
D.H.

Chipmunk

The finest range of in the World

CHJPMUNK

20 -inch span. This control ting sesalo model is an accurate replica of the actual training sircritt used by H.B.H. The Dulke of Edinburgh Aurhennic
 transters and the kit is absolucely complete with wheels. tank. and pre-shaped wing. All parts are acturstely printed on top srade balsz

BALLERINA

3dininch span. Fit this madel wich o Super Merlin and you thave the porloct cambination for a first sowoe model Conserusetion ha simalicity
 orce., sll on satin smooth too zrade balas. Big leature of the design by Vie smeed is its loolproot perfiormance. Even the beginner will find

WIMPIE

A bexinners 19,-inch span Conerol Line Tramer aspocially designed for sumplicity of construction, Fuselage is roady profiled, ribs and eal surlaces diacut fram selecced balss. Wheels. plywood, pano wire. and alumium conteol plate, teti, are all ineluded razasher with an Oll

D.C. BIPE

A complete is-inch span Conirol Line Bioplano Kir which includes Super Mertin Engine with propeller, special sidewinder tank, ett. Primied balsa partu, precut fuselase and riying surfacesi, cement. dope. tontrol line tandice and linet, in fact all you have to do is arsemble the parta. which can be dons in one hour, and she model it ready to tly it is the ideal model lor your first astempt at conteol line fiying and is virctally ctathprool owing to the exceptiansly surdy construction. full llying inteructions are printed on the box label.

PRICE intudiag ion
(3-12-1!

For Extra

Performance

Use...

ALLBON
SUPER FUEL
Special Adduives zive this five part blend of quality ingrediants the tharactoristics chat model engines need moss. Easy marting, amooth running, and real power, are its man virtuas. For thase reasont we recommend it far our own anzenes.

Allbon READY MIXED IIFSEL FUEL

$$
\begin{array}{r}
80 x \\
3 / 3
\end{array}
$$

s amones an ure

D.C. Bipe

KITS - ENGINES \& ACCESSORIES

0.5 c.c. $0.03 \mathrm{cu} . \mathrm{in}$.

Undiaputad ehampion of the paine fiven' '. It is built lika a watch and has a pariormanco of its larger coumeerparts.

Price 0.4 .5

Incfude: Enrine Test Stand es illustrated. Combined Jet and Cur-alt: Adjusable Conerpl-line Mandle; 15 cie Clasa A Team Race Tank; 30 c.c. Class "e" Tam Race Tank: Radıal Mounss: Extended Neadie Valwes and Comprestion Screwi and many orthars.

$8 \mathrm{c.c} .049 \mathrm{cu} . \mathrm{in}$.
erformance is as good as it looki. and it really is easy to start and opseata. Ideal lor
the "Cmiomunk" the "Chipmunt" kies shown lath. Complece with propoller, spinnar and tomimy bar.
Price E2.12.7

SABRE 1.49 e.c. 0.9 eu. in.
Complete with intagral uank. propelter, aplaner and rammy bar. this poverfiul moter ill ideal for the emaller radio control model al wall as free-flight and consrot-line.

Price 0.12.7

The Model Aircraft Specialists

 friends and customers all over the world

＇FROG＇PLASTIC SCALE KITS

Subrn DETAIL I Tind Seale MERFOR Kiti，HUNTER 1／3， METEOR
D．M．IIO IIN．WHIRLWIND HELICOPTER 5， \boldsymbol{y}_{4} JAVELIN $7 / 6$ ， CANBERRA E／B．Thene kien rat complex：with cement and atand． Specisl＂O＇My＂onamols for whova kity In 刨 colowrs Bd，ameh，Potege on all Plastic Kiti Pd．axtra． aeromodeller annual $10 /$ FLYING SCALE MODELS Simple Radio Control

TRI－ANG RADIO CONTROLLED BOAT，COMPLETE WITH NEW MK．II TRANSMITTER，evaryching ready so use（Bactarien，exmea） －resdy price els 150
NEW ML．II TRANSMITTER and
RADIO SLAVE
GIIISJO
$\frac{\text { Limiled Supply }}{\text { ENGINES }}$
The Now ETA 29
Albon Mertin
C．6，4
Allhon Supar Merlla
Allten Super Sabre
NEW Allen Mercury I c．e．
NEWV Frat 149 with Y／bra－
matic Induccion

WATCH OUT FOR THE REVELL PLASTIC MITS NAUTILUS Aromic Submarina I 7／s．To fallow shorily：Oidexime on Cz：kien ar 4／II and 6／II．Send for h

$$
\begin{array}{ll}
\text { matic Induction } & \$ 49 \\
\text { NEW Fros } 249 \text { \&.c. } B .0 . & 79 ; 5
\end{array}
$$

Fros 50 Mh .11
Fros 150 Mk ．II
Allbon Orer Se．e． Coneant Modal Sailplana detadi in my new Price Unt．Price 4d．

Spirfir 1911 Ralle Royce Gioscer Ciladiaso

Glosiar
Bempley
Derraca
TOOL CHEST C4 3．，6d．Send for full ranes price list of X－ACTO Cutcing Tests．
Gellaan tirs，Vierory，Shmmman Goldan Mind and SangeMaria 2 －am Sourherri Crosen boac leit 411
Ferituton Farm Yractar 3／11
Biach Pirua Gallman
NEW AMERICAN LINDBERG
I 48th SCALE HASTIC K1TS
SPIRIT OF ST．LOUIS
SPITFIRE
in seock CONVAik and F．91 THUNDERCEPTOR Oach IIIII Warch for further planos in this renc角．
sFCOND－HAND ENGTNAS
E．D．Baby 46 c．c．．E．O．Bat I e．e． 351：－Molin 78 e．e．，Milli 75 e．e． 3S：－E．D．Racerr 2，46 c．c． $50^{\prime}-$ ：E．D． 3．46 R．A．A．M．24 A2／í：Fros 2.49 A．B． 50 Fros 50 and 150 35／a
 amit allbor Dart isc．e．40＇： E．D．I．46c．c． $31 j \mathrm{~L}$ ，Sand lor SiH Ening Lise．
PAY CASH FOR GOOD SECOND．HAND ENGINES
The only ready－mada CONTROL LINE PLANE THE CMAL LENGEM，frica camplere with NEW ED．I．4 anging ealat ar with secondthend E．D．BEE 4 I5：－
＂PLASTIC VINTAGE CARS 1911 Rois Rovee，Bontlay； 1913 Mactedes： 1907 Renaule： 1915 Fias： All at 77^{3} each． 1803 Cadillac． Modal 1 Ford 1910：Oldemabila 1904：ar Si－each．1954 D Typa Joguar 7／11． 1903 Fard： 1900 Packard 6／3．1905 Humberf！ 1905 Vounhall at $7 / 3$ each，Enamile Id．
Allbon Spitfipa I c．e．
E．D．Baby 49 c．c．
E．D．Bee I c．c．Mk．II
F．0．Horiner 1．5 6．
E．D．Racer 2.5 c．c．B．을 Allen＋Mercury 25 Allan－Mercupy 35 Milis 75 c．c．．．

22 CASTLE ARCADE CARDIFF

Phone ： 29065

Quality

 FirstAN ANNOUNCEMENT BY THE MAKERS OF ERITFIX CEMENT

Since the introduction of Britfix Cement a great deal of research und＂know－bow＂ has been employed to maintain its ex－ ceptionally high standard．
Hundreds of thousands of Britix users throughout the world rely on its superb quallities．

Despite numerous rising coste，both in labour and raw materials in recent years， the price of Britfix Cement has remained constant．

We are now reluctantly compelled to make this revision in our selling prices， with effect from Dec． 15 rather than reduce the high standard with which Britfix is associated．

THE NEW PRICES OF

BRITFIX CEMENT ARE AS FOLLOWS：
$\frac{1}{2}$ oz. Tube 7d.
1 oz . Tube $1 /-$
21 oz . Tube $1 / 8$

Your retailer will be pleased to show you our latest colourful cataloguc．It describes the full range of H．O．C．Handicraft accessorics，including Britfix and Humbrol manufactures．You will also find it full of information on the uses of the various products．

Any retailers who have not yet received rheir wopy of the news catalogue can obrain it free of charge on applicapion en：

THE HUMBER OIL COMPANY LTD． MARFLEET，HULL，ENGLAND

THE SIGN OF THE DISCRIMINATING AETAILER

SOLARBOTHE best BALSA

YREMARN

QUICKBUILDS Scale Kits with first class flying performance

There ara na complication with "Oukte builds". Na cutting out, no doping and no coverine. They juat fall cogether from the accurate diacul paren which you maralr puah out from the ibecially selected modiumhedt babs. Inslitim, miefongs, ate, art aH urthectivily printed, avan the undercarritege is ppa-thaped for quich ansambly- Piccortal 1Gageby atege instructian enisire chat you can's to wront when buildint. and gaod dedicir enured that twory modalin the mange

 model In the very nesr fucure.

Price inc. P. Tax 5/11
Manufactured and Distrlbuted by A. A. HALES LTD. 60, Station Road, New Southgate, N.II.

great effort
 finds great reward

A Vounci man's dream muy dwell on Alying - on the exhitaraling challenge in the airy spaces of sky. His common sense tends to call himback to tarth - to consider the future and the building of a carecr.

Fect on the ground

In the Koyal Air Force todily you can satisfy both these demands - and the new appoinmest of Air Electronics Oflicers mans more can now tly. These highly skilled men are lrained to be responsible for all the electronic devices in the new V-bombers. But aircrew are much more than flyers. They are often seconded fors other important work in t3ritain and abroad. Training others, international liaison, aincriff development - these are but some of the johs that may come your way. And responsihility grows fist. You can lea Group Captain while in your carly lorties, responsible for perhaps fiflex. hundred men and several squadrons of moxemen aireraft. Beyond that"? There is not limit Quatity comets in the R.A.F.and there will illuays te roomat the top for good men.

A sure fature - good pay

Youscan join the R.A.Fi. Ibrough the Direct Commission seleme, confident of : permanent career right up to pensian age. Or san cun chasea tuelve year engazemenl. with the aption of leaving after eight. If you Ieave after 12 yeare you take back to civilian lifeatux-freegratuily of $£\{$, 000 : Wh hichener yon chmore the pay is gerod. At the new rates, a Flight licutenant of $\mathbf{2 5}$ for instamee, carn dris. with full allomantes, therut $£ 1,500$ a year.

Present action - future perfect

Travel, adventure, opportunity, achievement . . . here is a unique chance to bend them all in the satisfaction of a greal carcer. Are you qualificed to arasp it"?
He山 JO /LY HIHH THL R.A.F. You must be between 171 and 26 and absolutely tit. You must have (ieneral Certificute al Education or Seotish Leaving Certilicate or their equivalents.

You must the able to lead ohers, and you must have aplitude as well as enthusiasm for nying. If you feel you have all these qualities, write at once for details of the schemes of entry to the Air Ministry (AM.305a). Adisitral House, London, W.C.I. Give date of birth and educational yualifications.

RESPONSIBII.ITY. To fly with the R.A.F is to work with the most dependable men in the world, contident and well qualified for each of the many calls on their shill amed intialie.

AND KEIAASTIOR. Work over. pleasure begins. Giliding, yachting. winter sports - these and many other privileged pastimes link un with a socitial dife that is full and varied.

The Royal Air Force Flying ... and a career

"Covers the world of Aeromodelling "

VOLUME XXI!
NUMBER 252
JANUARY 1957

Special features

"AL, DATROS DV"				12
WORL.I SPEED CHAMPIONSHIPS				
WORLD Gl.IDER CHAM	NS			19
"LUCIFER" ...	**	...		24
PROP - R.P.M. FIGURES				42

\star

Regular features

HANGAR DOORS 10
TRAIJE NOTES 26
AIRCRAFTV IN SERVICE-GAOSTER JAVEIN 27
WORID NEWS 30
ENGINE ANALYSIS-TAIFUN HURRURAN ... 32
WHATS T'HI: ANSWER? 34
KNOW YOUR ENGINE-COOUNO 35
MODEL NEWS 38
STEP-HY-STEP 40
RADIO CONTROL, NOTES 44
CLUB NEWS 47

THIS YEAR, NEXT YEAR!

Since international competition in the model aircraft field first got under way back in 1929, following the introduction of the Wakefield Trophy, the scope of such top level events has widened until today we have four Championship classes onvering the three frec-flight eategorimg of rubber, power and glider, plus a class for control-line speed.

Until 1956, such World Championship events have taken place annually, forming the greatest incentive to top line model developmient in the world. Now, however, the reoently held F.A.l. Models Commission meeng has decided that in furure the Championships will be paired up, and held in ulternate years. with the object of effecting a compromise between four separate anmual meetings and the combined "Olympica" proposed in these columns some five yoars ago. Czechoslovakia excreises her right to hold the Glider and Speed evenes in 1957. and with Sweden withdrawing her option on the Wakefield, this and the l'ower event will most likely take place in England in 1958.

Whilst there are undoubtediy some very goorl grounds for this splitting up of tho four Championships, not the least being the questions of expense and accommodation, we reserve judgment at this slage on a subject that can have very widespread repercussions. Our immediate reaction is that the pairing of the events is wrong, for it would seem logical to link the power and speed events at one meeting, the conpetitors being uble to assist each other to a greater degroe than the boys who do not employ mechanical motor to get thear modela airborne. Obviously the curtent puiring has been dictated by the successes of Czechoslovakia in 1956, but we foresee a revision in the near future.

A compromise has also been introduced into the vexed question of power model specification, the proposed 400 gram per c.c. capacity being reduced to 300 grams, but the wing loading minimum has gone up to 20 grams per dm*. Fortunately, the move to reduce maximum engine capacity to 1.5 c.c. has not gone through at this stage, so those with hot 2.5 's can breatho again . . . at least for nnother year or so.

We are NOT happy about the reduction of rubher weight in the Wakefield model to 50 grams. Ever since the Wukefield specification began to be mucked abous, interest has fallen off considerably in this interesting and important class, until today the top line rubber-driven model attracts only a specialised few who can cope with the altering requirementa. Knowing heromodellers, we have no doubl tyat the new requirements will soon he dealt with, and we shall probably have a new reatriction imposed in order to avoid a possible fly-uff.

