradually case off allowing it to coast down wind, as it goes cross wind keep it as low as possible and ease the "up" to it setting it down only after it is completely stalled out.

Your method of flying during the actual specd run can give you or lose you miles with case. Most of us have noticed that when you go on the pylon you lose speed, from 5 th 10 in.p.h. over what you can do off the pylon, this is duc to your inability to get around the stick without detracting from the model's flight. There are several things that should be done to make your pylon flight a better one, above all, try to get used to flying on it so that you can be completcly relaxed while fiying, practire is the only possible way. If the pylon is a solid one you can help yourself a lot by placing most of your weight on your left arm, that is, grip the pylon with your left hand and place your weight on this arm
instead of your right. In this way your flying hand will not have any strain upon it making it diflicult to fly the model, resulting in a much more relaxed flight. Your foot work can be practised without actually flying so that they don't get all tangled up on you.

Onc additional way to improve your speed is to fly as close to the ground as possible. About 3 ff . altitude would be perfect, in this way you have some gauge by which you can mainain a perfectly level flight without any bouncing, this bouncing can really cat up the sperd and it should not be tolerated. Flying low, so to speak, can lee of help in windy weather as down close to the ground the air is much less turbulent allowing you to hold the moxdel steadicr, of conurse, all this will not lxe of any help if you fly the model into the ground so make sure that you have the technique down pat before attempting it in competition.

It is very obvious after going through the foregoing notes that the one item which will add to your speed more than anything else is perfection, perfection in every small detail! So many of us have the tendency to say "aw shucks, that is good enough," however if we are to lly at record breaking specds "good enough" iust will not do! It only takes a few minutes longer to do the job right and in the long run it will be the means by which you can win or lose. With a great many of us time is a big factor and we just do not have enough of it to do every job perfectly, however, in most cases, if we would just stick to one class or mordel we would lave plenty of time to do the joh right and thus become a "champion" in that class at least.

Above all clse this model flying is a "sport" and if we are the winner in competition we should take it like a " champion " and if we are destined to be the loser we should take it like a " gentleman " and we all will get much more enjoyment out of it.

HOW IT WORKS

The flight lorces acting on an aeroplane can bo determined, quite accurately, by wind tunnel measuroment, where by blowing a scream of alr past a stationary model, true night condicions are simulated. All sorts of corrections have to be made, howover, The airscream must be "scraightened " after leaving the fan producing it: the actual shape of the wind tunnel will modify the results: and, for teve comparisan, the test conditions must be to the same aerodynamic scale as that of the aircraft in normal flight through stationary alr.

Many carly wind tunnel tests made with models, including numerous acrofoll tests, at normal model speeds were not fully corrected and so are of doubtiul value. In fact, as far as accurate data are conterned. the model builder is not particularly well off. A lot of data available at, the right " aerodynamic scale" are unreliable. Data from tests at "full size" seale are not appropriate. Hence the model designer learns malnly by trial and error methods.

This, in leself, cin bo a good thing. It means really gatting down to the fundamental princlples of flight and, by purely practical means, making them "work " in the sense that a new model design flles satisfactorily. But it is a great help to know whar these main forces are, otherwise the " error" part of trial and arror may assume alarming proportions!

Basically there are four main flight forces, whith pair off, as it were. Lift produced by the wings (and often a proportion contributed by the tailplane) balances the total weight of the model. Lift Is only produced by forward motion in a conventional aeroplane and so a thrust foree is necessary to drive the aircraft forwards. This is balanced out by the drag resulving from this motion.

Now these forces are not necessarily exacely equal and opposite to their respective " pair." The only one which remains the same relative to the ground is weight. That always acts vertically downwards. Lift and drag are really components of a single force gonerated by forward movement of the arerait which can vary In strength and inclinatlon with the flight artitude of the machine. Since they are " worked our " forces, however, they always have a fixed direction ralated to the oeroplone itself. Lift is perpendicular so the flight poth and drag is parallel with the flight path. Thus the thrust is only parallel with its "paired" Srag force when the chrust line is actually parallel with the flight path of the aeroplane. II not, then thrust is producing an upward or downward force as well-a fact which is made use of in adjusting the trim of the model.

In horizontal flight, life exactly balances weight, both of these forces being in a vertical direction,

Drag is horizontal (backwards) and balanced out by the thrust. Any non - horizontal thrust force is absorbed in keeping the model in this flight attitude. On all conventional aircraft In a normal flight
attitude the drag force is very much smaller than the lift force, by about six or eight times, on models. This means, in other words, that the wings give the power unlt a "mechanical advantage," as is were. so that it is capable of lifting or supporting a weight six or eight times the actual pull it can develop. To remain In this equillbrium ateltude the model must be "In trim" and be stable, which is where the tailplane plays its part, as deseribed in a previous article. But, remember, once the model departs from its true horizontal flight poch the direction of the llft, drag and thrust forces re-align themselves with this new flight attitude. The cammon error is wo regard the flight forces acting on the aeroplane from the point of vlew of an observer standing on the ground and watehing the flight. Only the weight force is bound to the ground actitude. The flight forces can anly be analysed correctly by imagining the observer to te moving with the acroplane.
For instance, few modellers are content to achieve straight and level (horizontal) flight with their models. Undor power they want them to climb, and trim accordingly. As a general rute the faster or steeper the climb the lower the actual angle of ateack of the wings. If a model flies at a 5 deg , anglo of attack in lovel llight, for example, it would be difficult to hold this same flight actitudo in a 30-deg. climb and perhaps impossible in a 60 -deg. climb. Applying extra thrust to fly the model faster and give more lift (for climb) would result in excessive uncontrollable lift, producing a loop. Hence, usually, although the angle of climb may be much steeper, the difference in erim necessary to achieve chis climb means that the wing is operating at a finer angle of attack. A steady wind does nos modify this, for virtually the modol is flying in an Imaginary "cube" of still air, which itself is moving downwind with the speed of the wind. Once again you have to move with the model to appreciate the forces acting on it.
In a glide there is no forward ehrust force, but forward mokion is stlll necessary to produce lift. What happens here is that the resultant aerodynamic force exactly balances the weight. The lift component of this force is now acting upwards and forwards, the drag force backwardy and also upwards. This drag force is parallel with the flight path assumed by the gliding model. The life force is perpendicular to the flight path. The higher the ratio Lift: Drag, the smaller the actual gliding angle can be.
If you get confused on any particular point, then go back to first principles. If you naw conslder the model stotionory and an air blast directed past le along the direction of the flight poth, then the pasition of the flight forces will logically follow. Your "ground " reforence is only necessary to determine the direction of the weight force.

Some of these basic facts you should master as an aid to trimming. Than, when you have got home. work out exactly how the model you have trimmed is flying. What packing have you added and how has this affected the original line-up? The secret of good performance is to arrange the balance of flighe forces In the most efficient manner.

LIFT, DRAG, WEIGHT AND THRUST-THE FOUR BASIC FLIGHT FORCES

FLIGHT FORCES CHANGE THEIR ATTITUDE WITH THE MODEL.

THE MODEL'S ATTITUDE IN FLIGHT IS INDEPENDENT OF THE GROUND

THE AEROPLANE

John Vaughan of Gresham's School, Holt, Norfolk, and his Prestwick Pioneer scale model powered by an Allban Javelin engine.

P. G. F. Chimn

conditions where visibility for $5-\mathrm{min}$. is not possible. a skilful contest flier may elect to dethermalise his model while still being timed so that it is awarded a high " non-o.o.s." lime, which will not be reduced by subsequent averaging of rexults.

Obviously, the implications of the Dubery scheme

are not quite so simple as they might at first appear. It may be necessary to stop up various loopholes. Nevertheless, the scheme deserves the attention of all leading free-flight men. The least we can hope for is that it will set in motion discussion by which a satisfactory solution can be worked out.

In the second letter, K. F. P. Rutter, also deals with duration flying, but from a more general aspert. He suggests that the performance of the modern contest model has become too high and that we have to find means of reducing it. He produces some very sound arguments in favour of reducing fight times-notably the risks the movement now entails by encroachment on to land surrounding airfields and the indiseriminate dropping of smouldering dethermaliser fuses. In all, the suggestions are bound to strike the hardened contest goer as drastic and their author is ready for them to be decried, which is all the more reason why they should be examined closely.

Our interest was mainly aroused by the comnents on power models. Ken Rutter is. I believe, mainly a Wakcficld man. Perhaps, therefore, he will forgive some disagreement with his premise regarding powerduration and his subscquent remarks on curtailing its flight times.

We readily concur that Wakeficlds are the most highly developed of modern consest types. l'urthermore, it is generally agrecd that it is more difficult to reach the top in Wakefield than in any other type of competitive model tlying. The reason, we feel, for the Wakefield being regarded as more highly developed, is that rubber model design is relatively stagnant. It is inherently so by reason of the type of motive power employed. Fven the most ambitious experimentation and development work produces hut small returns.

The same can be said for A2. The absolute maximum that can be experted of a Nordic, under the present specification and contest rules, is, we would say. four minuter. This figure, in that clusive modium, "still air," has been claimed, but does not appear likely to be easily exceeded. Three minutes would be much nearer the mark for the average higli-placing A_{2} secn in National contests.

The same reasoning cannot be applied to powerduration. The average performance put up in P;D contests can at least be duubled. Pussibly the reason that some power models " fall to pieces or spiral dive after launching" is that all too few people of Wakeficld calibre take up power-duration. Were more to do so, perhaps it would be shown how clearly can skilful designing he repaid in this branch of the hobby. If unencumbered by rules limiting performance. a class of $\mathrm{I}^{\prime} \mathrm{D}$ model and flicer could be developed which might give rise eventually, to an international power contest of status equivalent to the Wakefield.

This brings us to the proposal that power loadings should be increased from the F:A.I. figure of 7 0z.ic.c. to lod oz.ic.c. 'This, of course, would definitely have the effect of reducing overall performance, which is Mr. Rutter"s admitted intention. We do feel, however, that a much better method of cutting
flight times down to more manageable levels would be to reduce engine runs and ignore power-loadings altogether. Neither the present 7.06 oz.ic.c. F.A.I. power loading, nor the $2 \frac{1}{2}$ c.c. maximum capacity International limit, encourage power model development to the maximum.

The 20-sec. engine run is much too long for a really good "unrestricted" sype PD modeleven when built to F.A.I. surface loadings-since such a model should be capable of doing a 5 -min. maximum every time. Cut the engine run to ro sec. and one has the reduced flight times automatically and without penalising clever design or reducing the spectacle of the real high-performance $\mathbb{B} ; D$ model with its impressive rate of climb.

It is, the writer feels, the power-duration model's high rate of climb which makes it so interesting. To reduce rates of climb will only admit lower standards to competition power work. Our object should be to maintain high contest standards rather than reduce them-even if this means that is is harder to reach the top. The only argument that can be advanced in favour of higher power loadings is that they would reduce the P / D mortality rate, particularly in the smaller sizes, which may be good for public opinion if not for progress.

The suggesied surface areas of 300 sq . in., combined with only a go-metre line, in A 2 , would, it is thought, knock 12 performance down to a mere 100 sec. or so. The proposed $3 \frac{1}{2}$-min. maximum rule would thus be of little comfort to the less fortunate who were unable to contact thermals, especially as the chances of contacting thermals at 150 feet altitude are less numerous than at 300 feet. A substantial increase in wing-loading, or a reduction in line length to, say, 200 ft ., should be enough, at the present time, to contain A_{2} flight times within the bounds of the 31-min. maximum suggested.
'The effect of the proposed Wakefield rule (200 sq. in. instead of $294 \frac{d}{\mathrm{sq}}$. in.) is a little more difficult to forsece but it would not seem likely that climb would suffer especially as substantially reduced structure weight would probably result in about 70 per cent. rubber being carried. The liggical development under such a rule would appear to be an ultra fost-elimbing model designed to reach

George Dovie and John Chinn assemble their 9-ft. R C glider. The model is finished in silver and metallic blue.

Steve Fairbrass, designer of E.C.C. equipment, acknowledges rodio reception with a thumbs-up sign to the author's brother at the transmitter.
as high an altitude as possible. Once in a rising air current the higher sinking speed resulting from reduced areas would be almost nullified although under conditions of no lift, the effect should be to reduce flight times to the desired level.

Although we do not find it easy to agree wish all Mr. Rulter's proposals regarding the actual methods of reduring optimum flight times, there is no doubt whatsoever that the problem which motivaled his suggestions and which faces the movement oday is one which demands attention.

Ffforts to make moxdellers fully cognisant of their responsibilities in regard to the flying over, and recovery from, private ground. or land under cultivation are now being made. With regard io recovery of moxlels we can only hope for the gond sense and good manners of modellers concerned. Where these qualities cannot be counted upon, the S.M.A.E. should not hesitate to excreisc such disciplinary powers as it possesses in the interests of the competition movement in gencral.

As for the fire hazard associated with the fuse type d/t, this does not seem to be a problem which the exercise of inventive faculties cannot dispose of. It should not be difficult to devise a small gauze cage or tube which would contain the fuse and prevent any smouldering remnants from causing damage.

Surh measures should at least minimise the dangers to the hobby to which Mr. Rutter has rightly drawn attention, pending such revisions to rules as may be deemed necessary to keep contest flights within reasonable limits.

R C Glider Duration an Alternative?

Having recently sampled what can be done with a radio-controlled glider, we are not as all rertain that, at some time in the fulure, R C C glider contests may not become popular.

We have in mind a strictly duration contest which would be conducted within the confines of the airfield. A towline length of at least the regulation ton metres should be permitted. the idea being that the glister should get enough altitude to be reasonably rertain of connecting with sone lift. Keeping the model airborne and within the specitied
boundaries would then depend on the sheer ability of the pilot to make use of lift for soaring-knowing just how long to let the model drift with a thermal without making it impossible to beat back against the wind. The art of this kind of model flying can, in fact, be closely compared with full-sized sailplanes.

In order to keep flight times within reasonable limits-as $10-\mathrm{min}$. maximum is suggerted for a start-a surface loading rule sumewhat above the present F.A.I. figure would be desirable. A fairly heavy wing-loading, combined with the use of a long tow-line would, it is felt, be preferable, from the competition standpoint, than a light loading and a short tow. Not only would the tow height increase the chances of getting into the lift regions, but the higher gliding specd would. of course, render the model better suited to beating against the wind.

The model which gave us these ideas is the one illustrated in the photographs, and threc-vicw drawing. Originally designed as an F.A.I. contest model in 1949/50 when large gliders were popular, it was only used in onc compctition (the glider event al last ycar's King's Lynn Rally which it won) before being turned over to George Davie for conversion to R, C.

Apart from the fitting of the radio, the fuselage was strengthened up with extra cross-members and was shected-in where the various $\mathbf{R}^{\prime} \mathbf{C}^{\prime}$ components were fited and suitable hatches and doors made for access to these components. The 12-0z. lead ballast box was scrapped and a battery compartment built into the next bay. 'The cntire model, previously covered with Silkspan and finished in yellow " Aerolac," was re-rovered in Jap silk and sprayed melallic blue and silver. The auto-moder system was scrapped but the rudder itself, fitted to the underfin, was retainel as a means of adjusting directional trim. A full-length rudder was then fitted to the fin, operaterl through the usual crank type linkage from a standard rubber-driven excapement.

The various alterations, plus the radio gear (L.I). Mk. I 3-valve receiver) added nearly $2 \frac{1}{2} \mathrm{lb} .$, but with part of this (a Vidor combined H.T. and L.T. radic battery and a 43 V actuator battery) substituting for the lead nose ballast, all-up weight was increased by only 27 oz . over the foo oz. in original contest trim. This has brought the wing-loading up to just under 100 oz . per sq. ft.

Naturally, with the wing-loading increased by some 4.5 per cent., the sinking speed has gone up quite a bit. the glide being much faster, but this is no disadvantage. and, in fact. allows the model to br flown in winds which ground most powerel models. To compensate the greater sinking speed, nearly three times the normal $\mathrm{F} . \mathrm{A} . \mathrm{I}$. towline length is used. For this, a German-made nylon tishing line was chosen which, although expensive (193. 6d. per 150 ft . roll), is amazingly light and strong. The model has not the slightest difficulty in lifting the goos fect used and the length could probably be increased to 1.500 feet if necessary. A fairly vigorous tow is necensary to get the moxdel into its elimb in calm weather, but tow-line stability is quite good

and it is now planned to tow up the model from the back of a shooting-brake when weather conditions impose too much strain on the energies of the " towman." Ihis system has, in fact, already been tried out with complete succes.

Once olf the line, the model has the steady, graceful dight typical of large gliders and, with the addition of \mathbb{R}, , it has a fascination all of its own. Naturally, the smonthest type of flying is obtained in calm weather and, under these conditions: 180 deg. turns can lee made with a continuous signal with complete safety and wibhout stalling when straightening oul. Continunus figure-cights, in fact, can be made simply by alternate applications of left and right rudder.

For thermal soaring, we tried the effect of gliding up wind until lift was encountered. The model was then put into a turn and drifted back with the thermal to gain altitucle, then taken ous and headed up wint again in scarch of nore lift.

During an early attempt at learning this technique, the rudder stuck over after about five minutes' flying and we had to wateh the model spiral down from five or six hundred feet. U'ilike a normal powered R.(: model, however, the turn did not degenerate into a spin. The model bounced noisily on striking terra firma but was quite unharmed.

For sheer simplicity of control and least risk of damage in the cuent of crrons or loss of conirol, this type of model woukd be hated to beat. Such a model cannot be acrobatic, of course, but ran,
nevertheles, provide endless fun-and, of course, one does not so much mind exaryboly "having a bash at the button." Glider cnthusinsts, on secing the model in action are apt to remark, sagcly, " 'That's got all your power leaten . . ." and it must be admittod that the silent and eflortless manotuvring of a good $\mathrm{R}^{\prime} \mathrm{C}$ glider certainly has considerable appeal.

"Anglian "- Succemsful A2 Design

Having managed to work a glider into these essentially "power" notes under the guise of 12 . C, we might as well go the whole hog and include an A2. The second three-vims and photograph shows Anglian: a Nordic designed last year, which has proved to be quite a reliable layout.

The mexdel was actually built in the three weeks between the second and third of three Area Meetings attended last year and subsequently placed sccorsd to P. S. Jacobs's championship Comet A2. It was not flown in any other compertions (apart from wiming the annual club glicler contest) with the exeeption of the British Championships, when it succected in losing itself after two minutes in poor mid-afternoon visibility, the yellow fuselage showing up badly.

Originally, a straight dihedral of only 6 degrees was tried but this proved inadequate and the tip panels were therefore raised.

This eompletely cured the towing trouble and the model showed good line stability with a perfectly straight tow right up overhead.

The set-up includes both wing and tailplane at relatively coarse rigging-anglex, the idea being that a minimum fuselage frontal area is presented at all times. The fuselage itself is of a fine triangular cross-section. The auto-rudder is actuated via an internal 0.010 in . steel wire and a simple pin-release behind the tow-hook.

Watching this, and other models, come over the rerovery area at Dighy during the British Championships, seemed to indicate that the design is at least up to average A_{2} standards. For 1952, slightly revised distribution of wing and tail areas was planned but the opportunity to build a new model has not arisen and no comparative information can therefore be offered.

The slim lines of the "Anglion" A-2 glider are well shown in this photograph of the model and its designer.