At long last that so controversial requirement R.O.G disappears from contest regulations, and very few will mourn its passing, Whatever its virtues, the requirement to rise-off-ground created so many arguments between competitor and official that most peace-loving people will welcome its demise. No fonger will there be those fierce arguments as to whether or not a model was pushod at take-off, or that three poines were not touching the deck nt relense. Greatest of all will be the disappearance of those stupid bits of wire and wood that purpnsed to be an "undercarriage", thnugh how a model was expectod to "stand unassisted" on such contraptions will ever remain a mystery.

On the cover...
Most adyanceg all-wether fater in Service with European forces is the Idela Winged Glonter Javelin Mk. 1. ligsed at Odihan in Henmphise, Number 46 Squedron has been conducink service proving trighe of this noteworthy eircraft and by rourteay of the Commanding Ofticer and Air Ministry we ase able to present G. A. G. Cox'e magnificent detailed drawing of the aircrafi on payea $28 ; 29$ of this istub.

Heard at the

 Hangar Doorscommentary on our hobhy. Titled "Model Makers", Frank's latest threc-reder, which runs for 15-20 minutes, is now un M.G.M. distribution and has already had its premier at the Eimpire, J, aseester Square (there was another, ather fonger film on at the same time to support it) and it will be shown on private (as distinct from A.B.C. and J. Arthur Kank) circuits within the next few weeks.
'1'he aeromodelling side is ally illustrated by the inimitable Ray Malmstronn, who includes parachute dropping in his party piece, while a number of non-flyingdevices, which are righe out of

PBute Thalla

What cones tu-must come down, night well be the theme behind the two magnificent examples of air to air photography reproduced above. 'laken by Russell Aclams, Chief Photographer of the llawker Siddeley Group, who is responsible for most of the Ciloster Airernfe Company's publicity photo's, they serve to illustrate the manocuvrability of the Javelin all-weather fighter.

We had the pleasure of listening to a talk given by Russell Adams to members of the London Society of "Air Britain", and after learning that he has to suffer forces of fuur and five times gravity during cach formation lexop, supporting a 7 lb . home-built camera, changing plates at the tup when hanking on the straps, and "greying out" on the pull out at the bottom-we consider that he deserves extrat credit for his tine efforts.

Incidentally, we feel that a large number of acromodellers, particularly llying and solid scale enthusiasts, would appreciate these monthly "Air Hritain' mectings on the first Wednesday of each month at Caxton Ifall, Westminster. Those living outside the Iondon area will be interested in membership through local groups. Some halfdozen publications, notably the bi-monthly $24-$ page news digest, a fine photo-sales service, with one of the most comprehensive range of negutives in the country, a lending library and Aeronautical records section, are but port of the services available to rnembers. Write to the 11 m . Gen. Secretary; 318 Harking Koad, East Jam, London, E, (b, for derails.

Nopatellimit Boilrin

Frank Gardner, whose production "Hasy to Fly" has been seen by thousands of aeromodellers throughout the world, has made another fine
this world, have been contributed by uur own Peter Holland in the forsn of Space Travel models, all of which have been featured in turn by our companion magazine, Model Maker. If you spot the title among the supporting films at your cinema, we advise a special effort to go and see it.

())hifinariew

1956 has been a bad year for the modelling fratemity, for as we go to press, we regret to learn of the death, on November 27th, of one of the bestknown model traders in Great Britain, Mr. Harry York of the famous 171 New Kent Koad establishment.

Harry, who commenced business in radio supplies, began to develop the model aircraft side of the business way buck in 1928 , and his shop rapidly became the Meces for aeromodellers from all over the world. You could always rely on meeting the top names at some time or other at "171", and many are the hours we have spent discussing high and low topics in the back shop. Harry, whe was 54, was made a Fellow of the S.M.A.E. before the war in recognition of his work for the movement, and in particular his sterling efforts as P.R.(). for the Suciety, a pose he leeld for many years.

Invalided out of the R.A.F. following a serious accident whilst servicing a hig bomber, he had suffered from poor health for n number of years, as a result of which he abandoned his official duties whilst at the same time retaining a vital interest in all matters concerning the hohby. His passing will create a loss that will be felt wherever aeromodelling is discussed.

Another good friend in the trade who has passed on, is Mr. P. S. Fisher of Culchester, who founded his model accessorics business in 1945 st Station Yard, Twickenhan. Mr. Fisher was 53 yeors of age, and served from 1940-1945 in the [RA.P.C.,
secing service as a Field Cashicr. His daughter, Mrs. (G. Southam, will continue running the business at 'l'wickenham, and his wife and son will carry on at Culchester.

IBad(let)icnl Comments

Numernus letters have been received following the publication of Captain Milani's comments in the December issue, concerning the Concours d'Elegance event at the All Britain Rally. The following view has been received from the organising olficials and clarifies one or two points raised by Captain Milani.
Dear Sir,
"The letrer from Captain Milani in your December, 1956 issue, coming ag it does from one of our forenost scale modellers, is deserving of serious attention. Unfortumatly, however, the writer's arguments are based on false premises, and the conclusions he draws are consequently misleading.

The Concours d'Elegance contest at Radlett, as in other spheres, is to decide the best model on the basis of construction and finish. Hying umalities by definition, should not intluence the result of such a contest, but the organisers fell that the nature of the meeting made it essential that all models entered should be capable of llight, nad not be merely 'exhibition' models. A minimum flight time, to be officially recorded on the day (hefore or after the judging), was felt to be a logical yualification. Other contests at other mectings nimit Hying altogether or judge also on Aying ability, bur the latter are not strictly Concours d'Elegance.
Since the contest is to find the best-looking or bestconstructed models on the field, we believe it to be illogical to refuse entry to any model on the sole grounds that it has been entered or placed in previous years. Would Cuptain Milani also apply this reasoning to duration contests? It is noteworthy that the winner of the Scale section and of the cup for the outstanding model (heating both the four-engined models-each of which hals previously won the trophy-and Captain Milani's own entry) was the Aurn Tutor, entered for the first time by Flying Officer Norman.

It appears, therefore, that to one modeller at least the inclusion of previous winners proved to he no hendicap. Would he have had as much satisfaction in winning had his model not been judged in comparison with these formidable competitors? The time taken by the distinguished judges of this contest (they include the chief 'Iest l'ilots of two of our greatest aircraft manufacturers) in arriving ar their decision is prouf of the seriousness with which they regard their task.

With regard to Captain Milani's final point, you are of coursc, already aware (since you possess a copy of the Official List of Results) that the Spitfire model seferred to dnes not appear in the list of prizewinners. It was in fact, desqualified because it failed to fly for the minimum time prevously referred to. It was provisionally classified fifth, subject to a satisfactory flight, and this may have confused Captain Milani, whose uwn model gained a well-descreed fourth place.

Contestants nt fueure All Britain Rullies, can rest assured that the "minimum tlight" rule in the Conocours d'Elegance will, as in the past, be rigidly enforcerd. Whilst wo chnnot agree that previous winners should be disbared from competing again, Captain Milani's other suggestions (e.g., for exanmination of models after flight) will certuinly be most carefully considered. "
St. Abbans.
K. J. A. Brecokes.

HETPOR'P ON TME F.A.I. MEETING

NOVRMEER, 1950

Prisent:

Franec, Swizerland, Molland, Czechoalovakia, Gerrnany,
Gre: Brizin, Ifaly, Spain, Yugonlavia und lielgium
"FUE MAIN ITRA1 on the Arenda wan the question of grouping the four World Championahipa an proposed by a number of countries, since thil naturally affected the establishment of tho calerder lor 1957.

If was linslly decided to adapt a compromise berween the two poinis of view by prouping the four Championahips into twon, and holding esch group in aliernate yeara. 'Tlias was facilitated by the fact that Cexechoslowhinat had appliad for permitation to exercisa their option for running the Glider and Speed Championahips for 195\%, and Sweden hat wilhdrawn from cheir option to pun the Wakefield Rubber event for 1957. Thu for 1057 there will be only one World Chamsionalup meeting, and thin will be helu in Czechoslovikia, when the Glider and Speed evente will he held. There will be na Hower or Rubber eventid fur 1957, but these have been otlered to Grest Hritnin for 1958.
Thiv doen not prevent the running of regional intemational eventer for the dormant calegories in earh year, and han the effect of greatly veducing the yearly travel coatil for cuery nation, and the organising custe for the hoat nation.

The cilider and Speed Championshipa havo been fired for Auguat 1 Sih- 21 ar, 195 \%. Uiher eventa fixad on the calendar are:-

Fifth International Ifydro Model Contest	Monico	
Criterium of Europe	Helgiust	June 14th/15th
Alpen Cup. Hower and Glider	Austrim	July 2nd
Flyink W'ang Internulional Canteat	Enuland	1)ate in be
Fifth International Ikadio Control Content	Belgium	Sept. 6th/9th

In the case of the Plying Wing Conters, it was agreed to apply the A. 2 formula with a loading of 12 grame dm'.
If was renemtly arreed that wosth to visiting teame thould be kepr to a minimum.

Conecrning the controversial queation of Power model apecific tions. it wis decidod that the best proposal was the formula nubmitted by Swiszetland, as it enabled a wider variety of ensine To be used (un to 2.5 e.c.), dpala with ewary eventuality and producen model of reasonahle size. Thin will tee referred to all National Clubs for poatal vote with a view to its adoption in 1958.

$$
\begin{aligned}
& \text { The proposed fommula in:- }
\end{aligned}
$$

On the question of hand baunching, there wa an overwhelming vote in favour of it eeneral edoption. with the exeeption of redio controlled models, which must be started from the ground. Thim will come into operation on January 1at, 1957.

Weight of the rubber motor for Wakefield modele is reduced ro 50 gramn.

It was agreed that in the case of raclio controlled conteats, tho uggregate of two fligluta be taken for clasification.

The question of landing war referred hack to the Radio SubCommitere for further investigation and consideration.
National Aip Clubs are so be alied ea aend in their viewn on this subject immediately.
For senm racing, it wan decided so limiz she number of competitors in the circle so sliree, for resans of safety.

It was decided to refer the quession of tiatheening up the formula Ent team sacing models for poasible instoduction in 1958. "The proponed emendments aro 10 increage the wins area to $12 \mathrm{dm}^{2}$ minimum; zo rearrict che maximum weighs to 700 grams; ta increwo the fusclage to 100 30 rmm. This will be refered to the Clutus.

No satiafactory conclumion wa reached regarding the question of whipping.
On the quation of teenrds, it was decided that otien a model is builh by a team, the secord shall be held by all membere of the ream joinily.
The heltcopter definition was amplified to inelude "A helicopter must be capabic of atse descent by eulorotation".

It wat agreed to modily the manocuvre far acrobatic conteata by riminafing tha less useful figures, and edding the "floulble wing-over". The "elimb" and "dive" manoevivres have, therefore, been eliminated, and the "double wing-over" dded, with a acoring co-efficient of eisht, for applicstion in 1957. It was also ayreed to use the aggregate of two ilights for clasaification purposen.

The scale
model you
have been
waiting
for!
 superb th scale free flight model of the fabulous 1917 fighter-for 1.5 ce engines
Flbatros \#iv.

The fulf.esize Albatros DV was a developed version of the famous D. 111 as tlown by Von Richthofen and detailed by (iearge Coz in his "Famous Biplunes" series last month. It made its first appearance on the Weatern front during 1917 and the most noticeablo new feature was the beautifully streambined fusclage which ropluced the somewhat flat-gided shape employed by the carlior D.1II. Although no subject for the raw beginner to sackle, the elegant lines of this authentic tlying model will fully repay the experienced builder for the extra effort involved.

For this is truly a scalo connoissour's project. It is the most detuiled single-engine scale-model plan in Aeromedelabr Plans Service and the ight of the prototypo in the air on flight teets, takes one right bect po that famous era of two-gun biplanes fighting it out over the Somne.

One major reason why thim model did not appear, as promised in our December isaue, was because the Hight tests called for further work on the doaign details. In our ondoavour to see that the A.P.S. Jrawing providon full data for a foolproof model, we spent exira cime on this beauty. An initial Aying problen was that of ade-slipping, which although most realistic in the oxtremo and probably a acale charactoristic adopted from ita full-nizo counterpart, was not the sort of flight path doairable in an otherwise stable model. Happily, this and other minor poince have been overcome in the final design and with incidences, engine anglea and the balance point spocifiod, the Albatros ia a certan flier and one in which all keen modellers will revel.

The f th equare balsa usod in constructing the fuselage side frumea should be carefully selected for its unifornity and firm texture, for upon the eccuracy of this basic construction depends the antire alignment of the madell Build the two framea one on top of the other and when completed, allow thern to dry out thoroughly before atternpting to aeparate or remove them from the plan. In the moantime, cut out the bulkhoeds, paying particular attention to tho plan notes on the niterial to employ.

The ith ply bulkheads should be cut with a fretsaw. If th ply is not obeainablo, a satiafactory subacituto would bo the inch hard balsa with 1 mm . ply front and back. Where large arems are to be laminated (for example,
the wheels and exhaust pipes), the drying time can be drastically reduced by employing one of the contact adhesives, such as "Evo-Stick" or Goodycar "Pliobond" in place of cement. A further advantage of this sype of adhesive is tho complete absence of warping.

The iwo halves of the $1 / 16$ th sheet formers should bo joined together and reinforced by two pieces of tith x thth balse es indiceted on the plan. Formers Non. 3, 5, 6,8 and 9 are now assembled on the emgine boarers and the lower flying wire anchorago hook cementod to former 9. Check the plan viow for the corroct aidothrust angle.

Bend the undercarriage main lega from 12 s.w.g. pieno wire and bind them to the motor bearers. This binding is beot done with copper wire and thon soldered, however, sough thread will do provided vou bind tightly, use auficient and cement liberally. Now bolt the u / c atraps to former.

The asaembly which has now been completed forms a kind of jig on which to tino up the fusolago sido frames. These should now be cemented in place and tho remainder of the bulkheads added. The tail block is fixed in position together with the tail skid support.

The 1 mm . ply panels are inserted between formara 5 and 6 and the wing cabane atruts firmly bound and comented in position. Make certain at this point that tho incidence is correct! See phopo 4 overleaf.

The lower wing locyting pieces F 7 and F 8 are now fixed in place and the $1 / 16$ in. sheet under-surface is cementod betwren them onto which is mounted former 9 A . The top of the fuselage may now be shoeled wnth $3 / 32$ in. balas. Choose a modium sofe grado which can be easily curved without cracking. The top decking can be shoctod in throe panels aft of the cockpir and three in front, as shown in the photograph. Siart by moistening the outer surface of the contre pancl. Tho effect of this is to expend this surface and thun produco a curve. If the resultant curvature is insufficiens, a more pronouuced effect may bo obtained by applying a cont of powerful dope to the inner surface, but don't overdo it!

When the centre panel has been pro-curved sufficiontly, pin and cement it in posicion and when dry, chemfer the edgea enown in order to present a larger surface agyinst which to cemont the remaining panols. 'The protruding comer of the rop longerins muat now

FULL SIZE COPIES OF THIS $1 / 6 T H$ SCALE REPRODUCTION CAN BE OBTAINED PRICE $7 / 6$ POST FREE FROM AEROMODELLER PLANS SERVICE, PLEASE QUOTE PLAN NUMBER FSPG46 WHEN PLACING YOUR CRDER

1. Engine prostrird akuinit dum by adhesire tapmaraumal

 fired rear relfer of corthpis aherting. 2. Top oheming nom. phetod nnil ahurring mpitud of trianguluting lowar

 yetuta nye sarearaty bound in positiun.
he wimmed off Hish with the bulkhead surface (see photes), This proxides a flat surface and simplifies attachment of the lower edgo of the tup sheoting. The pendulum bearings ond torque rod should be fixed in position before adding any further sheeting.

The nose block assembly muy now be asded, making sure that the downthrust and sidethrust are correctly menrporated at this point, for it is impossible to make andjusiment later.

Ad山 lower sheeting (five strips) and side sheets (two panela each side) using the same bending method as descriled for the top decking. fhuld up the removable coveling on the fuselage, kighly cementing the pieces in prsition to enabla them to bo cus away upen completion.

Assemble the dummy engine and make up exhaust piges. The downward curve of the pirie when viewed from the front must be introduced durinig the daminang process. This is perhaps a litule tedious, but may agan be speeded up and simplatied by pre-bending tho preces and using a contact adtesive. The rear edee of the pinge commes firmly anginst the leading edge of the dagonal cabarse strut and thus keens the back of the cowling in plise The cond may be lifted and slid back under the top wing or eompletely removed for making adjustenconts by relensing the spring catch on its front former. 'The ari intakes, etc., are designed for use of the Jroy $1 \cdot 49$. 'The induction tube intake will he unnecessary if a front rolary valve moter is employed.

The tailplatic is constructed in two halver and holes ure carefully cut in the fuselage sheeting to take the spars which are firmly cemented to the fusclage structure upan msertion.

Wing construction is quite straightforward, use the grivdes of balsa specified on the plan, and pack up the wing spars with seraps of sheet balsa to lift them into the undercamber, i inn. washouth is incorporated in the upper wing 'l', E at the tip.

W'ink gtrut fixings should be accurately fommed. They must not ho a sloppy tit, yet must release casily in a rough landing. When the lower wing is knocked berek the lower end of the strut comes off the front of the lower wing strut fixing und under the influence of the tension on the shitring elastic rigging is pulted up clear of the lower wing and thus the risk of the strut puncturing the covering is minimised.

All-up weight should be aresund 2 lb . The prototype came to exactly that fipure and no particular paiss were taken to keep the weight down. Double-weight Nodelsnan was used throughont and dope liberally applied. 'The flight is very slon and statety, but don't take undue advantape of the fact

Do not allow the C.(8, to drift buck
 beyond the point marked on the plan. . Nake adjustments to the trim by means of the veljustable elevator a little it at time. 'Ihis is important, as the control surlice is very large and is sensinise to adjustment. [I will probably he necessary to use a fittle "LP" clevortor to uchiewe a good glide. 'I'rim for large left eireles by offsecting the rudder slighty. Start on very low power and huild un gradually, correcting trim as you go.

The colnur seheme and registrationt used on the model is authentic and was obtained sth the lind co-operation of the lmperial War Nuseum. Mhuve and dark preen bembs actose the upper wing, and tanl surface, straw-colour fuselage (varnished ply) metal cossl and spimer, white rubler and light blue undersurfaces.

19.56 WORLD SPEED CHAMPIONSHIIPS

Firatigy an apology to thase wha expected to rend this report in the December issuc. Rarely is the Agromodper Eh behind with its ness, but on this occasion a fantastic serics of mechanical moshaps to the Editur's car prevented him reaching home territary in time to make Press days. Not only man-made conerivnnces provided the bad luek which tlogged the whole trip. On the way out, carly snow on the Furka Pass halted all prokress some 500 metres from the top, and a return to the Simplon (open all the year rousd they said!) disclosed an avalanche which necessitated a 200 mile detnur to the Grande Sit. Bernard. Struggling over this 8,700 feet pass, wo finally reached Italy (perpetual sun they said) whereupon it rained without pause for two days! However, that is another story, sufficient to say that the extremes of wet were snon replaced by mtenne fente when we reached the picturesque town of [lorence, scene of the 1956 World Speed Championships.

Arriving on the morning of Saturday. September 29th, at the Piazza del Cascade, we were greeted by the snar! of high speed motors, the sweet claying smell of Nitro and Methanol stinging oue nostrils as we crossed The generous area of parnac specially barricaded for the event. The J'iszza is siluated in pleasant parkland and along one side the llusy of competing nations hung limply in the intense heat above a grandstand etected for the benefit of the ltatian public. On the other side

The Hoge of rompasing nationa fretith an wparnpritile bnchigroumd is the rollating firmare of Ravemond "fisdari" Siblou the new 中nalit Sparal Chempion nefn here during hin second rum

Un left Nete Hright asedola with danhinn -up procual shalde yenmpmannger Adidie tionh halis ncreindrieter

Abstract

Quapler acalo ithrmedrer oma photn elunce emiphasise cleer ruA Inas of liibba* I9EG model which arparta from hia ITrII Masur styff daynul of the pratiame yeaf. th hify gimeri pon romfratima orirh filac amif blaris pains grhermm Have tha madría mont aitrardíce finiah. 5.6 in. diamieter firop. mith 10.inch pitch rriwhiref et afuring hin rroord run of

of the syuare the Agricultursl College of Florence provided welcome shade for contestants, whilst out on the tarmuc oflicinls and timekeepers swented it out in their special "chicken house", which gave a clear and protected view of the two speed circles.

Soon we met the British contingent, headed by Team Manager, Eidde Coth, comprising "Gadget" Gibbs and l'ete Wright plus the glider boys, not forgetting Norman Butcher from our contemporary and Pete Hoskinson, who came along for the ride. The party, together with teams from fifteen other nations, were housed in a very improssive Italian Youth Hastel, set in beautiful surroundings on the fringe of the town. Unfortunately, poor organisation necessitated constant and irritating queuing for meal tickets, and bad catering provided endless lengths of cold spaghetti!

After a morning of test flying the first round of the contest proper commenced in the afternoon, with rwo rounds to follow the next day. With the atmosphere so hot nad dry the thought occurred that speeds might not he high. A thought quickly digpelied by Sladley, the tull well-buile Czech, who, suitebly atured in shorts. put in the first notable run of 194 k.p.h., which bettered his own winning speed the previous year hy 14 k.p.h. This performanco was subserguently equalled by three of Sladky's team mates and also l'rati of Italy, all four of thens tying for sixth place. Prati was flying a speciul experimental Super Tigre, which sounded territic, but on his first altempt he ground looped and last a prop. Unfortunate too, was the Jinnish boy Jaskelainen, whose odd flying style resulted in disqualification for whipping. On his second attempt we judged his wrist

well in the pylon, but the judges thought othermise, 50 he lost his first light. Not so observant were the judges when other F.A.1, rules were flagrantly broken. We refer here to the rule which states, that contestants must start their own motors. This was cheerfully igmored throughout the contest by many of the tegms, although Mexary. Gibbs and Wright rigidly wielded their own digits!
And "Cadget" wiedled his with a vengeance-using the fumous Carter Special motor that has stood him su well these past twelve months, he put in a cracking run of $20 \% k$.p.h., a performance which set the pits a-huzzink and brought the crowd to its feet. "Whis terrific run following so sum after Sladky's certainly otrphasised the tremendous increase in performance that these tof speed boys had oblained since the previous year. Hatllo the Spamard, who can make Super 'l'igres go faster than the laglians themselves, und who many people tipped as a possible winner, could not get away, und with his balance sheet showing u deficit of ewo props, failed to record a flight in this first round. Then wo espied the lanky figure of Pete Wright making his way to the tlight circle. Ilis model was built to the standard of perfection we have come to expect and we doubt whether there was a better engineered model on the field. He wus using one of the two Carter engines that fired Carter had made apecially for this event. They were only completed a week or two beture the contest and although fust by normal standards, did not equal the performance of the curlier motor used by "(Gajget". 'They employ u Siuper 'l'igre crankcase, whereas the older version uses a sleeved down M1cCoy 19. Pele nevertheless, managed a promising run of $173 \mathrm{k} . \mathrm{p} . \mathrm{h}$.

A new motor, the Barbini 13.40 , made its debut when Cellini of lealy recorded third fastest time in this first round of 192 k.p.h. A really superb piece of Italian engineering, it is plowplug, has front rotary induction, uses two ball races on the main bearing and, believe it or not, cmploys a minute roller-race big-end bearing.

At the close of this first day's tyink, nme out of twenty-nine competitors had failed to record a ilight, bue with the whole of the following day devoted to the remuining rounds, there was plenry of ame for surprises.
Sunday noming seemed evell hotter than the Saturday the fierce Italiun sun heating the tarmac of the P'iazza till it could be felt through the soles of our shoes. "There was, however, no time for siestas, for riend Batlo soon made up for his frustration the previous day by clocking 195 k.p.h. with Sincjkul and Vyura of Czechowluvakia, rumning juat 1 k.p.h. slower. Cellini and his Barbini decided to liven procecdings up a little more with a magnificent run of $200 \mathrm{k} . \mathrm{p} . \mathrm{h}$., which delighted the lialian crowd, who were also entertained by a jet stunt model in the between-round periods. Further entertainment occurred when the jet motor cut whilst the medel was inverted, whereupon a

Top lef, a rirm at tho lime feat pif fraturing Jmarhalio

 bachitroumf. Photas on oppoatse gaiges Top, tha vieroriaus
 Tamm Mfamaner Ifuificm is atanding on Infl. (1) Farnando
 erquently foumt to br atofferink fromb a crached crenticates.
 model. (5) Cirlini on lefi holding niudel teldh engiat alaigney
 Eurape had peraistemt cronble and folled to retmra a acore. (5) Aminto Prad on ritht analeted by Marmill, both fram Hologna, elarting the esperimental Super There monder ahown in photo (4). (7) Jaanhmalnen of Finlamil an lof trith yet

 amaller ihan she IIJJ S amd has differmiora in dir reat

foolish, but well meaning latian cuughe it on the glide, to relinepuish it allbeit hastily when his hand closed upon the redthot tail pipe!

Once "gain is was the turn of "Mistair Cicebs" as the announcer called him. Complete with entourage of phwtographers, oflictals, 'ete Wright his helper, and a somewhat harrassed louking Eddic Cush, who discovered that being tean manaker to the man with the fastear model, provided additional beadaches. Sison we ware listeming to the delightful howl imparted by the Curter enmine us it reaches the 17,000 revs. per minute mark, and "(iadget" was kicking the circle marker number out of has way as he struggled io keep pace with the model. As the run concluded, with "(jalgen" tottering on has hoels, came the announcement, "206 k.p.h. Inghilerre Civebs!" Wedl this was identical sith the lirst blight and still another round to go for possible improvernent, not that any of as expected it.

The aternoon wore on with Alght lollowing flight Battlo lanally got going and showed more of his true form with a speed of 195 k.p.h., which placed him third behanad Cotlini at the ents of the second round. As the light began to fait a brecze sprang up, which cooled the air and puinted to the pussibility of fasfer times, Smejkal of Cezechslovakia, quickly displaced Hatho from thard position with a fine run of 196 s.p.h. whilst Cellim tried in vain to close the $6 \mathrm{k} . \mathrm{p} \cdot \mathrm{h}$. Has sepprated him from Gibbs, Out came the macstro once more to set the xeal on his already breathtahing perfommaree, and what a finale he provided, and what a tribute to the genius of Ered Carter. We could hardly believe our eurs-". ${ }^{\text {Distair Gecbs } 211 \text { k.n.h." In linglish }}$ rerms this is 131 m.p.h. in increase of $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. On the fastest time recorded at last year's champianships. Truly a tremendous achievernens.

But we were not tinished with our thrills for Vitkovics of IHungary, whohad shown no promise in earlier rounds, came out of the blue (or to be more exact, out of the black, fur it was ulinost dark) to make a splundid effort of 205 k .p.h., thus taking secnend place.

Then ss if for ins encore "Giadget" decided to attempt a World Record, changing to thinner lines in his ejuest for extra sped. Wie must confess that during the run we could not see "Giddget" himself, never mind the model, but apparently the timekeepers were satisfied as they secorded an identical 16 seconds, giving tho astonishing speed of 225 k.p.h., which is being submited so the F.A.I. as a new world record.

INDIYIDUAL RESULTS

1956 WORLII IT? (LLIIIER (IIIIIIPIOISHIPS

 urafrhard bey uffiriad photographern and' athor complitmon aunches flob Aemoris modet en Ire fateful fifth
 dsnughar apoileal o ran of frame maxi

the enntrat

Whit.st thb final. pounds of the speed contest were in progress the British glider tean, comprosing Messers. Amor, [soxall, Willis and Roberes, in compary with compettors from sixtern other mations, were out test fying on Peretoln airtiekt. This is barh the civil and military acroderme serving l-lurence and a few full size nircraft came in and out durmu the run of the mectung Isaac Jacolie the sole larate competion had an unfortunate experience in this reapect, when his reserve model landed on the runway at the same tume as n Alocchi lightplane, to be rurn over and reduced en mathwood. 'This was, however, the only casualty of test Hyong as conditsons were uleal and crishes altonst non-existent.
Processing that wening, supposedly to start at \& p.m centually commenced some two hours later. Firstly there was a shortage of processors whn, secondly, arywed without the necessary equipment. Hud the competitors themselves not taken a hand the organisers would have still been processing a week later, as at was it combmued until the early hours of the next day. '1'he one bright spot was the system of using small waterslide transfers for processimg marks instead of the time-honoured rubleer stamp.