WITII the announcement of the E.D. .46, Electronic Developments (Surrey) Ltd., became the fourth manufacturer to enter the new t c.c. ficld, following ${ }^{\text {Pllllbon, Elfin } \text { and Frog. }}$

The .46 is actually the smallest capacity of the four-and, for that matter, of any British engine now in production.

Unlike the majority of modern marques, E.D. engines reveal but few family likenesses between the various models of their range. Apart from the earlier Mk. II, Competition-Special and Mk. III models (among which a close resemblance could be detected) each successive E.D. engine has shown quite marked departures, not only in design, but in construction also, from its immediate predecessor. Thus, the E.D. "Bec," introduced four ycars ago, was a completely new design, differing in every respect from the three previous E.D.s. The 3.46 model which followed it, although another disc-valve engine, was of entirely different structural design, while the 2.46 again showed marked departures in structural design and also in adopting the 360degrec exhaust and transfer system.

The new .46, once again, shows little resemblance externally to previous E.D. designs. It is the first radial-port, shaft-

bolts. It also features an unusual method of securing the cylinder to the crankcase, in which the one-piece outer cylinder-barrel and head holds down a llanged liner by screwing direct over the crankcase. Eight ports are drilled around the circumference of the barrel to allow exhaust gases to escape. Only the liner is identifiable as being an E.D. feature. This is of the pattern employed in the 2.46 , which was originally used in E.D. designer Basil Miles's 5 c.c. model described in "Accent on Power," in Mondi, Alrgrart, May, 1951. Bricfly, it allows the use of an annular exhaust and transfer port and a completely uninterrupted $360-$ degrec transfer passage in the manner first seen on the Yulon engines of $1949 / \% 0$.

A practical feature of the new. 46 is the inclined ncedle-valve assembly. This is fited at an angle so that the needle stem is swept backwards and upwards, away from the airscrew.

The engine includes a fuel tank of green iranslucent plastic and may be regarded as offering good value at its current price of 555. inclusive of purchase tax.

Specification

Type: Single cylinder, air-cooled, two-cycle,

compression-ignition, Annular exhaust and transfer porting. Shaft-type rotary-valve induction through hollow crankshaft. Conical piston crown.

Swept volume : 0.471 c.c. (0.0287 cu in.).
Bore: 0.312 j in . Stroke : 0.3750 in .
Strokejbore ratio: 1.20:1.
Cumpression-ratio: Variable.
Weight: 1.q, oz. (including lank).

General strurtural data: Diccast aluminium alloy crankcase with integral main bearing and intake. Detachable rear cover threaded into crankease. Machined aluminium alloy finned barrel-head. Steel cylinder-liner. Conical crown piston with fully floating gudgeon-pin. Sted con-necting-rod. Plain bearings hroughout. Prop. driver fitted on taper. Spray-lar type needlevalve. Beam mounting lugs.

Tent Engine Data

Total time logged : a hour.
Fuel used: Mercury No. 8 (castor base).

Performance

As a preliminary to the lest procedure proper, the 4^{6} was carefully ruil-in for one hour, as noted above, in a scriss of short runs. The medern small diesel is not a type which requires to be run-
in at wery low revs and speeds were. thercfore, kept at between 6,000 and 8,000 r.p.m. during this time.

To start the .46, the usual choking is necessary and priming the combustion-chamber is also recommended. This latter operation is somewhat hampered by the design of the exhaust outlets and, in order to avoid a persible excess of raw fuel being introduced, the normal procerlure of priming direct through the exhaust ports wats not adopted. Instead. the engine was inverted after choking for four or five flicks, then, holding a finger over the tank filler holc, the prop was rotated two or three times to introduce fue! from the crankcase into the cylinder. On turning the engine upright again, a start was usually obtained within a few flicks.

It has to be admitted that the $\uparrow 6$ was not ameng the easiest starting engines we have tested, although, as we only had the opportunity of trying uut one example, this characteristic may not be common to all production model 46 's. We do not imply, by this, that the .46 was difficult to start ; rather that it would not admit of the degree of "cluelessness" which one might reasonably expect a raw beginner to bestow upon it. Therefore, if only on the strength of our test findings, we would hesitate to recommend it as a first crigine for a newcomer to the hulby.

The perfermance claimed by the makers of the .46 , is . 04 b.h.p. at 12,000 r.p.m. We were able to confirm the nutput figure, although this was not realised unsil the engine had reached 14,000 r.p.m. The peak r.p.m. of the . 46 was, in fact, among the highest recorded for a dicsel. Maximum torque was obtained between 8,000 and 12,000 r.p.m., (Continued on page 326)

A WINNING CLASS 'B' TEAM RACER

TWHIS model is the outcome of a desire 10 build more "cyc-appeal" in a team racer, and in doing so to boost the spectator interest demanded by this sphere of model flying.

That this has been achieved without loss of performance has been borne out by the fact that Grenfly placed third in the Davies Trophy finals last ycar.
The construction is unusual in that the fuselage is buile up on the sandwich principle from four layers of $\frac{1}{2}$ in. sheet balsa. This enables us to save wood by frctsawing out cach lamination separately to a minimum size, while the glue seams will give a stronger result than by carving from the solid. The writer strongly recommends that a glue of the "Certofix " type be used throughout, as cement is less able to stand up to vibration over long periods.

Fuselage

This is built in three main parts: 1 -Lower main section with engine bearers and lower cowling. 2-Upper rear section and fin. 3-Front upper section including cockpit cover, completely removable for access. Trace the fusclage parts on to $\frac{1}{2} \mathrm{in}$. medium balsa, remembering when sawing out to cul away the inside of the cowling as shown. At this stage the wing slots and exhaust vents may also be cut out. Glue the engine bearers in position on the outer sections, after fitting the engine bolts, the heads of which should be soldered to tin plates to prevent twisting. Now glue the laminations tiogether, merely spot-gluing the centre scam, so that after shaping the outside, the fuselage can be separated and the inside finally shaped. The other fusclage parts are made similarly, but not assembled until control gear, crossbraces and undercarriage are fitted.
The undercarriage wire should be partly formed as shown into a U-shape, and bolted to its ply bulkhead with tin straps. The bulkhead is then glued into place, threading the $U_{i} \mathrm{C}$ legs through holes in the fusclage. Final bending 10 shape should be done when the glue has thoroughly hardened.

Wings

Gluc together two $\frac{8}{8}$ in. medium balsa shects edge-to-elge, and weight down on a flat surface until dry, then cut to outline shape. After carving to the
section shown, cut out the control-plate recess and glue in the ply pivot-bolt mount.

On the underside of the port wing, carefully cut the leadout channcls, then assemble the controlplate unit and attach the "Laystrate" Icadout wircs. After laying these in the channels and threading them through the celluloid tubes in the tip, cover in the channels with strip balsa and sand smonth. Use cement in this one instance to prevent the wires binding. Finally recess a suitable lead counterbalance weight into the starboard tip, cover in with sheet and sand tlush. The wing is now ready to be glued into position in the fusclage.

Tailplune

Here again the construction is unusual. Cut out two tailplanes and elevators and glue together, sandwiching a layer of silk or nylon in between. This forms an efficient hinge without external tapes and also greatly increases the strength of this often abused component. Fit the control horn, connect the push-rod to the control-plate and glue the tailplane in position with everything at neutral.

Fit in position the $\frac{f i n}{}$. square fuselage crossbracers and the cockpit rear bulkhead. The upper rear half of the fuselage with the fin can now be fitted over the tailplane and glued firmly down on to the lower half. After making sure that the removable front cowling clears the internal gear, fit a rycle spoke and nipple as shown to hold it in place. The ply bulkhead in front of the tank will key it in position.
A suitable commercial bubble canopy may be adapted to fit and cemented on. leaving the junction with the rear fairing unstuck.
Liberally dope as much of the interior of the model as possible and sand well before covering the entire airframe with rag tissuc, doped on. Apply three coats of coloured dope, preferably sprayed, rubbing down between coals. Finally atpply a coat of fucl proofer.

A non-relurn valve in the fucl pipe was fitted to the original model and made for easy starting with motors where the fuel tended to run back to the tank after choking.

Best flying results were obtained with a 9×8 'Iruflo prop, and 45 -6o laps per tank werc achieved at $75-8 \mathrm{~m}$ m.p.h. with the Ameo 3.5

FULL SIZE WORKING ORAWINGS ARE OBTAINABLE FROM YOUR LOCAL DEALEA, OR GY POST FROM THE " MODEL AIRCRAFT " PLANS DEPARTMENT, 23. GREAT QUEEN STREET, LONDON, W.C.2, 3\%. Gd. POST FREF

Adrian Bryant flew this Elfin 2.49 powered Mallord in the Astral decentrolised FiF contest ot Fairlop.

- control une flying is now such an accepted part of the gencral aeromodelling scenc, that it seems hard to believe that "wing on a string" designs were still very much of a novelty some five or six years ago. Athough Jim Walker introduced U-Ciontrol to modellers on the other side of the Atlantic as far back as t939, we in Britain were slow to take an interest in this fascinating branch of power flying. A goord share of the credit for rolling out the lines in the London area must be given to Kon Moulton, who gave many demonstrations at model meetings during the 1947 season. After seeing his Ohlsson 60 (ignition, of course!) powered Votsaak in action, we soon buile up a simple allshect trainer for the Mills 1.3-which Ron showed us how to get off the ground and back again in one piece. Quite a number of now well-known fliers had their first taste of Ci/L flying with this same model, which was later produced in kit form as the Phanlom.

Tracing the development of "tethered flying," we find that two Firenchmen -the Godiroy brotherswere experimenting with round-the-pole petrol engined models even before the first world war. From Jim Walker we learn that he started building rubber powered r.t.p. models in the late 'twentiesfor demonstration purposes in large American department stores. These modela were tethered to a small ring which encircled an eight foot high metal rod so that realistic take off and climbing circles could be made. When the ring reached the top of the rod, the models cruised at this height until the power ran out. It was found that the rate of climb could be controlled by varying the wing attachment point. As a change from normal r.t.p.

The Deputy Mayor of Cambridge-Ald. A. C. Toylor-admiring Peter Firmon's winning A-2 glider entry of the recent exhibition at the Central Cinema, Cambridge.

flying, this method is worthy of consideration for present-day club exhibitions.

When the famous Brown Junior engine reached the American hobby shops in r933, Walker became convinced that there was a great future for tethered models which rould be made to climb and dive by means of controllable elevalors. Over a period of several years, he developed and tested many control systems-using from one to as many as five lines. Even when the final C^{r}-Control system had been perfected, it took many months of flying demonstrations to sell the idea to the aeromodelling public.

At the same time as Jim Walker was developing L-Control, Victor Stanzel-another American manufacturer was experimenting with G-Line controlled models. In this case, control was achieved by means of a single line, which was attached to the end of a long rod. Although movable elevators were not featured, shallow climbs and dives could be carried out by pointing the rod up or down. In practice, G-Line proved to be rather sluggish and interest in this system rapidly took a back seat when Walker brought out his famous Fireball in late 1939 -a model which even by present day standards is still a very sound design, both structurally and aerodynamically. Ciurrent Fireball kits include details for mounting glow-plug power plants together with information on converting the model for stunt flying.

The bulk of American C:'L kit designs so far produced have featured the U-Control systemunder licence from inventor Jim Walker. An alternative method of elesator control was developed by Victor Stanzel-which consisted of an ingenious arrangement of " rollers" and "pulleys"-being marketed under the name of Roller Control. Although quite efficient in operation, this system was more complicated to install than the simple U-Control bellerank and consequently never caught on to any

Alan Setchfield (Willesden) and Elfin 2.49 design (Astral).
great extens. A more recent development by this same manufacturer is Mono-Line, a one-line system which has the advantage that the line can go quite slack withoue any loss of control. Elevator movement is obtained by twisting the single line by means of a special actuator handle. Some American speed fans are showing interest in Mono-line as its use enables a substantial reduction in Irag to be made.

Probably the simplest incthod of elevator contrul ever devised, is that designed for Eagle kits sorne years ago, by Walt Scluroder. In this case the fight lines were connected directly to upper and lower elevator horns-vin two go deg. curved tubes set in the wing. Spring steel clevator hinges were fitted so that the control surfaces automatically returned to neutral in the event of line slackness. This system (Flight Controller) had two main disadvantages-over-sensitive control and the tendency of the lines to bind in the tubes with fast or heavy models.

I'he late Louis Carami branched off with an entirely dillerent system, which featured wing flaps instead of elevators. A bellcrank was attached to the wing (near the tip) and linked up to the flaps, which were depressed to make the model climb, and raised for diving. Known as klap Control, this method was used on only two kit designs which have long since been discontinued. Like Flight Controller, it never became very popular and it is significant that in Britain-where no patent rights for U-Control are held-every C/I. kit so far produced has featured Jim V'alker's well prosed system. At present, something like forty different kits of this type are available here-which shows that (il. still commands a strong following in spite of substantial desertions back to the free-flight ranks.

- adrlan brvant, that glube trotting modeller from " down under "' should be off to Jeceland by the time these words appear in print. Remember last year we mentioned that Adrian was determined $t 0$ get to Finland for the Wakefield Trials by hook or by crook? Well, as you may have heard. he made it all right and stayed out there for five months. While getting in a little full-size gliding he became friendly with some sailplane enthusiases from Reykjavik, who asked him to pay them a visit in
'52 with a view to giving acromodelling instruction and gencrally running a modelling centre there.

On returning from liinland, Adrian worked for several months at Mercury's, but when we spoke to him at Fairlop one Sunday in April, he said that the wanderlust bug was biting again-hence his decision to take up that Iecland invitation and set out for Reykjavik. Some pionecring spirit, ch? Not even Frank Zaic cuer got at far aticld as Iceland in all his pre-war travels in search of Year Book material. How does onc manage to get around the world like this and still manage to cat? It's not so difficult, according to Adrian-who has given lectures, sold pints of his bloud and frequently washed dishes in order to get fogether the necessary travelling expenser.

- VORE AND yore clubs are discovering that one of the best ways of increasing membership and gencrally " selling model aviation" to the puhlic, is to put on an exhibition in the fover of one of the lncal cinemas. Peter Huskison, P.R.O. of the Cambridge M.A.C., sends in details of a very successful show of this type that his club arranged with the co-operation of the management of the Central

Pete Brown (St. Albans) and his 46 in. Wokefield (Weston).

Keith Stanley and his Hassard 60-powered 80 in. FiF (Astral).

Cinrma, Cambridge (April 16th-2fith)-on the occasion of the showing ol the film "I.andfall."

I'he opening ceremony was performed by the deputy Mayor of C:ambriclge, Aderman $\dot{\wedge}$. $\mathrm{C}^{\text {. }}$ Taylor, who is also the vice-president of the club. Mr. J. A. Moseby, manager of the cinema, had gencrously donated a trophy for the best modid on show and the entries were judged by W'ing Cornmander Harthropp, D.F.(:. (R.A.l., Waterbeach), Filt. Budelin and Mr. Plunknett, manager of one of the local model shopi. The public were invited to participate in a "spot the aircraft" contest and the two prize winners qualified for free air trips.

The 1 rophy for the best model went to Peter Firman, who entered a beautifully built original design $A-2$ sailplane of 62 in . span. In all, something like 70 models were on display and we are told that the judges were very impresed by the hiph standard of model building in the club.

- Whes it comes 10 new power trends, America usually leads the way and other countries followwitness "pylons," C/L, paylnad and R'C to name just a fews. So our morale went up appreciably the other day, when we noted that the winners in two recent Air Trails design contests, both used basic layouts that originated in this country. The first was a boxlike version of the Powavan-that unusual pylon model with the high-set powerplant, by J. R. Vanderbeek and the other was a helicopter of the Waltzing Matilda type-the design by A. Hodgson that appeared in the November, 1951, Model Aircrafr.
- plenty or "new look "Wakefields were entered in the first climinations (Weiton) at Fairlop, on April 2oth, but Bob Copland was once again flying his usual streamliner--in spite of rumours carlier this year that he would be using a slabsider this time. Nice model this (same one as last year)has"a V.IP. prop, weighs $8 \frac{1}{2}$ oz. and climbs up in a fast spiral-like nobody's business. Watching Bob's

P. T. Capon preparing his Wakefield for flight (Weston).
smooth, unhurried getaway and spot-on trim adjustment, made us realise afresh that he will always be one of the first names you think of when the talk turns to Wakefield flying.

In Brief

The February issue of M.A.N. containod accurate three views of the famous old 1028 Curtis Robina perfect subject for a 0.5 c.c. flying scale if ever there was one. F'uselage is slabsided, wings constant chord and the only tricky items are the struts. A one inch to the foot model would work out periectly at 41 in. and gives a wing area of 265 sq . in.

We glued back the misving chunks in our "manhole size" flying saucer (Jetex 350) and once again created alarm and despondency at Fairlop amongst the avid readers of the Sunday papers. Appropriately, this model has now been dubbed "La Ronde." One of these days we lope to find out why it flies so well---there must be a reason somewhere!. . We sincercly hope that Dean Inge wasn't wagging an accusing finger at aeromodellers who "design their own" when he said that "Originality is undetected plagiarism!"

THE LITTLE BLACK BOX
By Harry Stil

Topical Twits

A Painful Twise

Challenged to find a swist to the sulject of a new electronic gadget for counting the lurns being applied to a rubler motor I can only ferbly reply by pointing out that mechanical aids for this purpose are now wholly superfluous. Rubleer noturs have now asvumed such gargantuan proportions that it is no longer necessary to record the turns numerically; the system now in vogue is that of "progressive paralysis." This originates in the right wrist to indirate quarter turns, benumbs the shoulder blade at half turns, and arrests any further motion of the body at three-quarter turns. Any superman venturing beyond this point will immediately be aware when he bas reached full turns by the only purely scientifir means of determining this critical stage ; the snapping of the rubber motar.

Invialble Assets

In deacribing a new system of tinckerping at writer to this journal states that "every person is credited with the average cyoight and the average visibility."

Well, I can't say that I too much object to being credited with the average eycsight. We, in our time= keeping capacitics, never do quite come up to that cagleeyed standard which the competitor invariably expects.

[^0]And, be we longsighted or nearsighted, we munt all at times suffer his sarcastic comments on cour feelole visions. This we accept, although they do come it a bit much now and again, esprerially when, upon meering you in the street a few days afler the contest, they solicitously offer to meort you across the road.

But as far as the average visibility is concerned, that"s quite another mater. In all conscioner I santot lied that I am entided to anything less than full visual solidity. I'here are rertain gifts and secrets which are too rare and precious to share, and one of these is the ability of rendering oneself completely invisible when there's a jobl of timing to be done. By what strange alcheny certain types are able to effect a sudden and complete disembediment at such critical times I am at a loss to know, but ! think it would tre groxsly unfair mot to allew them the full value of their magieal jowers.

Official-ease

In the bad, old dayy of ease and simplicity, before we became overwhelmed by the complexities of modern life, the whole of the model club's responsibilitien would be borne with a cheerful nonchalance by the club's one and only official: the clulu secretary. In these bureaucratic days, however, he is flanked on every side by an impressive array of dignified officials who, in the very nature of modern officialdom, in no wise relieve the secretary of his many responsibilities. Rather are they the very reason why he can no longer bear them with that sanne cheeriul nonchalance.

The said officials, briefly described, are:
The Club Treaserer.- The bloke who grudgingly collects the subscriptions when the secretary's away, and who knows enough of the clutis finances to be amazed at she socretary's skill in handling them.