13y now we were acclimatised to the lack of organisation so when we arrived at the aisticld bright and early the next morning it was mo surprise to be barred from entry, this in spite of an olficial pass! However, wath this lietle difficulty exembally overcome we took stock of our surroundings.

It was hut, inf fact very hot, with no sind to speak of, and we noted that the mumntains which tlanked the parched-looking nirfield on the north side were almost obscured hy haze. 'lo we Britushers such intense heat would nomally hase meant whak hing geteat thermals, but net in lati: Firnm the behaviour of the firss few modela launched it was obvious shat minature thermals, probably anly a few fert in dumbter, were scattered over
the entre field. Most of them ware too weak to give any useful ussistance, but if the Hight purh of n model coincided with several of these buby bubliles, then a maximum was assured. If was interesting to make that some of the experienced Continental tlyers used a wandering form of yim anstead of the mormal tight circle normally' employed in this country.

Roberts was the tirse of nur lads away, but managed only $1: \$ 5$ with a model that was completely unsuitable for the prevailing conditions. 'This was an ironic sifuatian when ont considers that the self-same laynut placed him top in our "T'rials, which were, of course, beld in rain und half a gale. Then Fired Ioxall launched and the model sank quickly in a downdraught to barely shoulder height only to pick up one of the hahy risers and lly on for 3:1. Fred was not without cumpany for in this first round there were 20 maximums which included his team mate Pols Amor.
'Jouring the varoous take-off areas we thet many old friends including last year's winner Rudi Lindner of Germany llying his 1955 reserve model slightly modified in the way of increased span. What a virtuoso of tho towlane he is. We watched him ranning fantastic distances upwind, never so much as glancing over his shoulder and controlling the meslel entirely by the feel of the line, Other famous participants were the Hansen "twins" from Denmark, Ilams and Borge, both with havouls employing dihedralled talphanes which appear to he a current wgue amnngst Danish models.

Atso encountered was a Belgian modeller, Meas, whom we had not seen since the days of liaton Bray Internatimal Week, and we phomsraphed as a curiosiry the somewhat antiçusted model luhd by his compatriot l3rems-al model we were ta becomm more acquainted with at a later wage in the contest.

A lunch break followed the ending of Round "Two, and whilst this wus in progress came a change in weather.

Left,$~ H a r g e ~$ Manarm of tramarh who plarral fourth. Nore pant cype fucrlogn. diheilealied tollplane ond rluaw rih njmar.
ifog an wimg
Nisht, the cicforiwna Citech trum with tram manager Emil Braumer an lefr. Mruifin ahnue a refreahing direr. aity of alcajpn and were extrenty wrll flawn

A wand blew up from the south bringing with it lurger and more pronounced thermals. Inevitably it also produced bigger and better downdraughts, but even so conditions had improved, for wo enjoyed 25 maximumb in the third round which followed.

Willis of Great Britain caught a beautiful riser, the madel landing in a transformer station at the foot of the mountains. Amor, on whom Hritish hopes wero now centred, was away after an excellent launch and the model was high up almost overherd when it D.T.'d exactly on the 3 -minute mark-which is precision flying if ever there was. l'red Boxall also managed another maximum, aldhough throughout the contert his model wat trimmed much too close to the stall for our liking.
"There were no unusunlly new design trende to be seen around the field, such as the reed grass Wakefields seen in Sweden this ycur. 'The Russians were not participating and the Yugoslave were also conspicuous by their absence. Some of the Hungarian models had built-up tissuc-coverod furelages which is unusual on A/2's these days. The Czach models were nicely built, varied extensively in deaign and had that well-used look about them. Just how well they were flown can be judged from the final results and says much for the Czech system of putting thers leams through extensive iraining prior to these intemational events. The Italinns, believe it or not, held their team trials the day before the contest | Bringing fourtern flyers from all over lealy, and using the remaining men for proxies after they had selected the four team members. The proxy flyers in general did a good
job, young Zuancili flyng for Wheeler of New Zadand having three maximums at the end of round three, the unly man herides Amur in this position.

British hopes were high after Bob Amor scored a founh impeccable maximum. Flushed with our success in the Speed Contest, and knowing after Zuanelli boobed on his fourth, that no other comperitor had more than threo naximums wo felt Bob's position was unassailable and were already looking forward confidenty to n double Hritish victory:

Most of the well-placed flyers were obviously going to fly early in the fifth round and wo followed lorgo Hassen oue to tho take-off area with Bob Amor and helpers following clowo behind. Hansen moved over towards the runway for his launch as he obviously thought that it would be giving off some of the heat absorbed during the day into the now cooling air. Aftet catching a litte lift he found a strong downdraught for a time of only $1: 59$. In a someshat tense atmosphere Bob Amor had hunched a few seconds behind I lansen and released overhead in copybook fashion. 'lhis we thought is in the bag, forgetting for a moment lie old maxim "there's many a slip twixt cup and lip."
There must havo been the granddaddv of all Ciremilins hovering up there, for the model sank like a none so record only $1: 55$. We thought that Bob Amor took this crushing elisapmointment very well indeed, for it is no easy lask to keep smiling when, at your first international contest, almost certain victory is snatched away at the very last moment.

Now, of course, it was anybody's contest and with the absence of a scoreboard a great number of us were running around trying to find aut whose! Both Thomann of Switzerland and Kalen of Siweden had inaximums in this laxt round having suffered during the dead weather perionl carlier in tho doy. In a contest with so many arresting models and modelless one could still single these two out as possitle wimers. such was the standard of their tlying and the construction of their machines. We also knew thut the Czeds were fairly well placed anct on the times achieved by the end of the fourth round it was still possible for men down to the 11 th position to win the contest.

Finally it wus knewn that Brems of Belyium was the lucky man alehough contirmation of the top positions was not hnown until the following day. 'I'o ind to the' confusion there wero a number of complaints athout mancournte time-kocping, many of which were to our knowledge justified. 'This was one of the penalties fire not

Photon an appoaite page: (1) I-ppert of firtindav tunarhpafor his comopatriot Fupmentorf whe plareit ISth. (2) tien of lisaly. woll-known Hahajield flyer. tean pirasty for Hiajihama of
 (3) Aaberifn of Mrnaro had ususual masiel and unusuni

 rip on a tristeming derifer. (5) Ponm of Fivinf, fraty, inn rifht.

 fur proxy fluer Sumern Alying far Dun Marhemain of Cinnnda.

 wina mads front 1 mum. balad with cambination ply rifin.
 and purpmarfat 1/2

(9) Zmanwhi flow thia
ahoremozeal job fis -harrinozeal jobb fise Zratund aroring throe
matrimurns in iñ Proces. (4) Rolerr of -takiadrirer wreli flowen intw 12ih poritione(5) Sichnabel of Siwh. servieif abound werpint
 Thrisulhnaif tha mermi.
 ran be sear in thil sierure

(6) "Ting" Fiatin of Melgiam, helininge mootrl. chat, with inanti minnaiger Cinatern hiopprna. whant intertiod! ($\overline{\text { j }}$ Mearing a ron: abiforabile Hiternesas to his famesto trother Oorne, Riari Cispa of Amatrla holda aln i his sheot of farael showed a high atandert of rametrustiun. Mownt hait hardwruad bussm, brarrul with
ply al rrek poini, and a hotso
 1912, with drnapmed trailling rilpe and ithe tail wapd a thin Cilark F. Note formard fin

using trained timekecpers, or better still a recorder who checks all watches.

All in all it was not a very satisfactory contest, certainly the best machine did nut win. By saying this we do not deropate friend lirems fine pertormance. Ilis model was well trimmed and flow n with great cunsistency, and in cave we should be accused of sour graper in view of the British disappointment, let ts hasten to add thos there were far betier modela than Bah Amor'a in attendance. A s a model design the wonning machine tork us back many years and the construction and finish mado a mockery of the many heautiful models that participated, so much so that well known llyers could lie seen to wince when they come up to congramate the winner and caught sight of his machine.

Howewer, it takey all sorts to make a world and all kinds of model to make th contert. Who known? liriend Brems may have started a new teend in $A / 2$ design and we may yet have to eat our words.
 gififer which in shin plature is lacking theming trarea

WING AREA $424.8 a^{\prime \prime}$
TAIL AREA $100 a^{\circ}$

（1）Stmralichin tamnching fise Piosa of tiafo． （1）Spaina of E：apchaaloumkia no Irfl，witik

 －ighth．（3）Laimilner indlwshre ratn bevern in

 rumbel flamen by Zoultiorai nf hady brelomged tes A Areipf of New Kralamil．Noif riane fith spacinn enal idrs finn．（5）Noat tonking tromm filanagur or thould ice nay manamercela tena
 Sumblen，Her hemband liergo uran barcalinh
 fo prarm amil qulei of inifplampn．miakimp onm oniry en the nimme of tian．hrourl iren tia forfanoirty cerse phocarty piared．（i）strifs

 Armaifi JJegra．All af iham arem rn he limikiaf as difiterens marlole ar a gran hrinhal

TEAM RESLLTS

1.			\ldots	Poinis	2180
2.	SWEDIN	．．．	．．．	＊	2293
3.			＊＊	．	221］
4.	11t：scishy	\ldots	．．．	＊	2211
5.		．．．	（．）	＂	2205
6.	DKNMARK	\cdots	．．．	＂	2201
7.	N上W ZFALAND	\ldots	．．．	．	2165
8.	GERNANY	\cdots	\cdots	＂	2160
9.	GRFIX HRITAIN	．．．	．．．	．	2071
10.	FRASCH；	\ldots	\ldots	－	2060
11.	CANADA	．．．	．．．	．	2050
12.	HOILIAND	．．．	．．．	－	1093
13.	1＇IAt，	．．．	＊	＂	1034
14.	\＄A＞AN	．．．	．．．	－	1807
15.	ALS＇IRLS	．．．	．．＇		1730
16.	U．S．A．．．．－．．	＊＊	－	＊＊	1683

883

INDIMIDLAI．HBSLJTS

HELCB1E：M	145	$\frac{780}{}$	180	180	5_{168}^{5}	Tots 85
CiHIAT HRIT AIN	189	180	180	180	108	853
	139	142	180		115	835
DEN入入AKK	180	1180	180	180 180	1811	821
Stkplink	27	\％ 10	180	180	110	819
	155	132	10	187	180	817
（：AN：H1）	81	180	180	167	180	814
CZ\＃THINBIGVAEIA	177	138	142		189	791
Sublul	\＄6	180	180	181	152	789
CREC1H）AI，OYAKIA	148	181）	180	157	tso	783
	142	1815	125	18.1	N40	777
IIUX（inky	tho	47	125	16！ 1811	169	776
（3lkNMNY	180	14%	180	1811	16）	770
リドN゙囚1』ド	76	180	（8）	181	157	765
	180	180	180	187	141	757
\｜ 1 （J．LANL	102	181）	180	111	102	757
GERSMRY	180	185	1 lal	137	177	752
16ANCF，	1211		18／1	114	IIT	746
11LNGNMY	184	18 t	INI	173	$14 \geq$	45
\＆SUTVAEMI．AND	152	180	118	$16 \frac{3}{5}$	122	7 \％
112？CSARY	181	8	145	105	14\％	¢2\％
1TMLY	74	1811	1811	1×4	16t	111
NEW ZEAIAND	143	18．	181	44	178	711
	1815	18\％	${ }^{611}$	150］	I ${ }_{\text {H }}$	717
ALSIHJ」	1 ml	158	17.3	80\％	t2	714
NWW KEALANI）	［511	Ni	118	180	130	203
JAPAN	181	R．	1 18\％	18.	in？	7＋1
SWEDPE	1811	16%	180	111	111	605
HFLく！心夊1	64.	183	611	1811	195	593
101．AN	$1)$	1811	$181)$	131	141	680
＊iNIT「\％EN［のNI）	101）	－$\times 1$	181）	67	111	（19\％
N10NATO	1811	1381	H1	180	1891	$\mathrm{fin4}^{4}$
（	10 \％	\％	18	65	Vit	fiot
	trol	84	180	134	1317	1，65
TRECOTM	UT	6）	Ixil	76	175	thos
1－ HANCE $^{\text {a }}$	126	8	181	189	1511	6， 5 ？
FRANCE	190	da	1837	1 md	11 fs	659
CRRMANY	1\％ता		197	180	126	$6 \$ 6$
ITMH，Y	14\％	36	10.4	1 fl	1 ht	（19\％9
US．l．	17	134	1 mb	景	11 ！	035
LSENANK	180	47	181	189	161	8， 111
1＇CALY	1801	114	1884	31	135	0.25
1SRAFL	194	163	18	1 nf	135	8418
JAHAN	1181	1 B	104	－	1431	fats
CANAISA	1 10n	85	59	88	170	595
Sw＇ITZEIRT．NND	10		50	18 m	Ifer	504
G思RAMSV＇	104	10	1 ha	116	141	$51 / 0$
［15	171		18	fer	15：\％	574
GRRAT JRITAIN	IT\％	100	1 NB	91	11.	571
GREAT HRITALN	105	J01	1818	54	107	571
			124	123	1103	111

Build Bob Amor's World Cbampionship class A/2 that

13OU AMOR's 1DEA of the ideal $\mathrm{A} / 2$ layout is Geof Lefever's "Altair" described in our September, 1955, issuc. Geof and 13ob, by the way, are aeromodelling pals so it is quite natural that "Lucifer" follows the design trend of the now famous "Altair". 'I'he idea was to retain the good towing characteristics and reliable performance and at the same time improve the actual sinking speed of the model. To do this, fuselage size was reduced to an absolute minimum and as amooth an entry as possible was oblained. The thin Benedek 6356b section was ernpluyed on the wing and the chord increased to make it more etticient. Final result is a model which does in fact go up on the line very well, providing it is not towed too slowly to start with, and the sinking speed is about the best of any model Bob has made so far. Nommal trim is a fairly tight left circle,
this of course, is essential for competition in windy weather, for the purpose of remaining in sight.

At the World Championships in Florence, the air was very hot and dry and almost dead calm. The only alteration to the trim was to open the circle progresaively on two or three test llights previous to the consest, until the model was just trimming off the stall and executing about 100 ft . diameter circles. Thermals werc weak and patchy, but the model made the most of what lift there was.

Trimming should present no difficulty to any experienced modeller, providing the wing incidence, centre of gravity and tow hook position are correct. If any warps develop when the structure is doped, these should be carefully remnved before ateompting to test fly. Make gradual adjustments to the auto rudder as it is quite sensitive on the turn trim.

FULL SIZE COPIES OF THIS I/S SCALE REPRODUCTION ARE AVAILABLE PRICE G/= POST FREE FROM AEROMODELLER PLANS SERVICE-

Consfartion

The wings are straightforward exeept for the joining dowels. f'apus tubes are wound on the dowels and then cut in half although left in position. After the leading edges of the wings have been sheeted they are put together on the building board and the remainder of the fup wing sheeting added all in one piece. The wing is then tutned over as a whole and the ribs are cut into from the underside and the paper tubes with the dowels inside are firmly cennented into position. The sheeting to the underside is added and when completely dry, the two wings are parted by cutting through the sheet. A strip of two-inch wide bandage is cemented round ench wing row before covering to strengthen up the whole assembly. 'Tle tailplane and fin should be made as light as possible.

Fuselage construction is very simple, but the sheet for the boom should be carefully selected for strength without being too heary and eare must be taken to get the hoom absolutely straight. The lead ballast should be cast in a box made of scrap balsa, and when the bex has been removed, make it a force fit in the plywond keel.

Cover the model in lightweight Modelspan and dope with glider dope, two coats for the tailplane and lin. liinish the fuselage with repeated coats of thin coloured dope, sunding berween each one until a high gloss finish is obtained.

Trade Notes

Compass Mmitris

 hit far srartime Lamegetre includen monfifed ranopips, profited parte. flan and asherarceanuriea

FIRST, EROM THE red face depariment corrections of two erlurs in the December featare for whach we dulv npolisgise. Burlders of the Contest kits Cwlypmo should be warned that this design in not suilable for the 4 M 25 an we mentioned it Was apecifically for ensines of A\$1.10 caltire Secemelly. the plathe model fiatiker Hfanter hy J. \&ic L.. Ranclall Letd., retaila al 12s. 11d. and mat 12 m . Am
C'nminuing on the plastic theme, sun new yeniev of propeliequ are anrounred thut mentis and a chard will the shorily fiallowing: from ansther, enticely new eource. First froms Kell Kraft we have tested the 8 x f hoth impset puopeller. in silver pulastie. which ectuly at the pemarkahly low tizure of 18. 34 , o $x+$ and 7×4 aizes are to follow it simtilar commeritive pricen, these props. ere flemble to a denree, but nor Puntireakotle" like the famuus 'I'rullex ranke, but who can complant at sucha price? like the Frog renke, the Keil Kraft progellere tive hollowed huls, which make for easy mouldinge end wtenter hub strengtls with mimumised possilahty of hidden ait bulblea and root fraciures.

New Fros pange staris winh most -reraclive 5 צb, spectally tor consrol lime ant perfect for amill devign such as A H.S. Cesshes 310. 'these are in hish impact bolybityenc and nylon at prices ranging from Md and In. Ged anmaris. Contmumy fieme uill be 6×6 aml 7×4.

Woculen propm. whill hase a keen following and the externive ranke matmiactures by P.A.W. fram 5×3 up ta $14 \times$ includinit a pusher 7×5. reltaina mopular. Loth in thu country athd overweas, the majority

Frow $5 \leq 6$ prop, Hime X.Y. I rahen and Lan Pugrn Sinemisip kitum arn

Frog foritn 16 is a fine mburt flim at St. frit, beion is port of thm matomader Trumat profil ranges

of compelifion fiem preter tu tuse a wooden prop: 蚂 they do have the ellae over the plastics for ultimace ellivicress. tve are fleqmed to ste that [*.A. 84 . Trucut surecrewe
 diameter and in fiart, there ate asa lexy tham nime difierent pitchea avaliable in $7=1 \mathrm{~m}$.
 and $8-1 \mathrm{n}$. dismeters which refal ut
Iavourable fiume of 1 s .11 d . earh.

Campass Models manulacrured by (i. P, गsmon of Kims siticer. Southport ent along an example of their larger solid moded ranke, tor the tinnesster, which relals complete with all canapy monldume, cramsters and caretully trummed and profiled blacks far 14a. [\%l. The anly mantprofiled irem in thar hit is the wire for the undercamiadea and a Pallwherl. The ranme includea a wide aclectuon ol W, W, il tysen with prices from 2g. ©d, upusrala, all 10 $1 / 72 \mathrm{~ms}$ scale.
Electronic Developments will go drwn in moxkling hiseory an being the first mannfacumers in thas country io stimetel - I'ransiator recelver kixawn un Tranaitrol. sclling at Co 6a. tul, including tax. dis NFGi valve in uad es a depector in a luw
current enresif and increascal salve life in clation, cougled whit all mismatakez of a
 woth simplicifs and verv Jow rerctur baticry size and wrighta. 'The inue is enrirely enciosed in a platisc liex., lasting a sepurate multi min plug for lyttery commectume. Wieh a currert chamer trom 3 Sla, flyang. up to d Ad. it woll sumat lw tursyanselt as a very papular anal teliable kx.
Coincilent wilh sham announceracor by F.1). comes a newe thasts from Iflve Ladi. who have recently insoluced two comnoments spesifwally inferded for une ifs atable and lank lific radin coniral cirewits, available from Imenury lar, 1957,
One is © sulinammature direcely lveated hard valve, hasump a cross section of only mbutut 10 mm . by 8 mirn. and an averall lengeth of blout 38 mm . It is m tadio frequency valve, mustable for operation in the orthodox fyoes of wuper-pistencrative circuit. It had filament cuzrenil of only 50 N13. of 1.25 v . and it will operate faltefactorly from an it T. elnpply of 10 s .
Ilve is pe number is Nsidand she retal proce iv anly 13 s . tod. ean gikis 2a. Yd. purchase tax. 'The mecond tyje is a new. very umall jumotion itaneswtur. particularly surtable for 'l. amplification it radio contiul circuiss. 'This small tranamers has - retal price of only $\{8 \mathrm{~s}$. O4, plus 3a, 8d.

Headera ownini F.C.C Telecommander radio control cquiprient should neste that the Conipany minufacturing asme is mo longer ifading. "I'he promises ot Hury llouse, Kuiglip, gre chosed arnl equipisen fop servermo or repene shumbla te sent to Mr. (iencup Ibyvir of 7 IJavidman Road, 'Hourpe, Norwich.

Humber Oil Company Jimited annomece the introduction of an entirely new form of paint pack. "This contains six intermistithle coloury of lumbrol dre Bid ensmel. packed in a cellopliane packet with full instructiona and directione far use on the cover. 'the painte are eupmert for plastic kir models and will retail at is. 3d.
Visationg the new Daviey Chariton Ialca of-Wan factary recently, we lound all their sopular ranke of ertpunce in full terile production and underviumd 1 hat ghew butituff 2.5e.c. diesel will he slong very ohortly. They are sleo wirhing on sew I e, c. engome, explecially for the nuvices, which is lueng deaikned for easy etarting.

Alen cornfertialis esortited in sed sew factory at Wieat Minerley, are Merssm. Fifectonic Deselopmenes, whon mre shortiv producing u new 1.5 cc . Wioth lwin ball raceat armi tear recel induction. Yist another project in a new verston of the famous
 up on the "urfent mudel.

Neи Jrom Hrill im Tis Tisum paste
 flambrel art oit yrems from piantiea

Closter Javelin

by G. A. G. COX

Concesied as a project in 1948, first test Hown in 1952, and accepted for Squadron service in 1956, Gloster's Javelin has had more than its share of unwarranted criticism. Despite the tardy How of progress from design board to R.A.F. runways, the Javelin stands as one of the World's most efficient all-weather fighters, and as a gun platform for its four 30 mm . Aden cannon, or future guided missiles, it ranks as Briznin's foremost night fighter. One Squadron which has been responsible for "working up" the Javelin in service trials is number 46, based at Odiham in Hants, and it is due to the kind co-operation of the Commanding Officer and Air Ministry, that we are able to present the detailed plans overleaf.

With twin Armstrong Siddeley Sapphires of $8,300 \mathrm{lbs}$. thrust npiece, the high thrustiweight ratio endows it with a short take-off and a very rapid rate of elimh to heights in excess of 50,000 feer, where it is possible to cruise at high mach. numbers. During the climb, cockpit pressure and temperature is automatically controlled, while the extensive array of search radar and other navigationnl equipment enables earliest possible interception of any intruding aircraft. In test excrcises, notably "Operation Bewarc", Javelins made interceptions of high flying Canberras more than 100 miles from the Britigh coast.

In its nriginal form, as a project for the Metropolitan Vickers F. 9 turbojet, which became the Sapphire, the Javelin was an extremely handsome
delta which might have carried four or six 3.7 or 4.5 in . recoil-less guns. The prototype was not equipped for this armament and more conventional cannon were fitted eventually to the 3rd protorype. In competition with the D. 11.110 it gained a valuable M.o.s. contract, and after a lengthy series of development tests, the first of several major modifications was revealed in 1952. 'I'his involved a change in wingtip form, reducing effective sweephack and providing better wing life throughout the speed range. Cockpit canopies, nose radome and tail fairing shapes have each in turn been sulbject \&o design changes, while a completely new variant with thinner wing and powered by two Mristol Olympus engines with "still more adyanced electronic and guided weapons system" was started as a development batch of 18: but eventually axed from the M.o.S. prugramme.

46 Squadron has the Javelin F.A.W. Mk.1, and it is presumed that the second Squadron to be equipped, No. 29, wilt also have this version. The F.A.W. Mk. 4 is distinguished by its allflying tail with geared clevator and an aileron trailing edge thickness of 2 in . for greater effectiveness. Almost identical is the F.A.W. Mk. 7, which has provision for streamline missile carrying fairings and larger jet intakes and effluxes. Completely revised is the T. 3 version and its 60 ft . 2 in. fusclage, which imparts a more slender appearance despite the humped cockpit canopy as seen below. Dimensions of the F.A.W. Mk. 1 are: Span, 52 fr ., length. 67 ft . and height, 17 ft .1 in .
brimk refuellod ai
Cdihami mato
eperinl lentiert
painied moneldafla

> an fia (AERO. MODEIIIER phatal. Liafit the protoiypar T.I Trabmer, wit iafler rannoy anal fongap fumplage. Ifulige ot lide is a formard riputher períncope fur the dmalrucfor. (Huasalf Aslams phof(s)
> Sen paden 4 or dranimy

World

Canadian modellers have a reputation for forthright comment, and quite what they will say to the ' 56 F.A.l. Models Commission derision for next ycar's programme and power model specitications, we shudder to think. Certainly the Montreal M.l.C. went to town through its regular newsletter in condernning the propasal that $1 \cdot 5 \mathrm{c} . \mathrm{c}$. should be the new mutor size for Internats., and they'll he reliewed to see that this proposal did not go through. In the same newsletter, under the heading of "That Motor", the AM. 10 diesel gets a hoost from Cansdian Dave Thurber of Ottana, who says, "This is one flat-out, evermore, living 130:11", which is a compliment one cannot overlook. He advises an 8×3 or $7 \times+$ prop for free llight. Lastern Canada had its first open mevting on September 16 h (all events completely unrestricted) at Gananoque and drew the greatest turnout of spectators and contestants ever seen in that part of the country. Sorjo Ranta had a field day by taking 1st in Rubber (8:59) and Chuck Glider (3 ; 24) with a 2 nd in power and 7th in Cilider. Sarge's power model had a McCoy (19, while the winner, Howard Day, used a MeCoy 29 , which just goes to show how' a little 'un can compete on cven terms with the giants when no restrictions apply.

Outstanding news from the U.S.A. is that the Nordic A/1 class is officially adopted as the "limited" glider size. Correspondents tell us that it was largely due to an Aeromodeller feature that the $A / 1$ came to the attention of American enthusi-asts-good show! A new outright duration record of 34 hours, 34 minutes has lseen set by a four-man team, a Kenhi Cougar, a Johnson 35, and about fifteen gallums of Ohisson "Gold Seal" fuel. "They had a few false starts (one began at 2 a.m. and was halted by the police following noise complaints) and had so tly through n storm and strong winds to set this marathon figure. Southern California must have been relieved when the controliner finally came to earth.

An International contest that could not be supported as well as it descrves, because of financial conmitments in most countries, was the 1956 Europakritcrium, to give it a Swiss-German title, for the Yugoslavien cup. Held at Subbotica, close to the ILungarian border, it offered a direct comparison of Sovict modelling performance with some of the best power hiers from Switzerland and Yugoslavia, and ended in a tied victory for Vladimir Perukov of the U.S.S.R. and Josef Kun of Hungary, with five maximums and a lly-off tinte of $5: 27$.

Remembering that Ron Draper's fly-olf time was $5: 20$ in the World Championships at Cranficld

[^0] lars Lumirll if Bromina from Japonrer plona. Jizmelage ls pine

these durations afford interesting comparison, made all the more fascinating by the fact that Limil Eresi of the hosi country was fth with 1t: 13 secs., while at Cranfield he held the same position with It: 57. Third place man was Ezven Kucerov, Russian smaestre of the ulira long fusclage. Best of the ('zechs was Vladimir [lajet at Geh wirh $13: 50$, and top Swiss was Rublolf Sdunker (11:10). Toam victory went to the Russian centingent, so surely this should mean participation of the Messeow men at the '58 Whorld Power Championships.

It was blowing a gate, as usual, on September loth in Denmark. Bur this did nus deter the Gilider, Wakefield and R C boys from llying, and sume of the hardy Swedes cance across the water from Salmo, all to compete for the Snuth \%ealand Cup. Full results are not guoted, radio being a victory for Jan llacke and his three clannel control Jazrhones. A month later, on October 14th, the Colmgne club in Germany were hoses to R.A.F. Wahn and Dusseldorl' for a triangular matel. 'The R.A.1. lads did not do tow badly for the old country: llying to 7 th place in $A!2$ and 10 th in power, and they returned to camp with bags of goodwill and a couple of bothles of wine thrown in for good measure.