The Competition Secretary--The bloke who botches up the comp. entry form, and who is always thankful to Iearn that the secretary has filled in and sent off the spare copy.
P.R.O.-The bloke who forgets to send in the club report when the secretary in ton busy to do it himself.

The Committee.-Ideally this should be broad-based; representing the club al all levels of age and interest. Mose often it is broad-based through sitting alout and watching the secretary do the work.

In the average club this formidable collection of officials invariably Iraves one rather disgruniled member without any title to hang his hat upon. Fortunately, club secretaries are not without imagination. If the member is of the young and skitith variety he can be given the role of Assistant Comp. Secretary or, perhaps, Joint P.R.O. If, on the other hand, he is of a more aged and dignified genre there is always the quite honorary capacity of chairman to fall back upon.

Corny Corner

At this time of the year there always crops up the usual crop of warnings alout crups, and the farmers are busily engaged in chasing this year's crop bashers off their crops with hunting crops.

Why the average acromod should have such scant regard for the produce of his native soil I don't know, bus his partirular aversion to corn does. perhapm, explain all those unpleasant remarks I get about this colunin.

Prototypes Worth Modelling

Number 23

THE FAIREY TIPSY JUNIOR

By C. IB. May

The pictures clearly show the simple lines of this attractive liztle aircraft.

THE Tipsy Junior should be an excellent choice for a flying scalc model. Practically no modification of the original would be necessary to ensure a good flying performance. It is simple to construct, rugged in design and all main essentials are arcessible; moreover, the lines are pleasing. The Junior is of all wood construction, built by Avions Fairey, Gosselies, Belgium, to the designs of Mr. O. E. Tips, whose name needs no introduction as a successful light aeroplane designer.

The basic fusclage structure follows precisely the same pattern as the average slab-sided model with longerons and spacers. Semi-circular formers set across the basic structure, carry stringers which in turn support the fabrir covering.

In plan the mainplanes have a slight forward taper on the trailing edge, and are built around a substantial front spar, with which the plywood leading edge to the wing forms a rigid torsiun box. There is also a subsidiary rear spar. All ribs are of constant section. The tailplane and vertiral surfaces follow closely the mainplane in construction but with a single spar. The tailplane has two small struts.

The landing chassis is fixed and has a generous track (nearly six feet) with the legs fixed direct to the front spar. The upper portions are of circular section stecl tubes housing a coil spring, while the lower portions carrying the whecls are of square section tube contrived to slide inside the circular (ubes.

The spaces between the two sections are packed with Ferodo segments, thus on landing the cuil springs take the shock and the Ferodo segments damp the recoil. A very ingenious wheel brake is filted consisting of a disc with a vee rim. The nperating cable is threaded thmugh a series of Ferodo cubes which lie in the vee edge-on. When the cable is contracted the cubes bite into the vee. Hach whecl can be braked independently from a central operating lever in the cockpit.

Besides the usual control column there is a petrol tap and choke of motor cycle type. throtte lever and ignition switches. The instruments comprise a P. 4 compass on the floor between the wing spars, with A.S.I., altimeter, r.p.m. indicator, oil and fuel gauges on the dash. The engine is a Walter (W.M. 11-6.2 h.p.) driving a wooden or metal twoblade airscrew:

The colour scheme of OO.TIT' was primrose yellow with aluminium doped rudder, elevators and the portions of the mainplancs (excluding the fairings) aft of the main spar. Letiers and speed streak were decp blue.

Main dimensions. Span 23 ft . I in.. length
 wheel size 400×100, tailwhecl 6 in.

Performance with 6o h.p. engine: Max. speed 108 m.p.h., cruising $88 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., range 300 miles. 1akcoff run 80 yd ., landing run 100 yd .

Part I. Performance Variation HE C/I model, primarily responsible for the interest shown in model aircraft engine performance during the past few years, has lately conceded some of its popularity to frec-flight types, which it had previously threatened, and to $\mathrm{R}_{i}^{\prime} \mathrm{C}$. The C/L. decline has brought with it a general levelling off in the rate of engine development. Nevertheless, that the average power enthusiast is stil! keenly interested in engines, is evidenced by undiminished support for the Model Aircraft "Engine Tess" now well into their fourth year of publication.

It is interesting to note that, during the whole of this time, on no occasion has any of the results been disputed. Neither manufacturer, nor user, have, apparently, found cause for complaint or disagreement with any of the performance figures given, or with the comment on the engines concerned.

We mention this, not merely to give ourselves a

pat on the bark. (When dealing with aeromodellens such complacency is decidedly unwise!) Rather, we use it to introduce the question: "How accurate are the 'Engine Tests'"?

Every scrious model enthusiast has probalbly asked himself this question. if only when he has noticed that performance ligures recorded for a certain engine have variod somewhat from those quoted by another source.
The answer might be summed up in the worls "is accurate as the engine allows :"

It is an unfortunate but undeniable fact that performance varies, sometimes seriously, from one production example to another. This is especially noticeable in the really small capacities, but is true of all types of i.c. engines.

As an example of this, Fig. 1 shows typical power curves for six production car engines of a powerful type. It will be noted that the power varies from less than 135 b.h.p. at 3,500 r.p.m. to over 160 b.h.p. at 3,800 r.p.m. Vatiation contained within the structure of the engines themselves, could be accounted for in slight differences in machining and other manufacturing tolerances, affecting valve and ignition timing, gas flow and cooling and mechanical losses, and to normal running adjustments.

With model engines of the normal two-stroke cycle type, we do not have to concern ourselves with the many parts which, in full scale four-cycle engines, contribute to the total number of possible sources of performance variation, but, for the most part, the remaining factors, which we have to consider, assume much greater importance due to the infinitely smaller margins of error which can be tolerated in such small sizes.

Thus we find that model engines, in general, vary in performance, between otherwise identical production units, to a much greater extent than their full-scale coupterparts. Hence the 68 per cent. greater power shown by the best example over the poorest for a small batch of diesels tested, as compared with less than 20 per cent. for a full size design, as shown in Fig. I.

Add to this the efferts of varying atmonpheric conditions, of different fuels and of the cumulative slight differences which are inscparable from the process of testing and the final graphical expression,
atid it is hardly surprising that the chances of two independently conducted tests showing identical performance graphs, are ahout as remote as the possibility of two models, launchel from the same spot, recording identical times and landing one on top of the other.

With regard to the actual process by which a performance graph is eventually arrived at, it is important to get this in the right perspective. Heenanfroude operators might accuse us of splitting hairs, but it is none the less true to say that virtually no performance curve is precisely accurate.

Consider the methot of determining a b.h.p. curve. The engine is coupled to a dynamometer. Torque and speed readings are taken at various loads and, as nearly as possible. simultaneously. The torque and speed figures, themselves presise as far as the calibration of the instruments will allow, are multiplied together with a constant to provide the b.h.p. figures at various r.p.m. These b.h.p. values are then plotted on a graph against speed. A curve drawn exacily through these proints with, in all probability, assume a slightly erratic course and we are therefore obliged to "smooth" the curve to a slape more likely to fit in with the known characteristics of the engine.

This is precisely what happens with full size engines and. provided that a sufficient number of readings are taken, such slight inaccuracies as might be entailed in the process are unimportant.

The significant fact to be appreciated from all this is that, from the standpoint of model engine tests, no useful purpuse is served by giving a b.h.p. figure running to an impressive number of digits of impossible accuracy, such as " 0.1809 b.h.p. at 10.065 r.p.m." B.h.p. Gigures to two decimal places are. for the mose part, adequate for the medium and larger capacity engines, while three decimals will cover smaller engines down to the $\&$ c.c. sizes. Similarly, in dealing with pcak r.p.m., which now, almost exclusively, run to live figures, correction to the nearest 100 r.p.m. is obviously indicated.

The type of equipment used for the "M.A." tests has been described in carlier articles, but, for the benefit of readers whu may have missed these, it may be briefly restated that the dynamometer employed is of the simple torque-reaction cradle type, which has proved the most suitable for use with small engines of the type and size commonly employed for model aircraft. It is, however, suitably adapted to give direct torque readings without recourse to the more usual beam and weights method of balancing torque, and, at the same time, to damp out cyclic fluctuations. However, three separate scales are used, to suit small, medium and large engines, so that, by changing the counterweights, readings are, in effect, geared up and scales remain sufficiently open to facilitate reasonably accurate readings even with the smallest engines. The wide caparity range of model engines makes this essential and, in fact, the present limits of approximately $\frac{1}{\text { c.c. to to c.c. may be regarded as the }}$ maximum range over which, in the interests of accuracy, a single piece of apparatus may be used.

Returning now to the question of performance and of the variables affecting this. Broadly, we can divide these into four groups : atmospheric, fuel, ignition and mechaniral.

As befits an essentially air-burning engine, the power of an i.c. engine is dependent on the amount (weight) of air (oxygen) consumed in a given time. Since atunospheric conditions vary scasonably and between different locations and alititudes, it follows, also, that i.c. engine power outputs will vary correspondingly.

Firstly, the weight of air inducted will depend on air temperature and barometric pressurc. ('harles" Law states that, in a dry gas, whatever the pressure may be, and such pressure remaining constant, the volume is increased at a constant rate per degree increment of temperature (cocfficient of expansion 0.0×3665 per deg. C..). Thus, conversely, air density, or weight per unit of volume, is decreased at a similar rate with rising temperature.

The result of this is seen in lig. 2 in which power output, written as a percentage factor, has been plotted against temperature. The power output, it will be noted, drops approximately 2 per cent. for every 10 degrees F. increase in air temperature. The graph is based on rated power being delivered at an air intake temperature of 60 degrecs F.

In Fig. 3 is shown a power altitude curve for normally aspirated engines, with a corresponding barometric pressure scale added. A mean barometric pressure of 760 mm . or 29.92 in . Hg. at sealevel is assumed in this case, which is in accordance with the table of the International Commission for for Aerial Navigation (I.C.A.N.) and is used to standardise the b.h.p. rating.

While the climate and terrain of the British Isles are not such as to give rise to the extreme variations of power output covered by these two graphs, it can be readily appreciated that, where such conditions exist, atmospheric pressure and temperature may combine to substantially reduce performance. As an example, it may be shown that an engine required to work at $4,000 \mathrm{ft}$. above sea-level and in an air temperature of 90 degrees F., may develop only 80 per cent. of its rated output.

The third climatic condition to be considered is humidity. It has been shown that indicated horsepower is reduced in proportion to humidity, the loss being proportional to the volumetric loss of oxygen content in the atmospherc. In practice, however, this appears to be more than oflset by other factors; specifically, an increase in volumetric efficiency and a lowering of the combustion temperature due to the lower temperature of the ingoing clarge and the heat absorbed in vaporising the water content of the mixture.

In full size practice, the introduction of water, either in the form of a fincly atomised spray, or by means of a suitable solvent additive, actually with the fuel, has been claimed to have beneficial effects with certain high-performance engines, and the "water-jnjection boost" as used on some aircraft engines, is a practical example of such an application. In full scale work it has been proved that an adequate moisture content in the fuel/air charge is particularly valuable with high-compression engines in suppressing detonation and in reducing carbon deposits, as well as increasing volumetric efficiency, with a consequent increase in output.

With model engines, the experiences of speed
fiers would seem to confirm that improved performance is to be expected under humid conditions and while cylinder sizes are such that "detonation" (as understood in the full scale sensc-i.c., " knocking" or "pinking "-and distinct from the model diesel combustion process) is not a factor with which we have to bother, it would appear that there can be a delinite gain from improved volumetric efficiency.

Winh regard to fuels, it is only intended to souch briefly on this subject in so far as it affects variation in test results. In this respect, diesels and glow-plug engines differ from each other in the lactors whicn influence performance variation. In general, glowplug motors usually respond only to the properties which go to make the "power" of this fucl--always assuming lubricant content to be adequate and balanced-although the extent to which one fuel produces more power than another may vary widely between different types of engine. See Fig. 4.

The power outputs of diesels, on the other hand, are not greatly influenced by different fuel forma-tions-except how such fuels affect critical running temperatures. This is a factor which has only developed with modern ligh-speed competition diesels and means that a fuel which gives a maximum of 5 or 10 per cent. greater output in some engines, may well deliver less power than normal in another type due to overheating. Sometimes overheating and loss of power on a certain fuel are confined to individual examples of a certain type ; sometimes the loss will be minimised or eliminated with runningin, but the cause is frequently due to the design and construction of the engines themselves, the materials used and the design of the components being such

that heat dissipation is inadequate when using modern fuels in which chemical additives are employed.

Design also influences power-loss with warming-up, a phenomenon common to most diesels and a few other types, which often seriously affects results and complicates testing. This question was dealt with at length in an carlicr article ("Facts and Findings on Fngine Tests," Modrl Airgraft, Oct., Nov., 19jo) and will not be repeated here. Such data as has been collected since that date would appear to confirm mose of the earlier observations.

With glow-plug engines, the type and conditions of the glow-plug itself can have a marked effect on performance. Engines are invariably tested with a plug of the type and reach specified by the manufacturers, but slight differences in the precise position of the glow-plug element often account for an appreciable variation in performance curves.

Mechanical variables affecting performance consist mainly of frictional losses and slight dimensional differences to port arcas, timing, etc., affecting volumetric efficiency and, in some types of engines, are much more marked than in others due to greater manufacturing tolerances. The widest variation naturally tends to be among the very small diesels.

Just how marked can be the effect of quitc a minor modification is shown in Fig. 5. Curves are reproduced for the Mills Ml. II model, as introduced in 194^{8} (when it superseded the carlier Mk. 1) and as modified the following year. The modification mainly responsible for the outstanding improvernent shown was a lowering of the intake port to give a longer induction period. At less than 6,000 r.p.m. the power was slightly reduced due to charge loss from blow-back, but it will be seen that, above this

speed, the gain in volumetric efficiency is such that torque is maintained to a speed of approximately 3.000 r.p.m. higher, with the result that b.h.p. is stepped up more than 35 per cent.

Another example of how power output was raised with progressive modifications to a standard design is shown in Fig. 6, which illustrates the development of the Nordec 10 c.r. glow-plug engine between 1948 and 1950. In this case, not only did the modifications result in greatly improved power. Smoothness and starting were also better with the final model than with the two carlicr types.
From the foregoing, it might appear that comprehensive teats involving torque and b.h.p. figures are not of any great value since other examples of any particular engine may vary somewhat from the figures recorded for the test engine.

This is by no means the case, however, Admittedly these inherent differenses reduce the value of the performance graphs, but the curves remain as the besi and most accurate method of getting a true picture of the performance characteristics of any particular type of engine.
A hidden blessing is the fact that differences send to be exaggerated by the curves. since speed under load varies as the cube of the power. Thus 20 per cent. more power actually means only a litde over 6 per cent. improvement in propeller speed would probably pass unnoticed were tests merely to consist of speed checks on various propellers.
Part of the tester's job should be to know whether an engine on test is somewhere near a representative example or not and this, alone, would be sufficient to justify dynamometer testing since no other method can give such positive resulis.

THF, currently revived interest in chuck gliders prompts the recording of a few thoughts on the subiect made some time ago.

First and formost, let all thoughts of " kid's stuff" be cast aside, and let us consider the peculiaritics of the type. The great difference between the humble chuck-glider and its lordly brothers is, of course, the method of launching. Our model is not to be towed gently aloft with the skill and patience of the angler, but on the contrary is to be hurled upwards, with the maximum amount of brute force the launcher can muster, and we must tackle the design accordingly.

The method of launching is not suitable for large models; therefore we adopt a maximum wing span of approximately 24 in . and 3 in . chord, anything larger than this requiring herculean efforts on the part of the launcher. So much for the size of the model ; let us now onsider proportions.

Our model must, of course, possess an adequate reserve of stability yet must retain good manocuvrability, so we use a fairly large tailplane (about 35 or 40 per cent. of the wing) and a moment arm equal to one-third span. Due to the solid and consequently weighty construction of the tail unit, and the desirability of keeping total weight down, the fuselage alead of the c.g. should be about equal to the moment arm. No hard and fast ruling can be given for the fin area, and it is a simple matter to cut down to size, so it is a matter for experiment. There is much to be said for dihedralled tailplanes, especially when set on top of a small fin, as normal fins have a distressing habit of falling off if looked at hard.

Concerning rigging angles, the launch depends so much on this point that we shall leave the matter and discuss it fully when we come to the trimming stage.

There is a great stress on the wing to fuselage joint during the launch, so we pay great attention to the fit of the three components, ard the adhesion between them. The wing will have a tendency to increase its dihedral angle to a right angle (look, Mum--I'm a busterfly) so a ply brace let in spanwise is advisable. The adjacent faces of the two wing halves must mate accurately (a method which
ensures this will be described later) and a shallow vee cut in the top of the fuselage will seat the wing properly. Fillets of cement at the fusclage-to-wing joint add the finishing touches, pre-cementing being employed at all points of course.

Should the launch misfire (defeatist salk) and the model relurn to earth much more quickly than is expected, the usual thing is for the tail unit to part company just before the tailplane leading cdge. Accordingly we fit another ply insert in the fuselage as in the heading picture.

Contart with solid objects is bound to affect the beauty of the nose and there is a danger of the fusclage splitting, so we face the nose with still more ply, or alternatively bind it with strong thread, rubbing cement well in. The leading edges of the wings may be protected by strips of tissue (heavy Modelspan grade) and complete covering with lightweight tissue helps enormously; however, that is for the finishing department.

Let us now consider materials. For the fuselage. balsa and hardword enjoy equal popularity, our ow'n preference being for balsa. With hardwood there are always the attendant difficulties with the joints to balsa, while the latter wood makes a lighter fuselage and has adequate strength when details are atlended to as described above. Whatever material is chosen it is usually three sixteenths or a quarter of an inch thick; the side view is cut out and the only shaping is the rounding oll of the cdges, but avoid hacking away merrily until you find that you have rounded of the wing and tail seatings. Cut the slot for the ply insert with a fretsaw and press it in place (with cement of course). All that remains now is to cut the vee for the wing seating, pre-cement, and finish the fusclage by sanding.

Balsa is used for wings universally and one-eighth thickness is suitable. We use a flat plate section, as it is admirably suited to the small sizes involved and is easy to fabricate in our shect wood.

Ciut out the two halves of the wing and scribe a line, spanwise, at the half chord position and one at the quarier chord line, after which we may enjoy ourselves with the balsa knife producing the rough section shown in the drawings. The best knife
for this purpose is a long straight blade; X-acto have one in their range which is ideal. We must now complete the shaping using the sanding block. The tail unit is made from hard thin stock, and very little shaping will be required, a mere rounding off at the edges will suffice.

Now for the joint between the two wing halves. Dihedral and swecpback are cmployed, about three inches per foot of semi-span for the former and to to 85 deg . for the latter. We must now find a nice square box (if the corner of the bench is anything like ours it will not do at all). The wing half under treatment is blocked up and set at the correct angle so that the face of the joint is on the edge of our box, and the sanding block is applied with vigour using the face of the box as a guide (that's why the sideboard is out for this purposc). (Right.)