Jarry-Desloges is now firmly established as the speed king of France, now that he has won all the three classes at the French National speed contests, and moreover, with engines of his own design and manufacture. He works at SNECMA, she aviation engine factory which has produced a number of fine power plants for full-size aircraft, and doubtless this has helped considerably in the production of his remarkable long shaft $2 \cdot 5,5$ and 10 cec. engines. There are many who say that if only Jarry would add a little wing ared to his models, he would pive the topliners something to think about.

[^1]Engine Analysis No. 29 the TAIFUN HURRIKAN 1.48
as 1,500 to 2,000 r.p.m. It is not a case of better scavenging with the slipstream playing on the cylinder since there is so loss of speed running anti-clockwise if the eylinder is fully shielded. 'Thus for "pusher" application, the "Hurrikan" would appear to suffer an inevitable power loss, unlike other reed-induction motors.

The "Hurrikun" has a fair "bite" when hand starting with the smaller propeller sizes and is also likely to start backwards unless the propeller is 1lipped quite hard. I Sut starting chameteristics throughout are excellent. 1-inger choking is adequate and, with the compression backed off slightly, starting is virtually instantancous, hot or cold. Both the needle valve and compression setting get progressively more sensitive ns the speed increases, but for normal operating, speeds can be regarded as non-critical. The engine can be "throttled" quite effectively with the compression screw and/or richening the mixture, the former method being the easiest and most positive. It can be throttled back at extreme speeds-e.g., from 20,000 r.p.m. to a matter of some 5,000 r.p.m.-with careful adjustment.

The clack value seals effectively at all speeds (although on two of the engines received, there was a fair amount of blow back through the inductinn pipe, this being due to faulty valves). The

SPECIFICATION
Dimplacement: 1.512 e.c. (.0923 cs . in)
Hore: 507 in .
Stroke: -457 in
Bore/teroke ratio: 1.11
Weight: $3 \cdot 8$ ounces
Mer. power outpus: 1535 B.H.P. all 14,500 r.p.m.
Niar. rorque: 13.4 ounce-inchas at $9.500 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Power rating:-105 B.II.P. per e.e.
tower'weight ratio: '04 B.tI.P. per ounce
Material wpecldcalion:
Crankeasa: light alloy pressupe die casting
Cylinder: liardened steel
Contra-piston: hardened steel
Fiston: cest iron
Connecting rod: dural (machined from molid)
Crankshaft: hardencd steel
Hearines: two ball racea
Cylinder jarket: durnl (anodined green)
Spinner nut and propellef driver: dural
Induction: reed valve
Valve unit: machined from dural
Spray bar: brass
Mfemuforturers:
fohmmer Graupreer.
Kirchham-Veck, Germany.
Note: This pngine in nit imporiad int the Unised Kinedom.
contra piston fit, hot or cold, is excellent-firm, yet smooth and easy to adjust.

The crankease unit is a nice clean dic-casting, carrying substantial and longer-than-usual mounting lugs. Since the engine itself is not excessively long, this means a really good mounting. The bail races, which are a press fit into the crankease, are of lightweight type with the outer rings thinner and wider than commonly employed on lbritish rngines. The balls are thus relatively large and few in number, assembled in a bronze cage.
'Ihe hardened stect crankshaft is 7 mm . dia. (-275 in .) at the rear, strpping down to 5 mm . dian. (197 in.) at the front. The shaft is a very tight fit in the inner rings of the ball races. The propeller driver is forced onto a slight taper on the front of the shaft (- 0 (0) 5 in . taper), ending up against a shallow shoulder to lock the assembly with no fore and aft play. The threaded length of the crnnkshaft is 4.5 mm . D.I.N. standard, actually -178 in . dia., which is just that little bit smaller than 2 BA. We feet that, especially with export in mind, 2 ll A . would have been a much happier choice as 1BA. nut sizes are readily obtainable in most countries, whereas German metric threads are not.

Another criticism here concerns the propeller driver itself. "The boss is machined to $\frac{1}{2}$ in. diameter, which is a prohibitive hole size to Jrill in small propellers to fit. It would have been much better on have reduced this in fin. dia., say or have eliminated it entirely. But both these are minor points. In similar vein, we found thas the commy bar supplied with the engine for tightening the spinner nut was too large in diameter to pass through the hole in the front of the spinner,

The cylinder is a really sturdy picce of work, screwing into the crankcase and scaling against a copper gasket around the bottom edge. This, of course, lengthens the "escape path" of any gas leak, which has to traverse the threaded length
and is better engincering practice than scaling with a gasker at the top of the crankcase unit. 'The manufacturers also believe in assembling their cylinders really tight. Of the specimens tested, we just could not get one
 of them apart.
'The threads on the outside of the cylinder are rather rough, but a good fit. The shreaded upper portion (onto which screws the cylinder jacket) is of reduced diameter.

Porting is quite conventional. Four by-pass ports are machined on the inside of the cylinder, terminating well below the exhausts. The exhaust ports are disposed symmetrically and circumferentially.

T'he contra piston-mentioned eariser as having an "idcal" fit-appears to be of hardened stecl. The piston is of cast iron; quite a solid, heavy affair, with a conical top, but on excellent fit in the eylinder. The connecting rod is machined from bar, big end bearing diameter being 45 mm . (-176 in) and gudgeon pin diameter 3 mm . ($\cdot 118 \mathrm{~m}$.) The latter is rather on the small side, judged by conventional practice. Fits at both ends were excellent.

The cylinder jacket is turned from dural and anodised pale green. The threads fit quite tightly and there was no tendency for the jacket to uno screw during any of the test runs. The compression adjusting screw threads through the top of the jacket, this part being chemically blacked for finish. The spinner nut is anodised the same colous

"Claed" talre indurdion ba n virmet cops of thr L. W. Cax
 af, wher riour far atacmibly
at the cylinder jacket and the rest of the external surfaces remaining as cast (or machined).

The clack valve unit can be detached by unscrewing the hackpinte. The valve head projects quite some waty into the crankease, the recel valve itself being locked in place by a press fitted cap. A side-mounted spray bar has a simgle hole facing inwards into a gronve machined in the intake tube, lassage to the inside of the tube is provided by futer stmull hotes drilled through the
hottom of the grosive. Thus he slackening the filter unit (which asts as a nut to lock the spray har unit in plaee , the needle valve tessembly can be rotated to any convenient position and tightened up in this position. The needle valve itself has a simple wire ratchet for locking the adjustment.

Summarising. the "Hurrikan" is an engine with exemptomally powd power output and consistent ramning over a sped range of below 8,000 r.p.m. to abrive 20,0011 r.p.m., according to load. The generous size of the eylinder walls undoubtedly minimises distortion, which could be a majne reason fur its good behaviour at all speceds. The use of ball races, of course, minimises crankshaft bearing friction and so, as one would expect, the peak speed is somewhat higher than with plain bearing engines of comparable size. The torgue curve is particularly flat und possible power nutput at the upper end could be boosted somewhat by experimenting with diferent fuels so realise its full potentialities as a racing engine.
The general conception of the engine is up to the usual high standard one has come to expect from (ierman productions, hut the "flurrikian" is apt to be badly let down on detsils. Of the three engines examined. two suffered from a badly scating valve, with consequent severe loss of performance; one had a somewhat "chewed up" con. rod machining; and onc, badly cut exhaust ports. The best of the three was free from any major fault and unless closer inspection is maintained, some "Hurrikans" may not come up to the standard set hy this test model. J"inally, whilst commending the manufacturers for including a pair of attractive transfers in the box, we would suggest that these be "handed"-othersise one of these decals will be "13ying backwards" when pat on a modell

What's the Answer?

The Stoneloury Prark Clity members touth Amerwan desugth, kliaratiorimerl by the sigth tharatrimen by the the madels leing on e.d. ©s ohs mokels leene on alge. 'ther local newas prophesiced that with the wite and tailplnte rypued at the same incidence, they wauld casict tugrief. Fivents prowrd ihir latter malit. .lll the silumelsury J'ark mulels. gunmer of latep. ficked sheir nores dewn and dived in, but it lasu leli eseryane purried 28 ra huw thase ofthinul dexigne cond have trenn yuccessululin the first phice:

What would YoU do in a case like this! Think a moment, then iwist this page for the solution to the problem printed below.

ן:

邫Know Your邫Engine

PART 8: COOLING
 Fiantrat, asul mast pmarerful of alt plainaturar. inf S c.r. morors, if Aas am monmomen intake pust, requifpapressurisouf faciampply - can you

Without EXCEPTSON model acpo-engines are designed for air cooling and are seldom critical alout this particular requirement. That is so say they will rum satisfactorily ower a wide rabge of temperature with little difference in performance, provided the "standing" heat is uot so high as to cause diatortion of the cylinder or burn or "Certhonise" the oil in the fucl nixture so that its lubricating propurties are destroyed. High surface speet will also lareak down castor oil, but not Castrol 'M'.

There are three sources of heat eeneration when the engine is running rubbing friction between the moving parts, heat generated by compressing the gas mixture and the heat given out by the mixture when fired. Theoretically, at least, this flame temperature is subject to conling as the gases expand and escape through the exhause, bur the residual heat is still quite high and the overall heming effece promounced.
'Thus in the complete ongine the cylinder, and particularly the top of the piston and upper part of the cylnder, is subject to the most heating.-fig. 1. Friction heat should be tolerably low. Fixcessive friction means bid running fite and these are to be avoided. In the cave of new engines set up on the "right" side, this condition is relieved by running in which is a process of wearing down to size and "fit" under contralled conditions, e.g., not letting the frictional heat become excessive by limiting the speed and duration of the initial runs. 'Thus the friction of a main bearing should

always be low so that the bearing continues to run cool, and thus does not require any particuler form of cooling. If it does run loot on any one posint is is quite likely to burn away the lubricating oil film at this point, increasing local friction (and local heating) still more until partial seizupe can occur. If this condition is suspected when the engine is running. Jousing the ousside of the bearing with a liberal dose of conlant (e.g., pouring fuel never it) will often momentarily relieve the trouble. But the real cure in this case is not improved conling lut H lsetter running tit (ser previous article on tits and tolerances).

Tho eylinder, on the other hond, mormally receives unequal heating. Frictional hear, again, should be quite low und nomally at negligible part of the total hearing effect, provided there is adequale lubricant in the fuel. The practice of relieving the cylinder bore at the bottom part of the stroke to reduce friction is far mote concerned with reducing power losses than with reducing heating.

Thus the cylinder is heated, mainly, by the compression and firing of the fucl mixature the the of the stroke. The top of the eylinder is beated directly by this means whilst the luwer portion receives heat indirectly through conduction of some of this heat through the cylinder walls. "The final heat "envelope" is of the form shown in /'ig. 2 with the top of the cylinder recciving by far the most mount of heatang. And since metals expand on heating to a degree proportional to the temnerature rise, it is fairly obsious that distortion of the cylinder can take place. Such distortion can hove several effects. It can obviously affect the piston-cylinder fit at the top of the stroke, perhaps to a puint where piston friction does become excessive, so resulting in loss of powerand still more heating to make mattery worse. If the temperature reaches the point where the oil itself is carhonised, lubrication with break down and the piston will soon seize. Distortion can also lead to gas leakage, further affecting efficiency, and is a problem which engine designers are always up gatanks. It is more apparent in diesels than in ghow motors, largely because of the higher working pressures and "tighter" piston fits, which is the main reasen why the eylinder liner or cylimier of a diesel is uswally much thicker in the wall and much more robust than that of a glow motor of similar size. 'the faster the engine is made to run the hotter it is likely to get (due to the increased sate of "hent" cycles) and the bigker the protiem. In the end the "best" ensine is usually the one which experiences minimum cylinder disportion and it is significant that some engines wath exceptimal perionmance for theit size- like the A.A. " 10 "-have exceptionally robuse cylinders.

Fortunately only a relatively moderate amount of cooling is necessary to restmin the heat "envelope".

The ideal arrangement is a series of very thin fins formed integral whla the cylinder walls, their individual lengthe corresponding approximately lo the shupe of the aforementioned "hent envelope"-Fig. 3.

American manufacturers commonly do axlopt this method, machining thin fins directly on to the cylinder barrel. British and Comtinental engine design is more or less standardised around the uso of it separate cylinder jacket screwed on to or bolting down against a hardened steel cylinder which becomes, in effect, a sleeve or liner-Fig. 4. It is not practicable to reproduce the jacket as aseries of very fine fins. Equally it is impractical to form finc fins direct on a hardened stel cylinder as these would be extremely brittle and rendily hroken. There is also the point that the c.linder steels used on American engines are not readily available in this country.
'This cylinder jacket is nearly always made from light alloy, to save weight. Aluminium, too, is a very good conductor of heat, so that the whole of the finned ares readily leats, us and dissipates engine heat to the cuoling airstream. 'Ihis more than offsets the inherent disadvanlage that the fins cannot be made so thin, and so closely spaced, as would be possible with stece.

Nearly all alaminium alloys, however, have the charecteristic of selatively high expansion with hear. If the jacket is, at first, a sight fit against the cylinder it will tend on heating up to expand away from the cylinder wails and so deave a Jefinite air gap hetween-Fig. 5.

Air is a very poor conductor of heat and so this gap is effectively a "hest dam" or barrier preventing free transfer of heat from the cylinder to the outer jacket. Thus the cooling effect of the airstream is not readily passed back to the cylinder. The most satisfactory way to minimise this is to make the cylinder jacket a really snug fie to start with. On such a layout, ton, the head nay become the most effective cooling area since it receives

its heat by dircot conduction through the metal-to-metal contact. The problem is not necessarily as serious an would appear, and in fact, most "jackered" cylinders are quite satisfactory from the puint of siew of adequate gir cooling. 'They may, however, show signs of overheating when this cooling airflow is restricted, such as when the majority of the slipstetam is blocked off.

Head cooling seldotn appeary to be critical. A plain, hemispherical shape generally provides adequati cooling areu and where fins are used on the head these are usually chosen primarily from the point of view of appearance. On the other hand, the heads of modern high speed engines do get extremely hot and on diesels it is eenerally to be recommended that in a cowled-in installation there should be an aderpuate passage for airtiow over the head. In the case of klow motors the head may delitherately be unfinned to maintain glow plug heat when in the air (e.g., Dooling and Carter) with cowled-in glow engines no cooling flow over the head should be necessary.