Assembly of the model is the next step and care must be taken to line it up accurately. If we have decided to use a dihedral brace the slots will have been cut in the wing and it is a good idea to key the assembly into the fuselage, but we must not cut the slot ton deep or we shall have the makings of a weak spot. (Below.) The key is cemented into position in the wing and the two halves joined, then the whole unit is cemented to the fuselage. The tail unit is popped on at the back, and there we are. All joints are pre-cemented and a good eement used (medium drying). The addition of cement fillets at the appropriate spots completes the assembly. We now come to the finishing of the model.
When all the joints are quite dry the model should be lightly sanded all over, and smooth over the keys. The first operation is to fill in the grain. The wood we have used will not have been very soft, so a coat of good quality sanding sealer will give us a suitable base to work on. The next thing is a covering of tissue doped on. The lightest grade available will be enough and the less wrinkles the better, although one or two small ones are permissable as the subsequent sanding will smooth them over. We may now add the tissue strip along the leading edge if desired. A light sanding follows to get rid of the hairiness of the tissue and we now apply sufficient coats of sanding sealer, sanding between each, until we have a perfectly smooth surface. Holding the surface in question almost in line with a source of light will show up imperfections. We now add another coat of sanding sealer for luck and if it is

of the glossy brand we can go ahead with the final polishing. If it is not glossy we must rectify matters with a coat of glossy dope or thin varnish. A good final treatment is to polish the model with one of the new waterproof car polishes (Autobrite or Carplate) which will give it the final gloss and render it completely waterproof-valuable when flying over wet grass.
Now for the first trimming flights. The model will have been balanced before the final finishing by adding. Icad at the nose. The best method, and that which is most widely used, is to manufacture lcad rivets, which cannot come adrifs and will not mar the smooth lines of the nose. If the balance

before finishing was correct (a few straight hand launches over a dry surface are permissible to indicate correct balance) it will now be found to be nose light. A gentle launch will show how things are and the slight stall can be almost removed with pins in the nose. Notice that we say almost removed, we must not forget that the final trim will be for circular flight which will iron out the stall completely.

The turn is provided by a little careful wing warping, turning to the left if we launch right handed and vice versa. Now here is where we consider rigging angles while thinking about the launch and subsequent glide. If we have a straight line-up, that is zero incidence on looth wing and tailplane, we shall lessen the chance of a straight loop due to the excess speed of the launch, but should the model find isself going straight down it will have little inclination to straighten out, so we have a little positive incidence on the wing and turn the looping tendency to our advantage on the launch.

The excess speed on the launch has iwo elfects : it causes a loop (in exactly the same way that a power model can loop) and the control surfaces have greater eflicet. That means that out wing warping will also have a greater effect so we combinc the two to obtain a roll off the top of the loop. We launch the model (right handed) starting with a right bank of 30 to 40 deg. and hurl it upwards at an angle of about 45 deg. to the horizontal (reduring this figure according to the strength of the wind). If sufficient brute force has been applied the loop will be in evidence and our wing warp will roll our moxel out of its preliminary bank, past horizontal and round in a
complete roll, the level position being reached just as the encrgy imparted by the throw is used up. The model will now glide to earth in a normal manner. It is quite likely that the first launch will be very different from this but we must persevere, warping a little more or less, depending upon the position in relation to the height gained when the model assumes the horizontal. If the loop is too much in evidence and we see that the model has surplus energy when it comes round straight and level we have too much wing incidence and shall have to fiddle the nose weight and indulge in a little careful tail warping.

Let us now conclude with a summary of the ways and means to success, with first an analysis of the problems.

For the launch we have the energy imparted to the model by a strong right arm, and acting against it we have old grandmother gravity and the old enemy drag. We cannot do much about gravity except to build reasonably lightly, though not too lightly or the launch will suffer (try to throw a feather as far as a chunk of lead the same shape and you will see what we mean). Drag, of course, is cut to a minimum by obtaining as fine a finish as possible, so help those muscles at the launch by plenty of polishing in the construction.

Summarising the design features, we have a flat plate section set at a small angle of incidence, a swept back wing of low ispect ratio with a fairly high dihedral angle, sitting amidships of a medium length fuselage, the whole being stabilised by a large tailplane.

Constructionally we use medium hard balsa with cement fillets at highly stressed points and ply braces at the weak spots. A good finish cuts down the drag and increases the height gained at the launch. 'The rest is up to the individual-so let the budding Atlas and Samson types come forward and use those rippling muscles to good effect!

where even figures were maintained. 'The engine is obviously designed for high r.p.m. and is happiest at specds abuve 8,000 . Below this, there is some roughness but the unit russ evenly at all uscful r.p.m. up to, and exceeding, the peak output speed. Maximum shaft speed at which the engine was run was some 16,900 r.p.m.

The engine is responsive, but not over-critical. to conirol adjustment and the inclined needle-valve is a real " finger-saver." A rather marked difference existed between the needle selling given on the makers test card and the actual setting necessary. The compression-lever gave adequate speed control. even under light loads, for reduced power frec-llight testing without readjustment of the mixture control.

Power-weight ratio : (as tested) 0.457 b.h.p./lb.
Power/displacement ratio : (as testedj 85 b.h.p./ litre.

S.M.A.E. Control Line Eliminators

held at It.A.F. Wration ChigurrII, Essex.

1. Bill Morley holds alofe the team race starting flag.
2. Pete Wright displays his E.D. 2.46 glow-plug speed job.
3. J. Claydon's model gets cleanly away in the stunt contest.
4. C. Turk (Gravesend) holds down his "Super Saint" while D. Annal starts the Eta 29.
5. R. Marsh with his twin Frog 500 stunt model, Snipe,
6. A. Piacentini and R. Marsh (Salisbury) prepare the former's Eta - powered speed model.
7. Eifflaender of Macclesfield and his neat stunt biplane, powered with his o/d. 2.5 diesel.
Thefollowing ream was selecred at this mecting to represent Great Britain at the Brussels C/L Championships
P. Wrighe (St. Albans) ; J. Claydon, R. Davenport (E . London) : P. Ridgeway (Macclesfield). Team manager will be Col. R. Yates.

- The Editor does not hold himsalf reaponsible for the viewi expreisild by corraspondents. The names and addrassal of the writars, not necessarily for publication, must in all canel accompany lettert

COMBINE WAKEFIELD AND A2 CONTESTS!

Dear Sir,-In view of the annual problem of raising funds to send our National teams to the Wakeficld, and in recent years the Nordic Contests, there must surely lee some support for a plan under which the contests are held at the same time and at the same plase, the latter to be decided by the country placing highest on a points basis over the two contests in the previous year.
It is surely an economy to send a party to the combined contests rather than to send two smaller parties to possibly widely spaced countries.

This is a personal opinion and not necessarily that of the Area of which 1 am chairman.

Yours faithfully,
Manchesier.
Peter D. A. Foulkes.

```
    Se|eraragraph in "Mara and There." paga 292.-The
Ediear.
```


IDEAS FROM AMERICA

Dear Sir, -Two letzers to the liditor in Moner Aircrapt for February deserve much more than pasing interest on the part of the S.M.A.E. and Wakefield fliers ererywhere. As an ardent W'akefield enthusiast, I would like to express my whole-hearted approval of the suggestions advanced by Mr. J. M. Fullerton. of Australia. Several years ago I came to much the same conclusions as he has, and proposed (in a letter to another magazine) the adoption of a PAA-type payload dummy of at least 2 oz., to be carried by future Wakefield models. At that time the prospect of nurnerous 4 to 5 min . flights being made under non-thermal conditions was, of course, considerably less than at present, and my idea received no encouragement. Now that Mr. Fullerton's analysis has made the case for a bold and far-sighted revision of the Wakelield specifications, it is to be hoped that the S.M.A.E. will give the payload suggestion due consideration.
A feature of my original proposal was 10 include sperific dimensions for the weighted payload dummy (similar to the familiar PAA rules for power models) so as to provide an inheremt cross-sectional area requirement. 'The dummy would be of inverted-U shape so as to allow the mbber motoris) to pass through it.

Also very worthy of serious consideration are the suggestions offered by Per Weishaupt regarding the team aspects of the Wakefield Competition. It seems entirely reasonable to me that, in addition to selecting one outstanding modeller for the grand award, cfficial recognition lue granted the highest ranking team---perhaps on the basis of the best four counting. I would continue to support such dual recogntition in the event that the S.A1.A.E. revises the specifications in such a manner as to render the luck element truly negligible.

For what it may be worth, may I suggeat this sort of Wakefield venue : regardless of the nationality of each year's winner, rotate the finals according to a definite schedule from England to Scandinavia to Southern

Europe to the U.S.A. Perhaps every tenth year we could all ship our moxdels to Australia-and let those fellows lave a crack at flying their own models in the competition. The thought behind this proposal is that all countrics would be better able to plan the financing and arrangements for their teams and that small nations such as Firdand would be sparexl excessive burdeus in sporsoring the meets.

Kirkwood, Mo. U.S.A.

Yours faithfully,
Parnell Schoenky

WHY NOT THE A.I SPECIFICATION?

Dear Sir, -With greal interest I regularly study your mapazine, especially the " Ietters to the Editor" column. This time Il feel buund to comment on "Revised Speecifications Adrucated" (Mr. K. F. P. Rutter, in May Alonbl Aircrapr, p. 226/7). I may add, that already Mr. Warring's plans for a half A-2 glicler in the April Model. Aircraft have provided much foxd for thought. For instance, the tailplane section on Mr. Warring's ship ajparently is very far from being a matching one 10 the wing section employed. I may admit that here in this country, we have made a somewhat deeper inveatigation into low speed aerodynamics and this airfoil section arrangement ought to the subject to a radical change all round in view of the latest findings, especially those relating to the influence of the Reynold's number in the slow speed field!

Far from crying down anyone's efforts I would suggest that the point to fook at in the smaller sized glidere models is the tailplane section or airfoil, not sol murll the wing! One may recall that airfoil exponent Sigurd Isarson now widely quoted in the A-2 section question-used a turbulator wire in fiont of the tailplane in lieu of one in front of the wing, on one of his outstanding A-2 designs. 1 can hardly believe that Mr. Rutter had this very axpect in mind, when advocating a 300 sq . inch total area as a new class for model gliders, hut as a matter of fact such a clase is widely used here these days. Apart from being convenient in size, this class is the most critical and most interesting one for the designer!

Since 10, 5 , the Scandinavian countries have been using the "A "-specifications, and our German MFK (Model Aviation (Dommittee of the German Arrocluh) did adopt the very specificalion in October last year! The layout is as follows:

A-1 : Cotal area up to $18 \mathrm{dm}^{2}$ or, 279 sq . in. ;
A-2 ; Total area from 32 to $34 \mathrm{dm}^{2} .496$ to 527 sq . in. ;
A-3: Total area over to dm², i.e.: 620 sq. in., up to the general size limit of the F.A.I.

Where applicable, the general F.A.I. rules apply, as for crexs-section, and area-loadings.

As already hinted above, the A-1 sperification (incidentally very near Mr. Rutter's suggested 300 sq . in. includes the region of change-over from laminar-cfficient to turbulent-efficient tlight pattern. In fact, the barrier between under-critical and over-rritical slatus of flight runs right through it! Due to this fact, a goxd many
fruitful discussions on stability and efficiency have been made such as the " Nimbus diseusion" in Sweden arrund 19.13, and at ahout the sane time the Germatn slow-speed wind tunnel tests of Ing. F. W, Schmitz, to name two outstandine ones. All the problems, well written up by acromodelling aeroxlynamicist Schmitz and republished recently, are far too complicated and too numerous for a review in this short commentary. 1 felt, however, that a him towards this may not be out of place. As for the line-length suggestions of Mr. Ruter, I would memton that here in Germany, since last year, the jo metre line, i.e., 164 ft ., is compulsory in all NFF sponsored competitions, and the out of sight time limit is reduced $t 03 \mathrm{~min}$. for gliders. To eliminate the luckclement, five rounds are to be flown off in such competitions, and in case of a four-light tie, the fifth round shall be without a time-rurtailment to find the winner. This is generally and widely considered the best competition method in conjunction with a fixed and very strict time schedule for each round.

In the International power class, I heartily advocate from my own presonal angle and a 12 years' power modelting experience the increased power-loading of ol oz. per c.c. This ruling, I feel, is lwund to hring forth a type of precision contest ship rather than the present functional "screaming pylon" designs.
the main issue is, however, that we shall all get eracking on A-1 glider design, and persuade our representatives in the F.A.I. modelling section to advocate adoption of this ruling.
Bad Pyrmont, Germany.
Yours faithfully,
Hany-A. Pereil.

PRAISE FOR THE L.S.A.R.A.

Dear Sir,-Following Rill Dean's article on our new "Jetmaster" I feel that it is only fair to state that although I personally started the Augmenter Tube idea, I seriously doubt whether the project would ever have seen the light of day if it had not been for the invaluable assistance given by the Low Speed Aerodynamics Association of Farnbomugh.

It seems to me that the model aircralt trade could with advantage use this organisation a great deal more often than they do as they have at their clisposal some of the trest brains at Farnborough with an immense amount of knowledge to which the ordinary layman does not have access. They are grarlually building up a great deal of useful and specialised equepment for model work and 1 firmly believe that there is enough industrial potential in this country to not only manufacture but produce entircly new lines if they had at their disposal a rescarch organisation of this type. Other branches of enginrering and indultry are, of course, utilising both the R.A.F. and the National Physical Laboratoriox whenever some particularly knotty problem arises, and to my minal the support piven to the L.S.A.R.A. by the model aircrafe trade in general has been quite inaslequate.

To return to the "Jetmaster" and illustrate more clearly what I mean; the problem that we had to face was that although the initial monception of a type of booster lube, which in itself is not new, was eurs, it was only when we were able 10 obtain certain data supplied by Mr. N. K. Walker, of the I...S.A.R.A. that we decided to go ahead and institute a development programme, which was hy no means cheap, with the confidence that this would ultimately end in success.

As a famous scientint once remarked, the moxt difficult thing is to realise that there is a question 10 answer, and if a piece of equipment refuses to work one has to find the reason for it not working before the answer can be found. This reason may be obscure and totally unrelated
to any known existing fart, but if a fully trained scientific mind is brought to the subject shere is a very much greater chance of this obecure reason being cliscovered than if the problem is tackled from a purcly engineering and commonsenue approach.

I think there is little doubt that in the field of model jet, rockel, and ducted lan propulsion we are now ahrad of the Americans, luat this does not mean that there is nos an immense firld of development still ahead of the whole model aircraft industry. The L.S.A.R.A. especially has always appealed to me as being of invaluable use if England is to keep her lead.
'lo conclude, 1 am not empowered io disclose any of the activities which are at present taking place rither in my own concern or the I..S.A.R.A., but I can safely say that before very long some extremely interesting new developments are likely to see the light of day.

> Yours faithfully;

Totton, Southamptot, Hants.
J. N. Mansour, Managing Director,
Wilmot, Mansour \& Co. Led.

SLOPE SOARING

Drar Sur, It was with great interest that I read the article by C. Bates on "Slope Soaring," in the May issuc of Monel Aircraft. This franth of our sport has probably had less though given to it than any of the others antl his excellent gathering together of the ideas and facts connected with slope soaring will, I hope, stimulate many to give this type of model sailplane flying a trial.

There is one point on which I must differ from him, that is where he states that a slope soarer must have a larger fin.
We in the Merseyside M.A.S., will be holding our tenth annual slope soaring meeting on the Cilwyd Hills in North Wales, on June 29th, and from our experience over the last 19 years, we still have not found the answer to this question. In 1950 the best flight was made by a monel with dorsal fins with the resul? that last year a large number of models turned out with there appendages thinking this was the answer. All, without exception, instead of keeping their noses into the wind, turned and either bit the hillside, or if they had gained emough height, disappeared over the top. In 1951, one of the best flights was made with a Dutch design which had a very small fin and very litule dihedral and yet this held into wind in a remarkable way.
'rheoretically, I think there is something to be said for a ventral fin, but I have generally relied on a normal moxiel, preferably of fairly heavy loading, (about double F.A.I.). Lastly, the element of luck is very much greater than in normal flying.

The grealest faccination of hill-side soaring not menfioned by Mr. Bates is that one is mo much closer to one"s model whilst it is in flight, as any rate at the legimning of the flight.

I hrartily agree with his final paragraph, retrieving can be very strenuous.

Liverpool, 8.
Yours faithfulfy,
R. F. L. Gosling.

We commence operations this month in the freeflight catcgory. and photograph No. 1 reveals a very sleck Frug " 45 ," in the hands of the builder, A. Piper. Powered by a Mills .75, the model dies as well as it looks.

In No. 2, P.İ. (The Torso) Norman is scen as Epsom with his shirt-and his $4^{8} \mathrm{in}$. span Sopwith Camel. This beautifully distailed model, now a popular design in the "M.A." Plans list, is powered by an E.D. $3 \cdot 4^{6}$ and weighs some 4 lh . The model has been well caught by photographer A. Garwood.

Terry Smith, of the South Bristol M.A.C., has made a very goorl job of the Veron Panther stunt contrul-liner he is seen holding in No. 3. Kenneth Farmer, who took the photograph, tells us it is a smooth flier and is powered by an American 5 c.c. "Cannon."

No. 4 is our star picture this month and is a fine shot of a fine model. The latter recently had its first airing at Fairlop and is a seven-foot span scale model of Bieriot's pioneer (hannel-crossing machine. The builder is M. T. Mitchell, of the Northern Heights club, and with this action shot Fd. Stoffel has raught an anxinus expression on his face as he runs alongside after the first roog.! The model is almost entirely of hardwood construction, but plenty of power is available from a 10 c.c. Micron spark-ignition motor turning a 20 in. handcarved mahogany prop. Quite a model-and shose rubber-tyred wheels each have 32 wire spokes!
M. IH. Gilbert, of Walsall, a Flying Saddler, sent us No. 5 of his 1952 Wakefield. This is the Mk. 5 version of his Thermopylae series, started in 1949. Surcesses of earlicr versions include 3rd place in the

1951 Gamage. 27th in the Wakefield " 100 " and first in the club's Wakefield comp. The completed framework of the present model weight 3.2 oz . and 5 02. of rubber in 16 strands provide the urge. Details inclucle a feathering prop. and $\frac{1}{8} \mathrm{in} . \times 1 / 32 \mathrm{in}$. spacers.

No. 6 romes to us from J. 13. Stewart, of Salisbury, and is a very pleasing picture of his wife with his o'd flying wing. Very litte dihedral or sweepback is incorporated in the design, with 5 deg . washout at the tips and built-on extensions to the trailing edge to provide a reflex section. Incidentally, the weather conditions in the photograph appear to be the modeller's dream-a warm clear day with just a lighe brecze. Funny thing, but it's never like this on a comp. day!

Young David Coovelall is pictured in No. 7 holding aloft a good-looking A-2 by I. Anderson, of the Croydon Club. Span is 60 in., using an Isaacson 53009 section, and offset zowhooks are incorporated.
P. C. Gray, of I.uton, sent ut No. 8 of his latest 1 172 scale solid. Again he has used C. B. Maycock's "P.W.M." feature for his information, this time on the Gloster Grebe. The fuselage is carved from birch and the wings from spruce, while the radial engine is built up, complete with pushrods and rockers. The model is finished in the colours of No. 23 Sqn ., with the tailplane and elevators painted red to indicate the C.O.'s aircraft.

No. g is a good action shot by M. M. Gates, of Len Ranson launching his four-foot span tailless pusher at Fairlop. We are sorry to hear that Len is unfortunately not in the beat of health these days, and is largely confined to bed. To a keen contest flier this is certainly a blow, and we hope he will make a rapid recovery and soon return to the flying field.

Our last pieture, No. 10. is of a well-finished Chrislea Skyjeep by J. M. Bodey, of Heswall, Cheshire. This 4.5 in. span model was buill from a standard Mercury, kit and Mr. Bodey spent four months on its construction. Powered by a Mills .75, the model is finished in silver with royal blue trim.

Peter Stringer, Northern Area Secretary, assisted by club-mate Gilbert Darwin. piles on the lost few turns in the first Wakefield Trials of Rufforth Aerodrome.

* turre is no doube in my mind lut that the modellers of the Northern Area must be a proper sinful lot, for how clse can one account for the fact that no matter how goxed the wrather in the three or four werks preceding an Area meeting, comes the day, the Heavens open, typhoms rage, local farmers get a touch of the liver and what for weeks has been a delightful, sunny, thermal-producing piece of terra firma, overnight turns into a dismal, windswept, wet and muddy piece of bog-ridden clay. I was going to say that such is the lot of the flier who desecrates the Sabbath by flying his litile kite, but it secms to me that it must lee a local condition; no matter how bad the day in the North, other Areas monotonously produce their lists of three maximums plus; even on a day when three-minute flights were good, three and a half top rate, and over that nothing bot a fiddle, our neightoours in the North-West managed to produce a fifteen minuter. In fact, 1 personally cannot bring to mind the time when really good flying weather coincided with an important competition ; the Nationals at York provided anything as good as we have had during the last two years.

It was no surprise therefore to learn that the eneeting at Ruflorth on May irth, was the usual wash out in more senses than one, in fact, at twelve o'rlork shere was talk amongst some of the officials of calling the whale thing off. Weather wasn't the only trouble, unfortunately, at this venue, the local A.T.C. usually spend the whole of the day in full-sized gliding, and naturally their affairs are top priority and the modellers leas than the duxt. Aready there have been one or two tlare-ups between the chief ground instructor and careless liers who wander up and down the runway in use for gliding. 'The chasing of models in cars hav not improved relations with the C.O. and the couldn't-care-less attitude adopted by some of the lads has done nothing to smooth the path of the officials. Emulating the example of one of the sports commentators of a leading daily, 1 am willing to wager a shirt that the possibility of more meetings at Rufforth is fast approaching zero. But to our muttons, as the butcher would say: final results of the W'akefield and A/2 eliminators were nos available when your correspondent left the 'drome on Sunday, but it is a safe bet to say that the leading dozen in the Wakefields will inelude a fifty-fifty ratio of 1 ceds and Sheffield menbers and the Farrance fanily will figure prominently amongst the glider finalists. As to the actual flying, litule can be said; all day long
it was just a gamble as to whether one got a machine off the deck or up on the line, and if you got into the air at all it was odds on that the wind carried your motel to the limis of visibility and that was that. Those lats who were well up the list in the first elims. were content to sweat it out and keep a careful watch on recorded ifmes in case any of the day's fliers looked like ousting lhem from the list of finalists. Personally, I think the idea of publicising the number of finalists fefore the sccond climinator took a lot of uncertainty out of the comp., and there weuld have Ioren much riore fighling for the bottom places il the actual number had not been known.
ongr again, my corresponelemt in the North-Weat weighs in with a letter full of informative news and unpulled punches. He comments upon the rather surprising drop in the number of entrants for the Wakefield elims.; a drop of 30 per cent. in his particular area, and I think it would prove to be as high in the Northern Area. Permonally, I think the change in rules has had very litale to do with this drop, fur rubber flying in general has fast been lowing interest for some ycars, and it is a fact that the competition thas once was the be-all and encl-all of every serious modeller is now no attraction at all to 90 per cent. of present day fliers. No detailed times are given for any of the eliminators, but J. O'Donnell managed to turn in threc maximums in the first leg of the lWakefields, the loss of bis model preventing him making the fourth fight. now necessary. Models seemed to be much of the mixture as before, two geared jobs, some folders, a few fratherers and two models with an idea that was quite popular before the war, single blade mon-folding props. The idea of the moment, apparently, is the double lyobbin. This is something new to me and it seems is an idea of the American gentleman who always wins the Wakefield Cup on paper, but my correspondent tells me it is something really gond, it makes tensioning much casier and definitely gets rid of that hugbear, vibrationt. The North W'est's latest idea, Open Day at Tilstock seems to be a winner ; it appears a meet is fixed at a central ground to which all she clubs in the Area are invited, but instead of a fixed competition programme flyink is fice for all and fancy free all day. (Must be a Lit like a glorified Fairlop, but with a bit more control, I doubt nut.) Some of the clubs Hew off decentralised comps., some of the lads went all out for certificate qualifications and some just flew.

1 NOTE that one of the regular conaributors to this mag. has been asked to do a para. or two on the transport effected liy moxicllers (leading and otherwise). Even at the risk of providing a rival with cash, by producing grise for the mill, I would be happy to collate the number of hikers and bikers in the North, but the number of car owners (especially connoisscurs) would hardly be worth the trouble of writing out.

I see that the recent correspondence on "giving until it hurts" is produsing the usual crop of fors and againsts, but I am surprised to see a club come out with the slatement that they are already past the hurting stage. As far as I know; or anyone else either, the recent guinea levy is the first time in the history of the movement that the Society has made a direct demand, other than the usual affiliation fee, upon clubs in general. 1 do know that upon countless occasions the governing body has had 10 gn , cap in hand, to influential persons and associatiurs to seek financial assistance, for how else could teams have been sent abroad, and the Wakeficld 'Trophy staged in this country?

STATION	0	1.25	2.5	5	10	20	30	40	50	60	70	80	90	100
UPPER	3.50	545	6.50	7.90	960	11.36	1170	1140	10.52	9.15	7.35	5.22	280	12
LOWER	3.50	1.93	1.47	.93	42	.03	0	0	0	0	0	0	0	0

CLARK

Many designers now think it " uniashionable " to use this section for wings but in many respects it is still as good, and perhaps better. than many modern sections. In America there is now a trend towards using flat-bottom sections for power duration models as being less unstable under power than undercambered sections. The sports model designer would also find it difficule to discover a better aerofoii -one great adyantage being that the flat undersurface makes for ease of construction. There is also adequate depth of section for gencrous spar sizes. Aerodynamically, of

REPORT OF THE S.M.A.E. COUNCTL MEETING HELD AT LONDONGERRY HOESE, 19 PARK IANF, LONDON, W.1, ON MAY $17 \mathrm{~h}, 112$ p.m.

The following were prosens:- Messry A. F. Houlberg (chairman), R.F. L. Gosling. D. A. Girrdon, H. W. Barker, S. D. Taylor, C. S. Rushbroole. M. A. L. Coote, K. I. A.' Hrorkes, E. F. 11. Cush (London). B. A. Messom (Norlhern), D. Salloway (N. Western), N. F. Couling (S. Western), G. Foulen (E., Anglian), R.W. Rennell (Midland), R. L. Yates (Suutherm), H. Gi. Hundlehy (S. Midland), E. Crumplin and R. W. Roherts (S. W'sley), J. Taylor (W. Scutisnd), G. Bishop (Western).

Arlsing ous of the minules
Mr. E. Crumplin objected to the wording of the minute relatina to the 1951 Nationals and slated that the accounts relatina to this mereling were in the hands of the Ireasurep hefore the last Cauncil merting. He alwo denied knowledge of the Council's instruction that expenditure should not have been incurred withoul the approval of the Council.

Mr. Crumplin informod the Council that all of the uncollecled Nationsls priyen had been despatched hut the receipt of a number of them had not heen acknowledyed by ibe winners.

Belyjum r. Great Britain ClL Challenyo Match The Council were informed that the revined date of this contest al Namur, Belgium, is August 10 hh .

Internaliomd Comsesps
Captain Tavlor informed the Council hat the bookings had been made for the Waketield Tesm in Sweden.
No venue has yel been announced for the World Power Championshim which are to be held in Swirerland on September 14th.
The World CiL Championships on July 4ih. Th will now he held at Hruscels instead of Knokte end the Council anpointed (al R. Yates to act as feam manager.

The managers of the Wakeficid and A.2 teams will he arpointed by the Council after the Trials.

Natlonal Comest
Mr D. Salloway (N. Weatern Area Delepate) stated that hil area way prenared to organise the U.K. Challenge Cup Conteat $a 1$ Tilslock Acrosrome and in donate 10 gns. towards its cost. The Council unanimously thanked the N.W. Area for its penernus gespure

Competifory will have to pay the first $E 2$ of their Iravelling ernenser and the Sociely will nay any cosis involved in third clan travel uver this sum.

Britush Niabinols

Col. R. Yater rapneried that tho arrangements were going ahead satisfactopity for this mecting and the follouing Area Othiciats had heen nrpointed:- I. J. Townes IS.E and W. Hendersion (\mathbf{S}.), publicaty; D. Waten (S.) and N. F. Coulling (S.E.), contests: Comain S. D. Taylor, S.M.A.E. adviser; K. J. A. Brooke?, publicily and
liason; Col. R. Yates, chairman of oreanis. ing commiltee: C. V. Christoff (S.E.), Nationals secretery
Mr. E. F. H. Cosh informed the Council that the Federation of Model Aernnautical Manufacturery and Wholecalers had agred to donate the aum of 50 gns. to the Nationals Prige Fund, and the secrelary wes instructed to wnite a letier thanking the federation for its valuable asistunce. The Council for ite valuatile asistunce. The Council fund from the general funds.
P.A.A. Luad

Mr. K. J. A. Bronkes informed the Council that Pan American Airway had agreed to present three wrist watches to the winners of the P.A.A. Load Contest.

Finance

Mr. II. W. Harker presented his statement of accounts which showed balance in hand of 4 s . Sd. After a number of delegates questiony had been answered by the treasurer the accounds eere unanimously sccepted.

7nskrumc

Mr. H. A. Messum yuggesied that Area competiation secrelarien ho rerainded that insurance caroilicates must be produced by competition entramis before their entry is socepted. This mas agreed.

Reconds

The following record applications were accepled:-Lightweight hand-launched gitder, G. K. Gates (Southern Crons), \& min. 45 sec.. 16!2!52 Rubher-driven 1allexs, G. A. T. Woolls (Rristul at Vesi) I min 15 A.c., 24i2is2. Ruhber-driven Camard, G. H. Harrison (Hull Pegasus) 6 min. 12 sec ., C. H. Harrison (Hull Peyasus) 6 min. 12 sec. 23/3:52 Lighsueight taillens gider H.L.

27/4!52. Lishtweight laillens glider H.L. A. R. Lucal (Port Talbot), 2 min. 23 sec. 4.S.s2. Rubher-driven tallest G. A. T. Woolls (Bristol \& W'est) 2 min. $00 \mathrm{sec} .4 / 5 / 52$

Merit Cerelficales

Meril Certificatel were awarded to the Pollouing:- Clase B. No. 236, Royle, P.J (R.A.F. SI. Mangan): 25I. Wvicherley, G (Five Towns): 202, Lewis, R. 11. © Win chester): 370, Parmenter, D. F. (Knutisford) 189. Archer. W. (Cheadle): 412, Lamble, J. E. (W'ayfarers): 429 . Couroy. J. F. (North Wirral); 44, Hulme, J. 1). (K mulsford): 499. Sindy, R. F. (Henley); SO7, Shaw, I (Oldham): 522. Rouker. V. (Barnsley): 351. W'oodwasd. T. (Finereters); SN1 Hebb, R. W. J. (Ashford); 592, Donald, K. (Southern Cross): 605, Chaduick, J. (Ash Hon): 627. Faulkner. R. A. (Whitefield); 643. Jahman, H. G. (York): 644, Williams G. S. (York); 667, Boyden, J. A. (Barrisley) 6\&4. Penyilley. P. S. (Hentey); 670, Hark64s. Pengiley. P. S. (Hentey); 670, Barkwart. (i. K. (Hull Pegusus), 673. Smith. (Lituloover): 698, Keily. W. A., (Regents Park). 700, (irasmeder. R. A. (West Essex): T14 Wannop, U. A. (Buckihsm) 71R, Willioms, E. D. (Oultaws): 736, Cranc. A. (Salford): 737. Millan. 1). H. (Ry-Pusa); 770, Brimelow. G. R. (Chesdle): Class A. Nn. 749. Ridal, R. F. (Shelfield): 750, Mellar. G. Il. (Sheffeld): 751, Buntridge, Mellar. G. 11. (Sheffield); 751, Buntridet, (North Wirral); 75]. Dulsmn, W. F. (Salford): 754, Clark, S. H. (Wesi Bromuleh): 755. Jessan, D. S. (Barniey): 756. Mount, V. S. (Pilgrims): 757. Woodrulfo, R. A. (Pilgrimu): 759, Forman, J. (Skegnees); 759. Taylor, R. L (Hnxion): 760, Peacock. A. F. G. (ll iddersfield); 761, Keens, W. D. (Headley), 762, White. R. (Ileadley); 761, (Headiey), 762, White, R (Headley); 761,
flodgkinson, F. H. S. (Hesdley); 764, Yales. R. L. (Headley): 765, Smythe, C. (Five Tamnal; 766, Rogers. B. J. (Hull Pegasus): 767. Kackson, (i. E. (Litlleuver): 768. Jacktan, R.E.Jnr, (Lilileover): 769, Pamell, C. E (Foresters); 770, Brimelow, G. R. (Cheadlel: 771. Hotchkiss, R (North Wirral): 772, Tharnton, J. E (Isle of Thane1): 773, Gases. K. (Southern Cross): 374, Moore. L. E. (West Coventry) 719. Davics, G. W. (St. Hlelens); 776. Butchelsir, J, (Whyteleare): 777. Armold. A.J. F. (Buarnemouth): 778. Raven, A. D. (Bvumemoulh): 739, Neal. H. W. (Boumemouth): 780, Hennel1, J. M. G. (Helfas1); 781, Spiess, R. S. (Lanarik); 782, Amor, R. C. (liford): 783. Townend. P. (Hudderslield): 784. Higson, W. R (Macelesfield); 785 , Wyals, (C. (Ashton): 786, Rohinson. T. L. (Seahami: 797. Revell, N. (SunderT. L. (Seaham): 788. Sutclifie. A. (Skyrangers): land) 788. Sutcliffe: A. (Skyrangers); (llford): 791, Parker. J. C. G. (Knulafurd);

S.M.A.E. officials at the Control Line Eliminators ot Chigwell. K. J. A. Brookes (P.R.O.), Capt. S. D. Taylor (Comp. Secretary) ond, ot the mike. Max Coote (Technical Secretary)

792, Grainper. G. W. (Knutsford); 793 Clarke, D. (K nu1sford): 794. Hizhy, K. H (Hull Pegasus); 799. Upold, A. E (lleadley): 796, Webstep, K. M. (Pomefracti: ley): 796, Webstep, K. M. (Pomefracti; 797. Marh, D, (Crasby); ${ }^{798}$ Lamb.

Offelal Iimekeeprs
The competition socretary slated that on merit cerlificate applications and on competition results forms, the names were heing given of timekecpery sho were not registered with the Soctety. After a dlscussion it was decided that the nrasent system of registration be disconimued and that all senior members of affiliated clubs be permitted to act as official timekeepers in fufure.

Applleations for A/filintion
The following applications for afrillation were accepted:-Sistinghursi Aeri Nodellers were aceptod:-Siswinghursi Aern ioueilers Model Flying. Club (W, of Scolland Areal. Model Flying Club (W. of Scolland Areal. (London). S.S. J.5: lekenham Community Assuc. M.A.C. (London). S.7. J.3.

Anpilcastons for Re-affikerton
Salo Aero (lub (N.W.), S. 24, J.4; Men of Kent Acromodellers (S.E.) S. K_{4} J.5. Wimbledon Power M.A.C. (L.), S.12, J.1; Icartans M.A.C (S.M.) S.A, J.3: Helfast M.F.C. (N.1.), S. 12. 3.4: Wurvester M.A.C. (M.) \$.13, J.1: Dagrnhom M.A.C., (L.), S.IS, J.8: Sevenoaks \& Dist. M.A.C.. (S.E), S.14, J.2: Timferley \& Din. M.F.C., (N.W.), S. 10, J.21; Wres Hrommich Al.A. A. C'S., (M.), S.12, J.6: Evesham \& Dive. M.A.C., (M.), S.17, J.S: 1 otlenham M.F.C., (L.). S23. 13. Leicester M.A.C., (M). S. 20 . 1 10: Wakefield M.F.C.: (N.), S.10, J.11: Cambridye M.A.C., (E.A.), S.20, J. 10 ; Malton Nortun \& Dist. M.AC.. (N.), S.14. J.1: Oldham \& Dis. M.A.C. (N.W., S.29, J.12: Skegness M.F.C. (E.M.), S.9, S.25, J.12: Doser 黄 Dis1. M.F.C. (S.E.), S.8, J.3: Letchnorth M.A.S.. (S.M.), S.I6, J.10; Accrington M.F.C., (N.W.), S.6. J.-; Easi London M.A.C., (L.), $\$ 24, \mathrm{~J} 2$; Vic loria M.E.C. (L.).S.17. S.- The Fulhim M.A.C. (l.).s.I2, J. i: ()utlow (Cunnock). M.A.C. (M,) S.14. J.4: Croshy M.A.C., (N.W.). S. 2S, 1.6; Wolver hamplun M.A.S., (M.). S. $\mathrm{F}_{\text {, J. }}$; Holzon M.A.S., (N.W.). S.12. J.6: Whitelreld M.A.C. (N.W.) S.18, J.10; Leeds M.F.C., (N.), S.41, J.S: Gainaborough M.F.C.. (E.M.), S.9, リ-.
(Correction.-In the lisy of applications for re-nfliliation which apneared in the May issue of Mourl Aincrais, the number of members in the Blachpool \& Fylde M.A.S. was given ex Seniors 3, Juniors 13. This Nhould have read, Seniors 31, Junlors 13).

Adlowned A.G.M.

If was decided to hold the adjourned annual peneral meeting at IAndonderry House, on June 2sth, 1952, at $2 \mathrm{p} . \mathrm{m}$.

1952 F.A.I. Comferencr-Madrid
Mr. A. F. Houlherg gave the Council a brief report of this cunference which he had altended on behalf of the Sociely. He men. sioned that shere was every likelihood of the Mudel Commisuiun reoriving greater co-operation and financial support from the F.A.I. nett year.

The meetine terminated al 5.0 n .m. with a vate of thanke is the rhair.

SOUTH MIDLAND AREA

The second Sourh Midland Area meeting was held in fine sunny conditions at Kidlington Aerodinme, Orford. In the tirsi sound of the Weston two marimums were recarded-one by White, of learians, who low his model (no dis) and the nither by Fraser, of Havfield. In the second round Fraser, of liafield. in the second round
Fraser kept his lead and Cooke (Henley) moved into second flace. with letirey (Readine). who scored the best second round Alight of 4 min. 22 sec. in third masition. In the final round these three retained their positions, mhough Fraser increased hiblead
wilh the best thard gound flight time of 2 min .40 mec.-the conditions having changed to dull, windy and cold.
In the Asiral Trophy the standerd of fying showed quite an improvement on that of the previous meeting and in the lirst rnund Statt and Sultivan, both of Luton, scored max's, with Bennett (Chorley Wuod), recording 4 min. 0 sec. Lamble (Wayfarors) and foncs (Readinge), scored max"s in the second round, but Bennelt went to the head of the list. followed by Stotl in second plaee and Waldron (Henley) third. Waldron scored the only miex. of the final round and took the lead, just over half a minuie in front of Bennect. with Stone (Reading) in third position. The top man in the International Eliminators wat the flrst eliminator winner, Stott, of Luton.