A gasket will act as a "heat barrier" where fitzed under a detachable head to act as a gas seal.-Fig. 6. If the

actual combustion space is distant from the head, as in a diesel, this would probably make the head much cooler without affecting the rumbing of the engine. Un a glow motor where the lame plays directly on the underside of the head the kasket moy play an appreciable pare in determuning the working semperature of the plug. With complete cooling in tlight, i.e., a slipstream all over the engine, the head may be tuo cool if gasketed. If in direct contuct with the cylinder (no gasket) excessive cooling would he offset by a transfer of cylinder heat by conduction.

The unequal expansion gates of light alloys and stecls suithgates against the use of she former material for contra-pistons, although this is quite common prictice on certain Continental engines. 'I'he top portion of the cylinder is nearly the holtest point of the whole engine and so there cxisfs in this region the largest expansion differential. As a consecfuence, as soon os the engine warms up, the light alloy conirn-piston virtually scizes in the cylinder, providing an excellent gas seal but making It extremely diflicult, or evell inpossible, to ndjust the compression setting from that point on. It is usually possible to increase the compression with the contran-

Engine illustrated overleaf is the t'ox $29 R$, holder of a neac U.S.A. sheed record fur the S c.c. class at $148.09 \mathrm{~m} . \mathrm{p}, \mathrm{h}$. Needle value is located for come erience on the crankense hackplate.
piston seized, but it will not blow back on its own if the compression screw is backed off.

The higher rate of expansion common to light alloys also affects choice of this material for pistons, the top of the piston being the finttest gart of the working engine. Where light alloy pistons are employed they are not used to provida a gas seal, so need never rench tho condition of being a "scize" fit. 'Ihe necessary seal is produced by fitting the piston with rings so that the piston itself need only be a relatively slack fit in the cylinder to stnet with. In such cases, too, it is general to use a low-expansion light alloy (a standard "fullsizo" piston alloy).

A number of engines havo been tried with plain aluminiun pistons (and one, the Anerican "Thor", oven had an aluminium cylinder to go with it), but no such combination has worked out successfully in practice. 'There may, however, ho possibilities here in using deep anodised aluminium as anolised light alloy surfaces have been used with considerable success for gears in the engincering world. Thus the use of a plain alurninium piston is not entirely ruled out.

The cooling effect of a propeller slipstreatn under static conditions is somewhat different to that in flight. In the latter case cooling should be much more effective and may even affect engine layout at high speedse.g. the plain head on a glow motor, as mentioned previously. Where the engine is completely cowled in

it should be satisfactory so provide a flow of wir to the depth of the cylinder, and aver the head in the case of a diesel, hut not necessarily so with a glow motorFig. 7. The small amount of heating received by the crankenso should normally be nothing to bother about as this will be dissipared by conduction through the rest of the engine. Crankcase conling can, however, be imporitat on an engine where the bearing is not too yood. Often on engine with a main bearing a latele on tho tight side, or with tight spots, will run much better in the air than "static" because tho bearing is receiving continuous cooling in the former case luut not in the latter.

The out-in-the-open engine will always receive adequate cooling in Hight. The completely cowled-in engine will receive adequate conling provided there is a prod sir entry and exit to the coaling. A failing on some free flight inseallations is to provide an air entry into tho cowting space and the engine may overheat, although this is unlikely on a short run. The main objection is the high drag of such in installation.

Most engines will mun satiafactorily at quite high apeeds for firnited perinds without any cooling at all, other than radiation of heat to the lower anbient iemperature of the surrounding air. On tho Aero-

modeller dynamometer tests, fur example, whero the engino is driving a rotor with no generated air blast or slipstream, cooling is provided by a separate centrifugal blower mounted by tho engine and blowing a constant stream of air over the engine. Without this, the cylinder of the engine on teat will quickly "fry".

Fan bladen incorporated on a flywheel are not a suitable means of providing a cooling airstream for static running unless the engine is properly shrouded so that the airstream is directed up and past the cylinderfig. 9. Otherwise what slipstrems was generated by the flywheel periphery would bo directed only alonk the bearing and crankcasc. Any type of "blower" driven directly by the engine will, of course, absorb power, which means that unleas useful power can be extracted from the engine crankshaft.

Water cooling does not suffer from this limitation and is the logical choice for prolonged static running with no fan-type loads, or for marine installations. Most aircooled engines are readily converted to water cooling by replacing the cylinder jacket with a hollow jacket (usually of brass) through which water can be circulated. Circulation can bo achicved by thermo-syphon action provided the pipes are of generous diameter (usually at least $\frac{1}{d}$ in. boro is required for satisfactory circulation), the main reservoir or water holder also acting as a cooling tank and thus conseantly feeding the cylinder jucket with cooled water-Fig. 10.

The thermo-syphon is particularly aduptahle to aratic running, but marne units usually draw in a supply of water by means of a scomp, under the hull and discharge it overboard again after circulation through the jacket. Thus the engine is fed with a constans stream of onal, fresh water without any mechanical pump being isvolved.

Next month: Silencers.

I

Tur tryajet-powerey Shouting Star on this page had been hanging around the attic in John Claydon's house for more than three yenrs awaitmg a few momele tutuatoms.
diarly last Autumin the model was finally completed aml taken off to an :bbandoned airfield in Eissox to see how it would fly. In photo I Isian Duma and Johnc Claydon are seen pased behind thes handiwork. Soon the S-lb. mode was airhorne ofter 4 total of disly f-lay ($\mathbf{2}$) and estimated airspeed wis around $85 \mathrm{~m} . \mathrm{p}, \mathrm{h}$, but it was noted that after six or seven laps at thicher of flame uppeired oround the rear fuselage and the model was promptly dumped in a crash landing and the pit crew hastily extinguished a minur conflagration :\$. Nof daunted, the flyers put the Shooting star up ance mure for another flighe and again on the sixth lap Hames appeared around the fuselage and the Star was broughr lack ta carth hurriedly. 'I This time matrers were beyond control and althugh there was just time to undo the Dynajet mounting strips, the aifirame could not be soved, for the tire was wetually raging between the ashestos lining insisle the fuselago and the ouner phanking. So the onice beatitul mudel had to burn itself out, 1, but the owners did not appear to be at ull disappointed at their loss als will be seem in pacture 5 .

Although nor al stunt model, the scale Ju.871) in photo fit is diap and elevator controlled and fies on $40-\mathrm{ft}$. lines ar sh sperd berween 50 and 60 m.p.h. It was buill by Vincent Jickienna of the Glasgow Giremans Clula and fittud with a $2 \cdot 4$ (1) Racer diesel. Ife tharks that with is bigger motor he will overcome the "Christmas 'Tree" elrug of the cockpst, radiator and wheel spats and the Sinkia would be capable
2 of aerobatics.

Dick 'Taylor, son of the wollknown Major s . 1). 'I'aylor of s.M.A.F.. fame, made the pusher projectile in picture zand attained the anmaing speed of $45.1 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. which has been the subject of : new S.M.A.E. speed record clam. Kmown as P.1).Q. it is 30 in. long

with a span of 24 in . and has two ounces of 3 -in. rubler driving an 8 -irn. prop. Power run is a few brief seconds and just emuush for the required speed meaxuring distance. We shall he publishing more on this interesting r.t.p. model, including scale plans, in our February issue.

Through club reports we learned during the course of the year that puite by coincilence a number of enthusiasts throughout the country had diseovered that the Creep F.A. 1. power design lios 2.5 c.c. formed an atmirable hasis for a hati-size model, seen m picture ©. Ruiln by J. J. Niller of Xewcassle-upon-l'yne, this is powered by an Allbon Dart and weighs inly $3 \boldsymbol{1}$ oz. for ik 117 sq . inch wing. Span is 27 in and the average duratian of 2 man . 38 sec , is chaimed from a 15 second engime run. 'I'hey must have calm weather in Newcastle!
(i, Oswell, also from Neweatic, is leaving the Olal Country for New Zealand in 1957; bat hefure the gons lue hiss semt ahong photo of to thusteate his approach to Combat Aving-wing design, Dased on an urvicle in the $\$ 955$. Aeromadeller Annual. A series of these have heen built in his club (Vymemsuth M.A.C.) and thoy are $32-\mathrm{im}$. span by 8 -in. chord, weighing approximately is numces with it hatm mounted Fllin 2.49. Aimped is in the regon of $7.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

W's knew the next phrto had to arrive stamer or later and it represents the first scale duster Agricula sulbmitted for this feature. Huilt hy A. W. Evans of Bromley, it is $47-\mathrm{mn}$. span, weighy 27 oz, and is powered by a lirog 150. Instial fight tests show at strong fendency of consecutive Inops, hut we are sure that Mr. Evans will soon rure this minur fault and be flying the Angular Agricultural teroplane at the 1957 Niationals.

Finally, an encourake, for the youngsters in phato 11 whero we see thirteen-year-old Peter Richardson of Istackpool who was awarded the Juniar Chatlenge Trophy in the Stockport Eiapress Glider Contest ant Woodiord last year. Alrendy ther has a collection of cups and certificates, anc we understand that we slaall he hearing emore of his activaties in the future.

Aeromodelling Step-by-Step

TORSION BAR UNDERCARRIAGES

Many proflegind it difficult to appreciate the action of a sorsion bar-possibly because of its technical name-but it is a very simple, and extremely effective. piece of mechanism. It consists of nothing more than a rod or bar of tough, fairly springy meral, like steet, fixed at one end and with the other end free. If a twisting load is applied to the free end of the bar-e.s., by :s "push" or "pull" force on the end of a lever ann atrached to the free end of the bar (1)-this load will be resisted smoothly and progreasively and when the load is removed the lever arm will return to its original position. Any shape of section will exhibit this springlike resistance to twisting. In a circular loar tho twist will take place without any apparent change in section, but a squate or rectangular bar will distort externally Henco a cireular section ia normally employed for simple. torque bars since such a bar can work in a close fittin. housing without jamming.

- Once the action of a torque bar is appreciated, it in easy to see how simple torque bars can be bent from spring wire. That is, the wire is so bent and fusterned that a certain section is acting as a torsion bar, rather than the more usuul method of relying on the cantilever action of a length of wire for springing.

This basic difference is shown in (2) representing a typical monoles undercarriane, fastened to a fusclage and (3) a vistually identical unit, but mounted to give torsion bar springing- With the orthodox meshod of mounting (${ }^{(2)}$) the wire leg has a simple "knee" springings action, plus a certain amount of dexibility in the lex isself. In (3) tho leg is initially fastened to the fuselage by means of a bushing or similor device and taken acros the fuselage before being rigidly anchored to the structure. 'I'hus the entry end of the wire becomes the free end of a torsion bar, the effective torsion bar length being that length of wire across the fuselage to the point where it is first fastened down. The resulting spring action is far smoother than with the other type of springing. The main trouble is in anchoring tho first fitting firmly to the structure so that the "freo" end of the torsion bar length is properly restrained, but it still free to twist or rotate in this fitting. Actually a thread binding will usually do the jols, well coated with centent. The wire will readily break free without damgeng the binding, which then acts like n normal bushing. It is, however, subject to wear by tho twisting of the wite pussing through it

An adaptation of this type of undercarriapo mountung to a typical acale undercarriage for control line modely is shown in (1). Here, cticecively, iwo torsion bar units are involved, one for ench leg, although the whole undercarriage may be bent from a single piece of wire Usual attachment points are the wing spars, although the actual fixed part of the undercartiage wire may luaccommodated in the fuselage.

Each leg, as bent, is thus the lever arm for its respective torsion bar-the wire length $A B$. " A " is the frece end of the torsion bar and " B " the fixed end and to ensure proper freedom of the torsion hars along their length, the section " $A B$ " should run through tubing. This tubing is then bound to the wing spars (or other suitable structural members) to locate the undercurringe securely. 'The ends " A " are the most likely in brenk loose.

The fixed enda "B3" of each torsion bar length are bound to the airframe structure, rogether with the U-shuped central portion of wire. This then resulis in a wery strong, rigid assembly with the legs effectively
sprung. 'The effective springing and the load on the undercartiage wire is far leas than if each leg were rigidly mounted to the structure at point " A ".

In proctice, the same remarks as before about thread binding nfong the wire length "A 13" apply. The torsion bar action will probably be retained once the wire breaks loose from the retaining binding by twisting along its length. It is better, however, to make a definite pivot anchorage, at least at the ends " A ".
When a torsion bar leg is splayed outwards (5) the torsion bar action is effective only as regords true backward deteetion. Any outward deflection is resissed by the normal cantilever spring action of a fixed length of wire. Theoretically, at leasl, a torsion spring could be wound th the top of the leg to take care of outward dellection (this spring loop acting as a torsion spring) as shown in the enlarged sketch. This would not normally be considered a practical answer, however, nor should it be necessary. If the wire dimneter used is prone to splay ourwards, then a simple spreader between the two legs would be a far better solution.

There is no reason why a torsion har cannot be "worked" from both ends, i.e., with the centre of the bur fixed, except for certain practical difficultiea in anchoring the middle section of the bur. Thus the double toraiun bar sketched in ($\mathbf{6}$) can be Iranslated in terms of a practical nosewheed leg. as in the right-hand sketch. The middle section of the bar can readily be anchored, but the outer ends of the tubes may not be so casy to secure ayainst vertical shocks as received in normal landing loads.

An ahernative method is suggested in (7). Here the corsion bar lengths of the undercarriage are pivoted in close fitting metal straps carried round the legs and securely fastened to the front former. The undercarriage is thus mounted on the hotlom edge of the former. The fixed length of wire is then carried back and anchored along its length to a suitable strong member running buck from the front forner.

A further variation is shown in (8). Here the whole undercarringe is bent as a vertical unit, leg " A " crossing leg " B " so that in sido view the respective "fixed" ends are stakgered one wire diameter apart. The horizontal sections of each leg are the effecsive torsion bar lengths and these are pisored by wrapping uraund with a metal sleeve, well soldered.
Provided this sleeved sectinn is mounted underneath the former, the two fixed end lengits " A " and " $B^{\prime \prime}$ can be attached flat to the face of the former. Thus the torsion bar length is slightly askew to the fuselage, which alignment can be corrected at the axle end by raking the two legs to compensate. This particular design has the advantage that any length can be allowed for the fixed ends to get a really sccure anchorage and mounting these to a ply former follows conventionat practice, e.g., thread binding, metal strapping or using " j " bolts. It is also possible to raise the height of the torsion bar section above the bottom line of the fuselage by using a false former attached to the main former, hut finishing at the torsion bar height required, i.e., forming a "step" to clear the torsion bar sleeving. It must be remembered, however, that clearance must then be provided for backward movement of the lega.