SOUTIIERN AREA

Area flying meesings are now being held at Andover Aerodrome, by kind permission of the C.O.. with the use of pars of a hangar for astembly and processing.
The second Area meet on Appll 20th, was well supporied. even alihough the weather was thy no means ideal. a high wind blowing all day und taking its usual toll.

In the Astral Trophy top honourr went to E. J. John. of Girange, who al so came second in the National results for the Hyllax, but generally the standard of flying in the powor left much to be desired
Whaketields do nat seem to he very mopular in the Soushern Area. there being only seven ensries in the Westion Cup, but even so the slandard of hising was good considering meather conditions.
Top man was J. Blackmore (Girange), with 10 mint. Ot sac. aggregate.
Tuenty-five entries were made in the Arest Open Glider comp., held on the same day. several maximums being obtained.
Johnny Blackmore (Grange) topped the revult with 11 min. 45 sec. aggrepatc. The Area even made eleven shitings profit ofire paying out the prize money!
May 11th dawned with the prospect of more high wind and shomers so that filght limes in both Wriletielda and Nurdic classes limes in both ingleficidis sud Nurdue classes were low. At last the grange run of suc*
cesses had heen broken. wlithough they were orly pushed into second place by Col. Yater of Headley, who flew is Marawler.

S.M.A.E. CONTEST RESULTS
 ASTRAL THOPHY

I. P. Wyate	14.10
2. G. Perinins ... Croydon -	13.21
3. ل. Waldran Henley	11.29
4. J. Bickarstaifo Accrington	11.27
5. G. Lingford .-. Laughboro Coll.	1109
6. G. Brimelow Cheadla (2.0 entries)	11.03
WESTONCUP	
1. R. Monks i.. Birmingham	16.58
2. J. O'Donnell Whixefield ...	1500
3. N.Marcus aor Coydon .	14.50
4. E. Bennert an in an	-14.09
5. W. Rackill ... Lincaln	13.39
6. J. Gooham .. lpswich (258 encries)	12.26
KEIL TROPHY	
1. A. Bennett .. Whisefiald	65.91
2. N. Butcher Croydon	63.90
3. J. Chinn -. Gi. Yarmourh	55.15
4. R. Woodhourn Whisefleld	52.2
5. A. Brooks ... Granze	-1. 50.85
6. A. Uplold Headley (96 entries)	4982
LADY SHELLEY CUP	
1. A. Lucas -.. Pr. Talber	1208
2. D. Edwards St. Albeni	.46 11.06
3. G. Gates -. S. Croms	... 10.28
4. B. Raw ... St. Alman	9.38
5. R. May	$\square 8.25$
6. O. Baulter \qquad Pt. Talbot (26 enteios)	. 7.51

T. J. Nocntmon of the rolish Alf rorce M.A.A. launching his R C glider of Northwick Pork, Horrcw

LUTON \& DISTRICT M.A.S.
After lapping the Area in the "Ifalfas" G. Sintl was dogged by bad luck in the "A Siral." Was dogged byy hald fivek in the testing new jobs to make up for those hast or smashed in previous rounds. r. Clark has a full sire Warring $\mathrm{A} / 2$ (April Monze Alscanti) which lows up dead straligh overhead and looks very promising. Gildet has gono bact to gears for his Wakefield while C'lements and Chapman retain single drives: all have the normal 40 in, fuwelage. The sioll hrothers are testing their new Wakefields. This madel boasti geodetic wings and iail, iwo-blasled folder: with over $\$$ oz- of rubher the model is still underweigh! !! Sorne of the C/L. ladsare srying their hand at $\mid A$ F'F. most promiging is R. Erunning's. I Elin job. Several nower scake moblis are being produced: mua noteworthy to date ate f . Symimond's Swowdish and D. Blackey's Snuthern Crass, Swowdish and D. Biackey Southen Crats, member has also had considerahis success with powered helicopiers.

BRISTOL \& WEST N.A.C
The club seems to be makine slow start this season, no douby due to the weather being rather unkind. Andy Wilson and Gieonge Wioulls werc the sole representatives in the Wakefieid eliminatione. Wilson's approximately 48 ir. lung jub with a 20 in single hladed folder apmears hapniest in fairly still air whan it puts up good times Woolls's W'isurd /f, lust o.oss on a les flight (d'f failed) before the Weston. d't'd 4 main. 20 sec . on its first Gutteridge flight. in a $15-20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$, wind. If was nol recoovered. and his tecond string of a different design failed to per away in the secund ruund failed to get away in the secund ruund. smathing the centre kection. Wition also had trouble with
guod first fliph.

Woolls's railless rubber job has now her lered 2 mis. in the rain, und this time has been submilled as a new record
Ace speed control-liner. A. V. Colea was extling youd times frum his Dart powered high thrusi line pylon free flight ered hagh thrusi lime pylon free flight, cavied a sery speciacular spiral dise.

It is hoped that the regular Friday evening meelings on Durdham Down will arouse more inierent among our junior and new memberi, bui pueflane is wekonse lo come along and fly glider or rubber.

WIITEFIELD M.A.C.
The club very much regrei to announce The death of the club cheirmen, Mr. R. the death of the club cheirmen, Mr. R.
Lamenn, who died suddenly on Anril 25 th. He had been with the club sinco its formation and was a great helper and organiser in all its activities. He will be grealiy missed and we offer our deepest sympaibles 10 Mrs, Lawion.
The club have done well in contest activities al the Area meering on April 201h. J. O'Dunnell managed three maximum in the Weston but unfortunately no fyofi The mixdel was hadly damaged by coas fier the second fight, bul after the sub thitution of fresh wings and ruch repairing was able in do a final maximum (o.0.A and lost!) Ifin and sisth in the Area were A. D. Bennelt with 8 min. 50 sac. and H O'Donnell with 8 min .26 sec . All three of the top ciub members were fiying diamond pylon madels. complete with feathering propi end carrying up to 5 oz . plus of rubber In the Astral, E. Horwich and A. D. Benrelt were third and fourth in the Arca with approximately 7 min .45 sec . and 7 min .30 sec . respectively. Both weie fying club design models. On combined resulis of the soo nower eliminators the club have three out of the top five Area placings.
The club went to the open duy at Tilstock. on May 4hi, and had ciceptionally good weather. A. D. Bennett was top in the Keit with 66 aes. ratio, flying an Ameo 3.5 design, which posserses a heller plide 3.5 design. which ponserses a heller glide
than moat Nordics. Second with 52 ratio than mosi Nordics. Second with S2 ralio mas R. Woodhouse. flying an Ellin I. 49 lightweight. followed hy E. Horwich with
35 ralio. In ibe Lady Shelley. H. O'Donnell wis the only enirant to mannge three flighes and toralled 3 min . 29 sec . Much testimg was managed in addilion to several sels or flights for A. H and C certs. All told the club did 20 maximums during the day. Only losi model uas junior member A. Bugnell' 7-foos long Nordic. which dis. appared verically up afier a il failure.

The club did well in the second Waketield and Nordic climinators, despite wind and rain. Top in the N.W. Areas in the K.M.A.A wes H . O'Donnell, wih 13 min .29 sec flying a high A.R. design ; followed by R. Askew liying an 80 in. stick model to 11 min. 52 sec. Third in the club uas Wendy Bennels with approx. 9 min. 90 sec .

Times in the Gutteridge were not quite as speciacular, top being A. D. Bennell wish approx. 8 min. 15 sec., followed hy R. Woodhouse mith 7 min .30 sec .
On combined results of both eliminators the club did exceedingly well. the contert group quatifying on bloc for the urials. Wie comprised 50 per cent. of the N.W. Are: quola: having eight members in the Nordic and sit in the Waketield. Top in Nordic and Wiakelield in the Area were \mathbf{R}. Askew (20 min. 33 sec .) and J. O'Dannell (20 min . 41 sec.) respectively.

HENLEY MODEL CLUB

The fine weather on Fiaster Sunday saw three of our members out flying for thoir "B" cerls., and Iwn, R. F. Sandy and P. S. Pengilley. pul in the necessary fights. Sandy, Hying his Walefield, had successive r.o. E. Alights of 3 min .45 sec .; 1 mm 9 sec . (sem cluh record) and 4 mln .36 sec . didd whilsi Pengilley did 4 min . 58 sec . d / t 'd; 3 min . 14 sec . and 4 min . 40 sec . with hil 3 min . 14 sec. and 4 min. 40 sec. with hik 6-n. lightweight whider. Cooke was the
unlucky member as the pranged his 6 ff. unlucky member as the pranged his ort.
glider afier flights of 7 min . 5 sec. d/t and 4 min 42 sec d $1^{2} d$.
On the following Sunday the clut made a very successful trip to the second S . Midland Ares meeting, at Kidlington, S. Gi. Wisldron laking first place in the open Asrral Trophy winh II min. 39 sec. frum his Contender (EJFin 2.49), and A. W. M. Cooke flying his o/d Wakefield into second place in the Weston cup, scoring \& mim. 20 sec . K. F. Sandy Cup, fieoring the Wakefield event, recording a lotal of 3 min . 57 sec. after a first ruund prane and 1). Wilkinson. flying in the Astral could only record 1 miv. il sec. before be too pranged.

An outstanding model aircraft at the recent Andover Model Enfineering Exhibition was this pawer-driven helicopter by A. Hodgson. It is based on his successful M.A. plan design, " Waltzing Matilda

WALSALI M.A.C.
The Wakall M.A.C. will he holding tu fîh annual C/L rally on Bank Holiday Monday. August th. The rally will run from $10 \mathrm{a} . \mathrm{m} .106 \mathrm{p} . \mathrm{m}$. and all-repeat allwill be welcome. Wee egain have the use of the Walsall Apboretum and this year prizea amount to thirty guineas.

The day'y esents will be:-1, Concours delegance (Welsall Ironfounders. Cup): 2. Open stunt (Deansun Traphy); 3, apoed 2. Open stunt (Deansun Trophy); 3, apoed classes III and IV; 6, combined classes V and VI_{1} 7, team-racing, clats A : B, team racing. class B. For all these events preentry is desirable.
Wo are expecting to repeat the successes of past years, so ro! up. bods, and have fun.

Various club members have been enjoying successes in the past few weeks. At Gram coto, on April 20th. in the Weston Cup. Le lowbridge gained isih place with an aggrepate time of 6 min . 15 sec ., while lerry Larkin had some bad luck when bis own design job hit two limekeepers !

EXETER M..A.C.
Exeler M.A.C. staned a fu!l-scale model nying display on Woodbury Common (near Excter) on Sunday. April 27ih, which attracted a crowd estimaled at 4,000 (is this a record for a one-club effort ?). Prior annuncemenis on the B.B.C. West Rexion New Bulletins and local presn publicity ensured a sood allendance. and a brief report was braedcast on the following day. The club derived wide publicily and several new members have already joined as a result, White club funds benefited 10 the tune of ©20, after paying all expenser. Highlighis of the display were demkinstrations of K/C by guest-nier H. L. OHf介ernan of Soulh Devon. parachute jumps by lifelike 12 in lall" Flying-Offices Kite," stretmer-dropping with drizes for the first three chaldren bringing a kireamer back to conirol, and a mass launch of outside gliders. The whole how was enthusiastically accia!med by the large crowd, who were kepl informed of the "goinga-on" by laudapeaker. Special busen were laid on by the local bus company direct to the site, and 300 pansencers uere carried, while hundreds more came in cars, on motor-cycles, cycles, and even on foot. A small force of pollice (an inspectur, A small force of pollice (an inspectur, terpeant, mobile patrol and ihree constables)
were needed to direct the trathe, which in itself gives some ider of the allendance! Another than is planned for July 27th at tho same venus.
In the S.W. Area Championthip race, Freter is running " neck-and-neck " hilh Plymouth, present holders of the shield. In the Area open gilder canteat on April 20th. Exeler secrelary. Harry Stillings, placed first with hiv Safy. ith 10 min .3 soc. placed firmi with hiv Safus yith 10 min . 3 soc.,
closely followed by treasurer Ssm Hecker, with 9 min is sec. Incydenially, Sam's icaled-up Tern covered 12 miles on its last flight in this contest!

SUINDON \& TROMBRIDGE CLUBS Keevil Aerodrome wis the ycene of yel another "balle royal" recenily when the Swindon and Trouhridge clubs compered for the "Swindon-Trowbridge Challenge Shield."
Competition was keen and with the cooperation of the weather man-who supplied some nerfect flying conditionssood timey were recorded and eeveral ccords braken
In the Swindon club these included the 1951 Open Glider record of 9 min .1 .5 sec . held by H. Howden and the $A / 2$ record of 5 mim .10 sec . made by \mathbf{R}. Ofen lase year.
Both these limes were excoeded in the open glider event by R. Smith, who elocked 9 min . 15 sec co.o.s. with hiv Nord /I (moind was eventually found mear Weatbury).
D. ("Flin ") Turtel's fine Ilight of 9 min 17 sec. U.o.s. with a Mullard in the power ration event set up yet anether record for Suindon. An engine run of 20 sec. gave "Flip", ralin of 27.85 thus beating the old record of 28.2 held by M . Gireenwood since 1948.

The cantesls, which were for glider, power and rubber lypes, were run under a new pointr swiem (hy mulual agrecment of the wa clubs) shis being $6,5,4,3,2$ and 1 point for first sis flaces respectively.
Afler a mrand fight the scorcboard read Swindon .w. Trowhridge 27 mosints.
G. Waldran' stoul retricving efforts, during which he covered mare than 20 miles on his motor sycle, was much appreciated by members of the iwo clubs (especially by those whose cross-country racing diny are but a memory !)

The success of the meet was due in no small measure to the splendid handling of affalrs by Irowbridge who were the hosts.

CHRISTCHERCH MAC

The cluh las seen much active fying at Hum - our home ground-during the past few months, and despile inclement weather the meelink have been well altended and very succesoful. In addition to these pleasant afternoons tho elub has allended iwn Ares Mectings at Andover, on April 20th and May llih. A coash was grranged to Iranspori members 10 and from Andover. which greatly added 10 the pleature erperienced at the moelings

It has heen very gratufying to all enncerned that the Club hav become so aclive this year, as, due lo lack of upport last year. it was anvicinated that the Chrisichurch M.A.C. would have to be diswolved.
The club intends to hold an exhibition at the local sports and model shon, in the wery near future, and all membera are engaged upon building bigger and better models so be scrulninied by the citizers of Christchurch !

With the approach of aummer, it is hoped that the Christchurch M.A.C. will gain many new memhers and add efev "laurels" to its credit.

RORESTERS (NOTTINGHAM) M.F.C. The Foresters club but is resomating lone into the night with hordes of Oulekie builders hard al it. To even sugeest that there are other A/2', Is eantemount to heresy and a belandenfe in the back of one's hand. Pete Badl's version consistently does 4 min. in evening aif.
Nevertheless, the best flight recently was Cyrll Ppwel's 14 min. o.os. wilh his O/D high A'R A/2 [I]

Bill Ward has buils an interesting swept forward-lailless model with a Mills . 75 A few beclic test flights have shown treat promise.
R/C is pressing on and Dousic Bolton's latest job sounds like a tube train but produces proportional non-sequence rudder and independent engine cutoil. The snap so for is that the ensine cut-ofi is too madteen. Cyril Powel's R.C monocoupe has made some very pretty fights, but the small tail is proving troublesome.

PLYMOUTH M.F.C.

The club held, on April 27th, the dirst round of its rubber, glidar, pneer and Jeiex championships. which this year are to be held over 6 rounds.

Weather conditions were idesl on the club's sile near Loc Moor, being dgudy with breaks of sunstine and a very lith breeze, which freshencd about 5 g.m. and then died away again. Thermals were present. If you could eatch them.
There mas a total of 22 competitors for the championships and, of course, the u*ual number of sport and nun-competitive mernbers present raking advantage of the weather.

One of the non-competitive members lost his gllder, the only one lost during the day. after a fighy of 7 min . 13 sec. Whas a waste of energy 1

The top place in the glider contest was taken by a junior, G. Parkhouse, flying a Sofs, vith an agregate of 7 min .24 .8 soc. the bighest individual flight wan also by a junior, A. M. Shiporan, with alshigh of 5 min. 21.5 sec .
In the rubber coniest, tho top man agein was a junior, D. Brock, with an aggregate of $\frac{1}{8}$ mun. 44.2 zec. whila junior, R, Lynn. wan tov indvidual flice with 6 min . 14 sec : both were flying Senalors

In the power contest, the story was the same, a junior, A. Thomes, being highest ageregate fice with $9 \mathrm{~min} 19.8 \mathrm{sec} .$, and hichest individusl fier wilh 4 min . 54.2 wec.

ERITISH NATIONALS

Royal Naval Air Station, Goaport Mant
Ausust 3rd and 4th, 1952
The prozramme of avante il as printed in the S.M.A.E. Handbook. copilat of which can be obtaned from Londonderry House, Park Lene. London. W.I, price 2.., or, 2n.ê3d. pose free.

Concases are open so all. bue aneries must be made on the offeial forms in the Handbook and peach the S.M.A.E. Comparition Sacratary, a; Londondarry Houst, togather with the approprinsa rees, not latar than July 2 las.
Ateractive prizes (not kits, etc.) will be awardud and those not premented after the eventy will be denpatched to she winners as soon as possible.
Fiyine will commance ar 11 a.m. on both day and should coaze at 5.30 p.m on the second day.

The Clays "A" Toam Race will be flown on August 3rd, and the Clans "B " event on the following day.

Lists of accommodation in Gospart can be abrained from the Town Clark Gosport, Hants. As she Nationaly are baing hald during Navy Weak early booking is atsential.

Datails of aecommodation at Faroham and elsewhere locally will be gene to all dubs as soon as available.

Car and coach parks will be provided on the aerodrome and the N.A.A.f.J. antenn will be open
Visitors who book accommodation in Gospars, bue requirs male at the anrodrame, also those who desire other accommodarion booked should write without dalay, giving definita information numbern, to:-C. V. Chriseff, Han. Secretary. Brisish Navionals, 3, The Broadmay, Haywarda Heath, Sussox.

Only in the Jetex contest dit the reniors set their nosos in front when M. D. Richards returned one flight of 7 min .57 .7 sec . which wal sufficient to be top scores and highess ndividual flice.
Three ciuh socordi merte broken: the H.L. ubber, now ir and Jeiex.
The club gaen out to encourage its junlors and their eclipse of the seniors in this first round shows the promise of thingn to come.

" Recently people seem to be losing confidence in our broadcases."

Reprinsed from SUMMER PIE
"SUMMER PIE"

Back Again!

One of the brigheest and Itraliest publicacions now on the bookstally is Summer Pie, containing \% pages of litht-hearted rasding mateer contribued by 60 sop-lina auchors. ournalists and illustrators.
Brillane short storias have bean comeributed by such celebrated fiction writera an Vicior Canning, Will Scote, J. B. Morton ("4 Beachcomber "). Arthur Eparon, Rowan Ayres ind Cledwy Hughes : fantura arricles by radio'i comedy kinz. Tod Ray-whose writing is as full of lauehs as his radio showe-Norman Phillipn, Elkan Allan and David Clayron, amoncat others.
With an attractive full-colour cover painted by Harry faipbairn, this bright summer annual is packed wish lascinating reading matter, blackrand-white cartoons and outmateer, backeand-whine colour raproductiona. Is is illusrated throughoue by leading British and American carcoonisks, ziving an added gaiery to this lively publication.
The 1952 "Summer Pie," which sells at Is. Bd.. will benefut the fands of the Natuanal Advertiong Benevolent Society it is sure to sell out quickiy, to make sure of your copy by buying it now.

BEDIFORD S.A.M.

Our first fine weather meelingt this your have been well atuended by some 50 members and friends. The Comp. Sec.. M. A. Grace, has arranged many club contests which hould atimulate an equal interest shrouphout the season. The president, Mr. Racter, has helped this along by eenerously domating ES for a conicat prize.
Times have not yet reached last season's standard, but one outstanding performance was the unofficial 16 min .30 sec . by hon. sec. J. R. Mathers' sailpiano. The nficial club record it 15 min 20 sec . A convistent performer in power is C. Bodle' Elfin 2.49 powered Mallard, 3 Jumlap Mallard holds the club record at 23 min .00 sec . A. H. W. Mcbean's " notoriaur " flying wing Thunder fird is still performine but is now powered by a 2.4 c.c. diesel; it is rumoured that lis orieinal Dymaiel may replace the Nordec in Jon Beatie's large stunter.
There in much activily in R/C. J. R. Mathers has fown a 12 ft. sailplanc, R. E. Puddephati's proportionally controlled Junior 60 hat fown with every decrec of control from frec-flight to full control, and E. Sills is experimenting with elovator control
A miniature leam face is being arranged; the rules are;-Max. capecity 0.84 c.c., min. wing area 30 sq . in., lani sizo 7.5 e.e., line lengit 17 fe . and a reasonably scaleish anpearance. Best speed so far with a modiol of this type is I. A. Bates and R. E. Puddepbast's 36.5 m.p.b. with an Alibun " Dart."

WINCHESTER MA.S

At last it's happened! We havo flowa on a Sunday, and not only fur one, but for three in a row. Two competitions have been flown on the dales arranged and we hope that this is a portent of what is to coma. We could do with a few more fiers though, the ratio at the moment is about 3 to 1 ; that is three spectators to one flier.

Chuch Glider Contess on Ampil 14iph 1952 This otfering at the altar of brute force and igmorance wat enjojod by both emifants and spectators alike. The earlier part of the Easter Holidays were spent in throwing. wrecking and frantically rebuilding chuck glacers and on the day most entrant had stiff arme and sching tortos and patchwork models. This event proved to be a win for the outsider with the gougly throw who shawed himself to be the ton bruve or "ignoramus" -whichever you like. Times were not high and the weather was not altogether helpful. Technique could be improved upon bul Bill evideatly found it "child'a-play." Howaver, the top two had another enjoyable tuste.

Reswis

1. H. J. Childs 64 sec (1 geg. 3 flyhls). 2. P. H. Ivory, 59 sec

After the competition several members amosed themselves and alarmed others with catapult launchige-even more brute force bere. Bill's "singing" chuck glider and Branis Mefeor-like laopt were great fun. All most enjuyable if nos very enlightenigg.
Oppn Sallpland Conteri on ApriI 20th. 1952 This contest was distinguished by the number of Nord II models enlered, a tribuic oo the designer, there being four unt of the entry of six. We think the others wished they had Nord's 100 . Two of these modals were flown for the first time that day and with the barest minimum of trimming one recorded a maximum and mas clearly set for anothep when tha dethermaliser came in. The other was simillarly ditid before reachine a maximum which could olheruise hardly have been mised. Both Bill Childs and Peter Ivory were sadly off-form tha! day. John Lewis with a Chlof wing and tailplano lied on to a Mauraudery like fuselage flew awney very naatly on his second light. No de-thermaliner, no name and address, no model. Well, well: some never learn!

SOLIHULL M．F．C．

Having won our way into the finals of the Area knockaut contest we now await the arrangement of venue and date．In the meantime．work is going ahead on the lons fuselage Wakelields and from trimming flights，at least none is successful．
In the firtr A， 2 eliminator the two highest placed in the club were－J．Rogers，3rd in the Midland Arca，and M．Hanson．Sth The standard A／2 of the club．designed by M．Hanson，is aroving itself capable even in the hands of our youngest members． fiying，so to speak，straight all the board． To encourege the bulding of Wekefield models，Rep Averill，has nresented a cup to the club for the best Wakefield flight put up during any one month．The spare time on club nights is being spent by holding a model aero quiz with the members divided Into teams．

SOUTHERN CROSS A．C．

＂Gllding to Vicrory．＂－Such was a head－ Hine in a local newspaper on the day after it uns announced for the second year in auccersion．Grahame K．Gates，had won the Pllcher Cup．We join with the entire club in concratulating Graharme on this out－ standint performance and can find no better way of expreasing our fecling than by repeating Grahame＇s own words in a letter he wrote to the comp．sec．．iffer his sucoess last year－＂Nalurally，jam exiremely pleased with the result，both for the club＇s sake and for my own．＂
Forest flying．The second area meeting at Ashdoun Forest on April 20th was more fortunale than its predecessor，the official fortunate than its predecesror，the＂omerial dencription of the weather was＂britht periods．moderate to fresh minds，＂and we
undersiand several good lights were recorded undersiand several good nigg
hy the Men of Kent boys．

No． 4.

HENRY J．NICHOLLS

Besides being a designer and practical aeromodeller，＇Henry
keeps an aeromodelling ＇Horn of Plenty＇known to countless aerobods 25 ＂ 308.

A Contest for the Comp．Sec．The namin－ ated time contest which was devised and directed by the comp．tee．．wall also won by the comp．sec．Kerults 1，F．C．Smith $9 \mathrm{~min}, 28.5 \mathrm{sec}$ ．time nominaled，error 11.5 sec． $\mathrm{i}_{2}, \mathrm{~K}$ ．Donald， 15 min ．time nominated error， 147.1 sec． i 3，R．E．Delves， 10 min ． error， 147.1 sec．i 3, R．E．Deives， 10 min． 4．G．K．Gates， 15 min． 15 sec．time nominated，exror 720 sec．

SHEPFIFILD S．A．M

The third annual cxhibition of hobbies and crafle，nut on by the Sheffield Sociciy of Acromodellery，at Laster，was a treas succest in all respects．

Mr．Cosh and Mr．R．F．L．Gasling judged the aircraft section，and auarded prizes a follows：Gilider，G．H．Meliar；Rubber， －H．Mellur；Power，K．Thackray： Control line，J．A．Scymour：Solid scale， J．D．McHurd：Flying scale．J．D．Mcllard The latter model a Vusght S．B．U．－I Carrier Based American bi－plane，powered with an Albon Dart，was allo judged the besi model in the exhibition．
G．H．Mellar，in slider and rubber，was until February，a junior member，and is a very up and coming young man，not only in concours events，but also on the flying field．

PARK M．A．L．

The dub has now started to get back on its feel after an argy of motor cycles．A grand day was spent on Epsom Dowis on May 27th．When we flew against Surbiton \＆ District M．F．C．，in the first round of the I ondon Ares Competition．Although we lost the round some good times were put up by both teams．The club members flying and their total simes were：－
Rubber：W．Hunter． 10 min ．I sec R．Pullen of min 35 R．Pullen． 6 min． 35 sec. R．Mount， 11 min． 43 sec ．
R．Pullen＇s model when all ser for a maximum on its second flight suddenly loat its wings duo to the efficient operation of the d / t and the fuselage was completely wrecked．

Any one who is interested in joining the club which bas agzin gtarted running club competilions should contact \mathbf{R} ．Mount． 127．Merion Mamsons，Bushey Road， S．W． 20.

MODEL AIRCRAFT CONTEST CALENDAR

```
June 22nd p"FLIGHT "CUP. Unrestricted Rubber. DjC.
    22nd C.M.A.CUP. Unrestriceted Glider. D C.
# 22nd Buedin'g Content⿻. Filey, Ayr, Pwllhali and
            k<enesm. All classes of evenss.
" 29th Northern Haifhts Gala Day.
            Langley Aerodrome, Bucks.
        29th Hudderifield M.A.C. Aally.
            David Brown's Airfiald.
        29th 10th Annual Clwyd Slopa Soaring Meacint.
        29eh Esst Midland Area Raliy, Cranwall Aero-
            drome. Lincs
July trh-7rh Word Cantral-Llno Championships.
            Gruisela. Balgium.
            FROG: JUNION CUP
                Unresrriced Rubber Glider. DiC
            HAMLEY TROPHY
            Unrasricted Powar. D,C.
" 6th Irish Nationals.
            Baldonnel Airport, Dublin.
10 IOch-l4th Wahefleld Trophy Contest
                Norrkoping. Sweden
    . 20&h -FARROW SHIELD. Tamm Rubbor. Araz.
" 20th WOMEN'S CUP.
    20.h IETrerreup Aubuer:Clider. Area
        20rh THE BRITISH NATIONALS.
            R.N. Air Sration, Gosporr, Manes.
Aus. 3rd $"MODEL A|RCRAFT "'T息OPMY.
            Unrasericted Rubber.
        3rd THUNSTON CUP. Unrestricred Glider.
        3rd "GOLD "TROPHY. Control-Line Stunt.
        Jrd Class " A "' Team Race.
        3rd i
        3rd g 4th CONTROL-LINESPEEDCONTESTS.
        4th SIRJOHNSHELLEYCUP. Powar Duration
        4ih Clase" : "Tamm Rece.
        IOrh Swindor M.A.C. Slope Soarign Meeting,
            Waleshire Downs.
```

g．Oth Belgium v．Ge，Drisain C＇L Challenge Can－ isthere Nemur，Belgium
＂Jth－77th Swedish A2 Glider Cup．Graz，Auseria，
＂24ih All－Harta Rally．Radlate Aerodrome，Herts． 24th Irinh Internaeianal Meetint． Baldonnel Aipport，Dublin．
．，24sh Bolton M．A．S．Rally．Edgworth，Lancs．
－将 BRITISH CHAMPIONSHIPS and
TAPLIN TROPHY．Radio Conerol． Cranfield Aerodrome，Aeds．
3ise＂Daily Dispatch＂Rally． Woodford Aepodrome，Ches．
Sapi．6th 8 7ih Rayal Air Force Championehipe．
7eh＂Yarkahire Evaning Newi＂Flyini Fentival， Sherburn，Yorks．
Ifeh World Power Championships． Switzerland
I4th U．K．CHALLENGE MATCH． Rubber Glider／Powar Tilstock Aerodrome，Ling．
2lat Autlin＇s Conteaty．Filey．Ayr，Pwilheli and 5ketmens．All classes ot avents．
2lut Sauthern Cauntied Rally．Thornay liland．
28th＊THE MODEL ENGINEER＊CUP． Tam Glidar．Area．
28th＂FROG＂SENIOR CUP． 1.5 c．c．Power Duration．Araa．

28：h Sauth Midand Area Rally． Halron Aorodrome，Bucks．
Oct．12th RIPMAX TROPMY．Radjo Conerol．
＂l2th DAVIES TROPHY．Taam Raca，
．＂l2k CONTROL－LINE SPEED CONTESTS．
Caneralised－Vanue to be announced．
－Indicaces Plugea Cup Evencs．
申ndiases Caton Traphy Qualifying Events

MODEL AIRCRAFT COMPETITIONS

WEEKLY COMPETITIONS AT

ALL BUTLIN'S CAMPS

AYR • FILEY
PWLLHELI • SKEGNESS CLACTON

Contests for all types of aviation models will be held throughout the season. Entries will be held so that all types will compete on equal terms. Prizes will be awarded each week at each Butlin Camp to the winning competitors.

Combine your hobby with your holiday!

For full particulars and holiday booking forms write to:-

BUTLIN'S LTD., Dept. M.A., 439, OXFORD STREET, LONDON, W.I.

SUNDAY, 2lst SEPTEMBER, 1952 at
FILEY, SKEGNESS, AYR AND PWLLHELI HOLIDAY CAMPS

1 RU'BEER DURATION
CONTEST
2 GLIDER DURATION
CONTFST
3 TOWFR DURATION
CONTEST
4 TEAM RACE
CLASS A

5 CONCOLRS
D'ELEGANCE

Prizes for each event :
1st PRIZE .. $£ 10$
2nd PRIZE .. £5
3rd PRIZE. . £2 10s.
PRIZE 15
for each member of winning team (Total £15)
PRIZE £5
for the most outstanding model taking part

ENTRY FEES

Is. 6d. per contest for S.M.A.E. members to be paid into the S.M.A.E. General Contest Fund. PRIZES

These will take the form of cash vouchers.
The total prize money oflered by Butlin's represents the highest figure ever donated for a series of contests in Great Britain.

These additional competitions at the four main centres provided by Butlin"s Limited, at Ayr-Filey-Pullheli and Skegness, offer easier travelling facilities and additional attractions to competitors who may find it difficult to attend a National Rally and who may wish to combine their "HOBBY with their HOLIDAY."

POST IT TO 308

FOR GUABASTEED DELIVERY BY RETLRN and SPLCLAL ATTENTION TO OVERSEAS DRIDERS

These aro the lines that Modellers arame-ace stoel: them

308, Holloway Rd., London, N.7. $\begin{gathered}\text { Phome } 272\end{gathered}$

GLIDERS		
Marcury	Gnome 32*	(6/-) 7/4
	Marsin 40*	(7/6) $\quad 9 / 2$
	Grebe 49**	(12/3) 15/=
	Marauder 65°	(14/6) $17 / 9$
KK Veran	Chiel 42	(18/6) 22/6
	Coronetre	(3/6) 4/3
	Varosonic ...	(10,6) 12:10

CONTROL LINE

MerturyNawIne. Monitor (IS13) 23.6

KK Viran	Midga	71	($/ 313$	8,5	
	Mk \|	T/R		(19/-)	23/-
	Ranger	\%	(10/6)	12/10	
	Nippar	. 6	(10/6)	$12 / 10$	
	Bet Bue		(12)-)	$14 / 3$	
	Focke Wu		(21/-)	25/8	
	Wruern	...	(23/6)	28/8	
Frov	Minibuster		(15/-)	17/4	
	Vanfira		(24/3)	$29 / 6$	
	Vantaga	-	(17/2)	21/	

- WE BUY FOR CASM

Dart, Javelin, Eifn l.43 and 24); E.D 2.46 and 3.41 : Milla 0.75 and I .3 .

Bers prices tiven. Send full detaily (dote of purchase, armount of weap, ofc.) with S.AE. for best offar by return. Only iend engine when orled.
DELIVERY GY RETURN We guarantee thot All lines shown here can be derpatched by us immediataly on receipt of arder. as well as athers by leading mohere. Add $1 / \mathrm{m}$ postage and packing on order up to $10!=$: lla to to $40:=$: over, port free.

RUBBER DURATION
Mercury Mentor (9!e) Il/

$\begin{array}{ll}\text { Competior } \\ \text { Gypay } & (106) 12 / 10\end{array}$

JETEX

200 Contesc Model (1, 目) 10, Vampire 100 ... (ai8) 10.7 Flying Wing $\quad . . \quad(5 \cdot 9) \quad 7 /=$ Jeticopter $100 \quad$... $(0,8) 18 / 7$ Zyra Spacaship with
mosor (10, 11) 11/4
 motor)

RCCESSOREES

STANT machine finished props up ta 10 pitch..- (1a) 2,0t E.D. 6×4 propi \ldots (2,1) 2,7 Frot 6×4 props ... (1/0) 2/4 M.S. Lockfast

- ngin bale!
 " 4 " 1 mali (2,6) 3/1
 Tanks small (3 i) 4/3 M.S. Airwheels, Trimatrip Tranefers; Solarbo: Aleon Valva Spout Cans: Multicrafe and X-Acto Tools, atc., etc.

OVERSEAS ORDE由S

 Pastaf: con be quated an reasiph of order on send sufficient to cover. Encess will be credited. Prices for owertags shown in brackets.
GAMAGESModel Aeroplane Corner

 feature 'IMP' the Sensational New Propulsion Unit
THE LAVOCHKIN ‘17’ KIT

Span 37 in, for 0.5 c.c. to 1 c.c. motors.
Veron's Phil Smith does it again! First in the field of ducted impeller propulsion with a grand new kit of one of the world's latest jet fighters. Complete contents include impellor and starting pulley and one of the finest step by step plans we have ever seen.
Be first with " IMP" Propulsion !

Post \& Pkg. I/I. $30 / 6$

. . . and for the MARINE Enthusiast

POLICE LAUNCH KIT
Length 26 in., beam $7 \frac{1}{4}$ in. for 0.75 to 2 c.c. diesele. internal box construction gives terrific strength and completely watertight, hull compartments ample room for small radio-control unit. Parts are largely prefabricated with simple instruction plan Post \& Pkg. 1/6.
E.D. BEE I.C.C. DIESEL The most famous of small ideal for the Police Launch. Powerful and dependable. Post free.

Fly wheel and siniversal oint 12/6. Propeller, tube and shaft assembly $13 /$.

WAVEMASTER CABIN LAUNCH
Length 34 in., beam 11 in. for $1.5 \mathrm{c.c}$ to 5 c.c. diesel or petrol engines or electric motors. Ideal for radiocontrol. Easy construction assured by complete $\begin{array}{ll}\text { prefabrication. Rough water tests have } \\ \text { proved its robustness and seaworth iness. } & 72\end{array}$ Post \& Pkg. $1 / 6$.
E.D. Mk. III RACE DIESEL 2.46 c.c. weight 5 oz., 14,000 r.p.m, Just the job for the "Wavemaster" or similar craft where ficted exhaust pipes are required. Post free. Fly wheel 12/6. Ball joint coupling 8/6. Propeller tube and shaft $15 / 3$.

82/6

FROG ' 50 ' DIESEL
Ideal for " Imp " propulsion 0.499 c.c. 800 $15.000 \mathrm{r}, \mathrm{p}, \mathrm{m}$. Weight 1.1 oz Beautifully die-cast and machined to watch-making standards. Performance figures show the unusually flexible speed range of this remarkable engine. GAMAGE 4916.4 Pore free.

Permanent Magnet 4-6 Volt D.C. MOTORS Less than PRICE: Precision built, low consumption motor suitable for model boats, cars or trains. Three-pole self
 starting type with spring compensated brush gear. Powerful latest type magnet, felc oilretaining front bearing and twa base holes
for fixing. Today's PRICE
II value 15)- Post \& Pkg. 7 d .

Supergloss Lacquers, $7 \frac{1}{2} \mathrm{~d} ., 1$!-, $1 / 6$.
Clear Dope, 9d., 1/3,
2/3.
Cement, 6d. and $1 / 3$.
Fuel Proofers, 2/-, 3:-

The most comprehensive range of finishes and cements, etc., specially formulated to suit the aeromodeller's requirements.

THREEMDRER's

RADIO

RECEIVER

RELIABILITY

COMPLETELY RE-DESIGNED "IVY" RECEIVER \star SUPER SENSITIVE RELAY \star LIGHT WEIGHT \star \star LOW CURRENT CONSUMPTION \star SHOCK RESISTING \star \star HARD VALVE AND EXCELLENT STABILITY \star PRICE £3•10.0 plusp.t. ORDER NOW!
‘CHUCK' DOUGHTY
128 ARTHUR STREET.
SMALL HEATH,
BIRMINGHAM, 10

SOLE DISTRIBUTORS
G. S. WARNE

GREAT WEST ROAD. HOUNSLOW. MIDDLESEX.

R.S. FOR RELIABLE SERVICE

NEW ENOINES
E.O. . 46 e.c. 8 aby

Elfin " $50^{\circ} .5$ c.e. dimsel
Dare . 5 c.e diesal
Mille P. 75 ece diesal
Mille 5.75 c.c. diesed
Mille 5,75 e.c. dianel
Amco .87 ec. Mk. II d
E.O. Baf I cc diesel
EIf. Aa 149 C. 1.49 e.e. diesel
E.D. Comp. Spacial 2 c.e.

Elfin " 249 " 2.49 c.c. diasal
E.D. Mk. Ill Racer 2.46 e.e.

Allban devalin 1.49 ec - diasal
E.D. ME. IV 3.46 c.c. diesal
D.C. " 350 " Mk, II 3.5 c.e.
dienal " 3.2 c.c. slow

All above avaitible from stock

CONTROL LINE KITS
Elf King 1.5 ce. atunt Ranger Clase "A"T.R.

FREEFLIGHT KITS
55 - Veron Cardinal .5.l c.e.
67 Pipar Super Cruiner . $5 . .75$ c.e.

 F.W. " 190 " Scala Seuns
 New Junior Monitor i.. $2342.1!$ unies 100 ., Gauzes $2: 4$," unis 200 HADIO CONTROL KITS
Skycooter 1.5.2.5 c.e. ... $306 \times Juniar " 60 " $3.5 .5 \mathrm{c} . e .{ }^{\circ}$ ".. 40 J JAP SILK
Southarner " 60 " $2.5-5$ e.c 4011 Cover your naxt model wish
Aerona Sedan 2.5.3.5 e.e. 696 Jap silk for strangeh and durability

Radю Queen 3.5-7.5 c.c. ... 154° Chuse complere, 16 panels 40

ROLAND SCOTT

THE MODEL SPECIALIST
185, CAMBRIDGEROAD
ST. HELENS, LANCS.

147, DERBY STREET, BOLTON, LANCS.

model fuels

finishes

for the modeller who wants the best - and knows it

Madel Fuals and Finishee Led.. is an orgenigetion which has bean developed specially co marker two very famous produet far aero-modilling, mamaly, CELLON finishes and MERCURY luels. This apecialisacion has anabled cansiderable progress to be made both in the qualicy and variety of che producen handled, whilst pricea ara kepe alow as possible. Two other lines, Mercury Aerolac and Mercury Rubber Lubricant complete the programme and Mercury Rubber Lubirent complete the programme $t 0$ far. all thete produce ard malabla so modalery
through regular Mercury Stockisu.

CELLON			
	2-oz. jar	4-oz. jar	t-pr.tin
Clear thodel Dope	1/3	$2{ }^{\text {i }}$	4.
Glider Dopa	1/3	2:	4/-
Glossy Coloured			
Daps (12 calours)	1'6	$2 \cdot 6$	5/.
Aluminium Dope	1.6	2.6	51.
Fuel Prool Licquar	119	$3 \cdot$	61
Sanding Sealer	13	2\%	4\%.
Banarmoil ...	1,6	2:6	51.
Model Dope			
Thinnars ... ${ }^{\text {as }}$	l:	1:9	3\%
Anti-8lurh Thinnara	I:-	1,9	3/.
Fuel-Praol Yhinners	1.-	$1 / 9$	3/.

MERCURY FUELS

In toz. Bottlat

No. 1. Comp Patrol
No. 2. Racing Methanol
No. 3. Comp. Diasel
No. 4. Comp. G. Plue
No. 5. Racing G. Plug
No. 6. Allin-one Diasal
No. 7. Racing Spacial
No. 8. Castor Dimal
Mercury Ether
More Mercury Fuele are aold than all other model fuels cogether.

AEROLAC

 CLEAR LACQUER Non-sereak, fast drying, high grade. In seven slowing hues 4 oz . |ap 2:6. 2 oz. jar $1 / 6$. 40z. lap 2/6.Aerolac Thinmen:

2 oz boctle 1;-

MERCURY RUBBER

LUBRICANT

A Eenuin blend of pure lycarine and cofs roap.
loz. boecle

MODEL FLELS AND FTNISHES LTD., 40A, PARSON'S MEAD, WEST CROYDON, SURREY
Eiport enquifict to BuLlef, Roberts a Co. Led., 4, Draper's Gordens. E.C.2.

MODEL $\operatorname{MIRCRAFT}$ GUIDETO

YOUR BEST MODEL SHOPS

RETAILERS ADVERTISE ON THESEPAGES TO REACH THELVVE MOD. ELLERS IN YOUR TOWN
YOU CAN DEAL WITM
THESE MODRL SHONS WTHM
COMMLFE CONFIDENG:

ABERDEEN

Tel.: 24412

Unian Supply Ca. (Model Engineering Branch)

 266.268, GEORGE STREETStockists for aly M,A. kils, engines and accesionies. by Kell, Veron frog. Mercury, Sigleada and jeten

BIRMINGHAM

Chuck Daughty

128. ARTHUR STREET, of COVENTRY ROAD

MIDLANDERS_- Your first model shop by Aero. modellers for Aeromodellers

BIRMINCHAM

Yel. : Central 1223

Madet Aeradrame Ltd.

43. TEMPLE RON.

Ships, Railwoys. Aircroft, etc.

BIRMINCHAM

The Madel Mecca.

204 WITTON ROAD. 6
Personal attention of Mr. G. J. Rowond, Aeromodeller and Model Engineer for 20 years

BOLTON

Raland Scatt

The Model Soecialist
147. DERBY STREET

The best shop for miles around

BRIGHTON

Tel.: Ar.ghtan 26790
Madel Cleradrame Ltd.
37. WEST STREET,

Ships, Railways, Aircroft, etc.

BRICHTON

Tel.: 27963

Arthur Mullett

16, MEETING HOUSE LANE, NORTH STREET World wide moil order service
visit usfar personal ateantion aspertadice

BRISBANE

AUSTRALIA

Parwies

604. STANLEY STREET. SOUTH BRISBANE, 5.2. The home of hobbies, and the choice of Model Aviation Champions in Queensland

BRISTOL

Hablies Ltd.

30. NARROW WINE STREET

A bronch of the firm which is known to Modellers throughout the world. All M.E. requirements stocked.

BRISTOL

The Madel Cirpant

5I, COLSTON STREET
Get your supplies from the leading M.A. shop in the town

CANTERAURY

Pel. : 4821 d
Heers (Engineering) Led.

22. SUN STREET

(Under the Shadow of the Cathedral)
Agents and stockists for leading Model Manufacturers. Personal and Postal Service.

CARDIEF

Bud Margan

THE MODEL AIRCRAFT SPECIALIST. 22:22a CASTLE ARCADE
largest model aircraft stock in the cauntry. PLUS fifst class mod order seovice. Send for my 1932 grice-lisp. Ne 2. FREE
xiv
When replying to Advertisers be sure to mention MODEL AIRCRAFT

The Madel Shap
45, CHAPEL STREET. CHORLEY. LANCS.
Comprahentive atocks of all hits. engines. acceivepien. Open until
7-30 p.m. for benefie of oul of town modelles:
CLEETHORDES
w. S. West \& San
18. MARKET PLACE

Lincalnshire's newest Madel Shop. Send for our lists (free). We supply everything

COVENTRY
Beesley's
89, SPON END
For all your Model Aircrafe requirements. Personai otzention. Mail order
cociseligy
Caventry's Madel Shaps
21. HALES STREET \& 62. LOWER FORD STREET rou want ir.

WE VE GOT IT
Phone or Patecard for C.O.O Ordera
10nprionet
Madern Madels
12. THE MARKET, LOWFIELD STREET, DARTFORD, KENT
Whether you call or whecther you post. we clam we're got mora stoch than mast

Tre. ; 3205
She Scatia Madel Ca.
40. CHAMBERS STREET

Let Mr. Wode advise you. Leading slockisis fer Kils. Keilk-aft, Balsa and Madel Aero Suppides, elc.

FIR1RX
Madefcrafts
112. HIGH STREET.

Mr. Gibb offers you expert attention. Stockists of all leading kits and accessories
(1) Scow

Tel: Centeal $\$ 630$
Caledania Madel Ca.
S. PITT STREET, C. 2

7HE engine repar specialists. EVERYTHING for the enthusiasp, with personal attention from GEORGE LEASK, A.M.I.B.E.
7. Geasskard
89. CAMBRIDGE STREET

Full representative range of oll leading M.A kits and accessories

Erizal zagmountion
Fel. Griel Yavment 4127 a. Darmaad
17. MARKET ROW

Free postal service. Solorbo Balsa supplied to the trade

MADPOM
The Mladel Stadium
5. VILLAGE WAY EAST. RAYNERS LANE. HARROW, MIDDX.
The only hire purchase specialisis offering no deposit terms to established customers

HOUNSLOW
Tel. : Mounslew 6225
Great West Aladel Supplies 474. GREAT WEST ROAD. HOUNSLOW MIDDX. We have everything for the Madel Aircraft enthusiast Call, write or phane

East Angtian Made\& Supplies.
37, UPPER ORWELL STREET, IPSWICH
Wolefreld gears: 3s. wach, pose 2|d. Consert "A Avenger" soublame Nordic A. 2 design. Plans ond cut tibs, 10. Kie. 23. 6d.. both portfied

LEEDS
Tel. : 20639
Halbies Ptd.
10. QUEEN VICTORIA STREET

A branch of the firm which is known to Modellers throughout the world. All M.A. requirements stocked

LEEDS
Ter. 27891
Leeds Ackanodellers Supply 94. woodhouse lane
M.A. fors "touch down" here for angmer, kies accesocise All mailordera dospatched tameday-post free

LONDOK
C. P. Dyne Ptd.

178, FALCON RD., CLAPHAM JUNCTION. S.W.II The local madellers' Mecca. Service and Courtesy fram on EXPERT

LUNOON
Tel. : Museum 2975

Hablies $\mathcal{L t d}$.

78A. NEW OXFORD ST., W.C.I
A bronch of the firm which is known to Modellers throughout the world. All M.A. requirements stocked

LONDON

Pel.: Chiswick 0858

Janes Bros. of Crisuick

56. TURNHAM GREEN TERRACE, W. 4 1 min. Turnham Green Station (Dist. Line) THE SHOP WITH THE STOCK CREN SAFURDAY + am $\rightarrow 30$ b.m.

LONDON

Tel.: Hop 3402

Hodek Circraft Supplies Led.

171. NEW KENT ROAD, S.E.I

The oldest established model aircraft shop in London Service with satisfoction from Harry York

LONDON

Tel.: North 4272

Henry J. Nichalls Rtd.

 308, HOLLOWAY ROAD. N. 7.The M.A. enthusiosts' complete stockist. Britain's No. I Mail Order house. H.J.N. will be pleased to see you

LONDON
Jel.: Sloone 4914

Replica Ptd.

159. SLOANE STREET, S.W.I

The exclusive model show rooms combining a large range of the latest toys

LONOON

Tel.: Gulliver 1818

Ripmax Ptd.

39, PARKWAY, CAMDEN TOWN, N.W.I
Everyman's Model Shop
The post service with the personal touch

LUTON

Tel. : 3147

Lutan Madel Supplies
 1a, WALDECK ROAD

for all modelling requirements. Personal attention and sotisfoction to all. From Ron Hinks and Gearge Fuller (Enemblithed 1930)

MANCHESTER

TeJ.: Dlackfriars 9221

She Madet Shap.
 13, BOOTLE STREET, DEANSGATE

 We hove EVERYTHING in stock for the oeromodellet Kits, Engines and AccessoriesMANCMESTEP

Madel Supply Stares

17. BRAZENNOSE STREET
far absaluie satinfarsion come to usfor yaur model dircraft requifementa Norehern lacrori lor SKYLEADA kiti

MITCHAM

Mitcham Madels Ca. 243:5 LONDON ROAD. MITCHAM
Model aircroft kits and accessories specialists.
Model enpineering tools etc. Yachts and trains.

ORPINCTON

Tel. : OrD. 7903

Cray Madet Craft

68/70. WELLINGTON ROAD, ORPINGTON, KENT The only madel shop in Orpington

ROCHOALE
 Tel.: 4263
 Jahn R. Price
 13/IS. ST. MARY'S GATE
 Full range of ENGINES, KITS. AND ALL ACCESSORIES

SMEFFIELO

Haldies Ltd.

4. ST. PAUL'S PARADE

A bronch of the firm which is known to Modellers throughout the world. All M.A. requirements stocked

SHEFFIELD

Rays Madel Stares
 I57. INFIRMARY RD..

The Model Aurcroft Specialists
Afi leading M. A. Agencies. Prampt bostal refvice

SUTTON

E. L. S. Madel Supplies
 272, HIGH STREET, SUTTON. SURREY

Surray': Habby Centre. ©y return Postal Service
Complete steck of all M.A. requirementa. Persanal aftension from Noeman Butchar

WESTCLIFF-ON-SEA

Tel: Southend 2696

Paramaunt Madel Quiatian

695. LONDON RD., WESTCLIFF

TRY OUR MAIL ORDER SERVICE

 mhenats
 CLASSIFIEDADS

Private, 3d. per word. Trode, 6d. per word. Minimum 18 word Bax Na. 2. 6d.
Copy matter and raplies co Box No's. no be addressed eo "Model Aircrait " Advertisement Dapartrnent, 23, Great Queen Sereas, Lendon, W.C.2.

Telephone: Chancery 6681-4

BARGAINS GALORE No trouble at all. Peruse carcfully the advertisements in this isue and see for yourself.

FOR SALE

F.D. Mk.i RiC. unil with N illi-Amp Meser \& new H T. Hattery, tesied only, Satisfaction guaganteed (12. 10, A, Penningtun, 426 Kirkgate Sireel, Wisbech, Cambs.

AMERICA'S famow magazines One year's supply. "* Mudel Airplane Nows," 25s; "Flying." 28s. 6d. Free booklet listing all others soni on request.-WiLien Lid. (Dept. 22), 101, Flect Street, London, E.C. 4 .
DENTAL BURS, dswuried sizes and heads, rejects, suilable finc model work, 20k. gross or 123 , half gross, post puid. Cash with order.-WII PaM Inousjmea LtD., SA, Oldfield Rd., Hampton, Middx.
DOOI ING 29's. Two al $£ 710 \mathrm{n}$, each. Absolutely new.-Harinh. 166, Stafford Rosd. Cannock, Stafi.
 Skyleada 44 in. Zipper Kit, 15s.' Boih untouched.-W. Hinics, 219, Skyleada Bell Lanc. Bury.

THE WORLDS LARGEST SELECTION 1:72 Sule Plans still available from DepI. JMA. (Harleytord, Marlow. Aucka) Send S.A.E for list over $\$ 50$ aircran fram 1914-1948. Special offer: "Plan Pack" containing 48 assorted plans and charl of 24 camouflage colours 54. post frec.
MIL.IS 0,75 DIFSEL, propeller, not run-in. Aepomodeflers
March. 1947 to May 1950 inclusive, one miksing, plus fwelve odd
coples. S.A.E.-DONaLD C'aspepll. The Marse, Luss Dumbarton-
shire.
NJTRO MFTHANF, 5 gallons available. Write for sampic and
price. - Mox No. A.245, Model Artcraft Offore.
Two Jetex " 50 ," Ss. each.-.-Batker, 32, Ge. Broughton, Middles.
brough.
HARBOROLGH'S latest publication Rubbep Morors by Ron
Wianing will surely be this year's hest seller ! 64 pagen fully illus-
irated. Complete handbook on rubber and rubber molars, logether
with basic propeller design data. Eaty to understand and a sure
aid to increased performance from your models. Price 3s. 6d. post
free from Depi. J,MA., (Harleyfurd Marlow, Bucks-)

INSURANCE

N.G.M. THIRD-PARTY INSURANCE nOW pruYides $£ 10.000$ cover all typos model aircraft (oxecpt jels) for 24. 6d. Der annum : join any lime. Loss by o.o.s hight 2s. $6 d$. per $£ 1$ of declared value. Send S.A.E. for memberthls application form-Depl. J/MA. (Harlegford, Marlow, Buclas.)

WANTED

"PRACTICAL MECIIANICS." Oclober, 1949. Wirite firsi stating price-Dowald Calpset The Manie, Luss, Dumbartonshise.

CONDITIONS OF SALE

- This periodical is sold subject to tha following conditions :-Thal le shall nol withour the written consent of the publishers, be lent, resold, hired-our, or otherwise disposed of by way of Trade cxcept al the full reisil price of $1 ; 6 d$., and that is shalf nol be lent, resold. hired-out, or otherwise disposed of in mutilated condition or In any unauthorised cover by way of Trade: ar athxed to or as pert of any publication of advertising. literary of pictorial mattes whatsoever.

TRUCUT

PRECTSION - MACHINE - CARVED ANID FINISHED

PROGRESS AERO WORKS CHESTER ROAD

THE "NEW BABY" TANK

PRICE 23 or 26 BY POST DIRECT FROM THE MODEL SHOP
3, Ridey Place, Northumberland Street, NEWCASTLE-ON-TYNE. Telephone: 22016

ONE OF THE RANGE OF 36 NOW AVALLABLE
at your local model shop of

SOLID SCALE KITS

(SCALE I/48 FULL SIZE)
ASK YOUR IEEALER FOR IILUSTRATED BOOKLET PRICE 6d. ur FROM L'S PRICE 7ڭd.
chingford model athodrome ditio.
155, STATION ROAD CHINGFORD LONDON, E. 4

PARAMOUNT MODEL AVIATION

695. LONDON RD.. WESTCLIFF

PHONE SOUTHEND 2896
CONTROL LINE WIRE 150 ft . COILS OF $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. ONLY 16 A COIL

MAIL ORDERS OVER 20-POST FREE

SERVICE رur FRIENDLINESS
THE NEW MODEL SHOP
S4 HENSHAW STREET, OI.DHAM, LANCS.
WE SERVE THE NORTH BEST PRICES PAID FOR YOUR OLD ENGINES

Offers or cngines by' relurn post Get on our mailing list for the

NEW KEIL HANDBOOK Out Shorily, 1 I-

New Address: ETA INSTRUMENTS LTD., 289, HIGH STREET, WATFORD, HERTS

afid published by Peecival 3aroinali \& Co. Lid.. 23, Grrat (Oueen Street, London. W.C.2.

30. long. 9^{-}beam (built as lloustration). Price $\mathbf{C} 300$

TWO POLE ONOFF SWITCH
(Can be used as single pole).

Price 26 cach
E.D. CLOCKWORK ESCAPEMENT

Ideal for marine use.
Price $£ 2 / 18$ ||
E.D. MARK III

ESCAPEMENT

FOR QUALITY. VALUE

These are the kits that outsell all others. All over the world discriminating model builders insist on Keilkraft. The high quality of the contents, and the great flying qualities of the finished models are unrivalled.

Chief (A2) 64 upan Nordic claks conteat glider Many 228

Ajan

PERFORMANCE

Mone resane addewon to Eht famaur K, K Jerwe 50 gowered flyins scale mese.

[^0]: " Stinker's never been the same since his old man came back from Persio!"