Some further possibilities are sketched in (D), where a length of wire is used as the torsion bar - " X " being the fixed end in each case. The deflection of the torsion bar is inversely proportional in the fourth power of the wire diameter-thus doubling the wire diameter makes it sixteen times stiffer in the torsiunal sense. 'Thus to double the "spring" stiffness, only a relatively small increase in torsion bor diameter is required, e.g. possibly the next gauge number up.

In terms of basic theory the torcpue absorbed by any particular propeller should be proportional to (r.p.m.) ${ }^{2}$, so that the performance of any particular propeller should he capable of being expressed in the form.

Torsue (Q)=K N ${ }^{2}$
where k is a constant (enorque coefficient) N r.p.m.
T'a be strictly true torque absorbed will also vary with the density of air and so a more accurate equation is

$$
Q \quad \operatorname{Cq} \sigma N^{1}
$$

where Co is the torque enefficient of the propelter, and σ is the relative air density.
Now unfortanately $\mathrm{C} q$ is very dependent on the geometry of the propeller. Nominally identical propellers may have quite dilferent values of Cq depending on differences in edge forn and thickness, uctual blade section, and so on, so there is one possible souree of error. 'I'he fate that the relative

Propeller-R.P.M. figures

DATA ON TORQUE ABSORPTION FOR THE FROG PLASTIC RANGE

A IIMITATION, common to all engine performance test reports to date, is a lack of co-relation between performance in terms of torgue output and Is.IS.1. and pertormance in rerms of r.p.m., with a given size of propeller. Some reports give forque and [P.II.1'. and no propeller-r.p.m. figures. Others give propelter-r.p.m. figures and no torfue or B.H.' measurements. (Jur owon policy through out has been to give both, but as a general rule derived under somewhat different test conditions. For that reason, and others which will be discussed, aromalies can appear. Engine " A " which, from the B.H.P. curve is seen to be more powerfil than engine " "B" does not give a correspondingly higher r.p.m. figure on a sumoted size of propeller.
air density nay be several per cent. different on two different nccasions for testing is another.

Other possible sources of error are largely concerned with measurement and adjustment-limits of accuracy of the measuring instrument used and in adjusting the enkine itself to optimum settings on a particular load.

Dealing with direct measuremuent first. Liability to crror in r.p.m. measurement can be as high as plus or minus 10 per cent. with a good reed tachometer and up to twice this with a poor onc. "That could mean a matter of 1,500 to $3,(\mathrm{MK}$ r.p.m. at a nominal $\$ 5,000$ r.p.m. In general, errors will be smaller than this but, in any case, recel-type counters are not used for our own hgures. But either of the

 rapten, mind at rinht. tho homard of an Acrsmbo muwhling wih bidde routfailure

ulternative standard types-a tachometer or a stroloscope-are still subject to limitations. The former absorbs a certain amount of power to drive atul therefore gives a slightly low reading. The latter is subject to drift, possibly as much as 5013 r.p.m. either side of a nominal value at times over at relatively shart perind.

Add to this the fact that engine adjustment also plays a significant part. Also, of course, many engines tend to lose speed on warming up and shows a consistent r.p.m. figure lower than might beobtained by measuring straight away after starting.

Try runuing the same engine with the sane propelfer on a really rigid mount and then on a fairly Hexible mount and again you may get a wide difference in the two r.p.m. readings.

Sooner or later, even taking care to reduce reading and adjustment errors to a minimum, nll the "plus" or "minus" errors are going to add up the same way and then you get a big discrepancy, which may well pass unnoticed at the time. Since by far the most difficult part of engine testing is in extracting torque figures corresponding to different speeds, i.e., at different braking loads, one is rather apt to regard the more direct measurement of how fast an engine will drive on particular prop., as more of an afterthought. So at the conclusion of the main test the engine is taken off the dynamometer and clamped on another rig for propelier-r.p.m. figures.

To the engine user, however, the propeller data is prohably of more use than B.H.P. or torque curves and so for a long time it has been appreciated that a reliable tie-up between the two was necessary. By conforming strictly to the use of a selected batch of propellers only and averaging out results over a large number of engine tests it has, finally, been possible in produce a series of curves which show good co-relation with practical results. The possibility of error is still there, of course, and seldom do measured propeller r.p.m. figures obtained on the test show precise agrecment with the calculated figures, but the agreement now secms close enough to warrant publication of the curves. It should be emphasised, of course, that these curves related to a particular individual set of propellers and others of nominally the same size and type may give slightly different results. Curves for a set of standard Frog plastic propellers are the subject of the graph, calculated under conditions appropriate to the present standard torque measurement set-up.

Frour Prop Curves

These curves ploz zorque absorbed by each propeller against r.p.m. and are hased on the simplified equation of torque:- zorque coefficient times (r.p.m.) ${ }^{3}$ and assumes that air density is constant. The use of torque absorbed instead of power absorbed is preferred because torque is the merosured figure on test. 'The corresponding horsepower absurbed is found by
torque (oz.-in.) x r.p.m.

$$
\text { horse power } 1,008,000
$$

or winh sufficient accuracy for most purposes
1.1.1'. tortuce (oz.-in.) x r.p.m. बlizided by 1,000,000
Thus thinking in terms of power, original errors are multiplied by r.p.m. and so exaggerated.

The Frog range of plastic propellers is actually moulded in high impuct Polystyrene, Acetate and Nylon AJ* the former in colsurs (mainly red) and the latter only in natural (translucent creamywhite). These materials are thermoplastic which means that the pirch mangles of the blades can be changed by softening the plastic with gentle heat and twisting. This is an advantage in many practical cases. For example, the standard propeller for the Frog " 50 " is the 6 . x 4 which is a little tos small for optimum performance on a control line model. A marked improvement can yenerally be renlised by resetting the blades to a slightly coarser pitch angle (5 to 6 inches pitch) and, if necessary, frimming the blade diameres slighty. Such treatment provides an "internediate" propeller size to fill the gap at present existing between the 6×4 and the next smallest size in the range (8×5).

The fact that the materials used are themmplastic is also a disadvantage in that the pitch as moulded may be subjected to chance on ageing. In fact the final pirch on any moulded propeller is lasgely dependent on the temperature of the product when initially removed from the mould. 'Thus individual examples do show differences in perfornance in practice, the main offender in the range being the 8×5 which has a somewhat thick blade section. In extreme cases it is possible to find an 8×5 propeller giving almost identical performance to on 8×6, the change nearly always being an increase in effective pitch (and thus in increase in puwer absorbed in driving). Such changes, ton, are rather more marked with the acetate series, than when moulded in nylon.

In the main, however, consistency is guite goord and the curves have been extracted for a representative number of typical samples of the moulded nyton series. As an example of the toughness of nylon propellers, it might be muentioned that in our standard engine tests, even 2.5 and 3.5 c.c. engines are commonly run on the 6×4 nylon propeller when the r.p.in. higure achieved may well go beyond the 20,000 mark and even with the lubb bored nut In take the large sizes of propeller shufts, no failure of a propelles hals yet been experienced.

MOOESLEF

Howard Boys describes his experiment with Delayed Relay Circuits and range checks on various Transmitters

Mr. Herient of Blackburn has been enquiring about delayed relays, and wanted sumse figures for working out she time of delay. There is a formula for working this out from the resistance and capacity, hut a relny also hus inductance, and the writer was unable to find out exactly how to bring this into the working, and in any case the inductance would vary. The only thing to do was to carry out some tests. Different circuits wero rijed, of the type normally used with a rolay in a reed circuit, though using larger condensery to give a measurable time of delay. These are shown in Fitg. 1. The principle used is that of the timo raken for a condenser to charge and discharge through a resistance.

A 'Typhoon relay was used since this has been fuund to be the best of its type the writer has iried, and it was sot to close at 0.8 ma. and open at 0.6 mat. A small 60 -volt battery that was handy was used for Fig. ia and 16 and this gave a current of 2.1 ma , through the relay. with the switch closed. In $1 a$ the reluy closed us soon as the switch was closed, as near ns could be judged, and when the switch was opened there was a delay of about five seconds hefore the relay opened. This was rather more than expected. In 16 conditions were is bit different. When the switch was closed it rook about half a second for the relay so close, and when the switch was onened it took about another half second for the relay to apen. Another test was made using a 10 K ohm resistor and a 22 j -vole batery, giving a current of 1.2 ma . through the relay. This gave smuch the same resulta and increasing the condenser to 75 mifd . gave a proportionately lonser delay in opening and clasing. Fig. If gave immediate closing of the relay with a delayed opening of about $2 \$$ seconds. It should be noted that the voltage rating of the condensers should suit the applied voleuge. Strictly speaking, a lower raling could be used in $1 b$, but the condenser would the destroyed if the relny should be open circuited. The uctual rating used for the tests was 50 for the 50 mfd . this weighing no more than ahout balf an ounce. For the 2.50 mfd a 12 -volt bins condenser was used, which weighed more like 11 ounces. 'Ihese weights are only

Bertil Borhman of Suredea provides an apprapriate seinter avsting with hia R/C Traine which ases an E.D. Eith eve. motor ond E.ID. 3 Reed railio wywipment
approximate and the timing was not 100 per cent. accurate, there beine no proper timing apparatus available, but it does give a reasonable idea of the sort of delay to be expected. The delay could he altered by adjusting the relay to close at a currens value nearer the maximum and open nearer the minimum. Mr. Herbert wanted a relay with delayed closing so that if contact was made only briefly, the reluy would not close, which means using circuit ib.

It is possible to combine wo relays in the one circuit as ghown in Fig. 2. \& will renkain closed with short pulses, bui I. will not close. With lonk pulsex, hoth relays will remain closed. If actuators for left and right ure wired up as shoun, then with short pulses actuator R will be energised, and with Iong pulses actuctor l, will be energised. With no pulse, nenther actuator will be energised, Valuts of resistars and condensers would depend on the pulse speed and would need to be found by trial, but a start could be made with 20 Ki ohms and 10 mfd . with 40 or 50 voles.

There has only been limited activity on the transmitter tests, mentioned in the September, 1956, issue, due partly to the weather, purtly the intervention of : contest, and partly to nanother mysterious trouble, However, it short range receiver was used, and with the transmitter circuit of Fig. 3, a range of 300 yards was obtained, the input power hesing 5 watts. 'The transmitter was the normal type standing on the ground.

WOOBLCEA

The next transmitier was the crystal controlled overtone type shown in Fig. 4, using the model box acrial mount shown in the photograph on page 492 of the September Aeromouthler. I'he innut power to this was 1.7 watts and the range 70 yards. "The McQue transmitler housed in the sume box gave a range of 100 yards, the total power input for the two valves being 1.75 whtes. In this same box nerial mount, un Arromoneblife transmiter circuit as shown in Fig. 5, gave a range of 140 yards. 'I'he input power being 2.7 watts. We are mostly inverested in the range obtained for a given ingut power, so that using the same aerial aystem gives a fair comparison. "o avoid another possible source of error, the same crystal was used for hoth the erystal controlled transmitrers, the two circuits fortunately being suitable for this. 'l'he overtone type doea not show up very well, but the others give a ranke roughly depending on the power input. More has yet to be done, particularly reparding comparisons with the ex-government crystals, and the new rypes used so far. Perhaps it should be pointed out that all the transmitters mentioned, bave given a range of something like half a mile with the usual XFC 1 or hard valve receivers. (The MeQue '5x appeared March, 1956.)

Henal Spot:

A mysterious trouble the writer has experienced this year, is loss of control shortly after take-ofT. "The last time it proved inconvenient, was ot the I.R.C.N.S. contest in which it prevented the model from flying the course to the left. 'Ihe model is set to circle to the left without signal and therefore will not takeoff if the

radio is not working properly. In this case, the mode took off and began flying upwind towards the first pylon, but before getting there it turned left, and did something like a full circle before coming under control again. It then behaved quite well. A check on tuning and operation was made on the ground at the upwind pylon, but on the second Hight the model did the sume thing again, though if was sent round the course in the opposite direction and was well under control at much greater distances and heights. It was later remembered that this peculiar Ieft turn just after take-olf had occurred at the Aenomodelifu "I'rophy contest at Cranficld, and a similar sort of "dead" spot has sometimes been noticed on the horne aerodrome. The trouble had not been noticed at flemswell, when it was remembored that a different receiver had been it use, and it had not been noticed at home when a different transmitter was used. Somo investigations are being made into this because here we have a transmituer and receiver, which operate perfectly on the ground up to at least half a mile, and operntes perfectly in the air at much greater ranges than are normally required, yet about 70 to 100 yards upwind and 15 or 20 feet high, thete is no response. The netual extent of this dead apot is not yet known. but experimenta are in hand to find it. The medel has been flown into this dead spot with the one transmitter, and then the control taken over hy ancother transmitter. It is a bit nerve-wracking though, as when the model gets out of the dead spot it is shown by a spiral dive to the right, and when this starts at a beight of 15 or 20 fecs, and you have two trangmitters to put over to left tum, you wander if you will be in timel

CIUB NEWS

Petrol battosing until dpril at leant han come al a time when it will have a hat come at ame when is wil have in
minimum effecr on the model movernent in Ginimumeffect on the model movememt in obliged the Heanor Cluth to cancel their CiL rally on Jenuery ofh．It is unfortunete that we have to travel to out－of－the－wiay places for model fiying．and I hope that most of you will be able to manaze with the few世allons per month that the coupons allow． One thankful item is that there in no One thankful itern is that inere in no fuel aupplien．

H．dnendor

Apolozies to SIDCLP A．S．for mentionims leam racing with ambousicement of their rally date which was for combut and stunt only．They had fine weather and of gond attendiance．liddic Cosh and Ifenry Nieholls udged Dive Platt wis winer in stuns，on＇ly to be told he was disqualified an apparenily he used a Lorrawied model．Shame！ Methinki i know the model well，and it really in a beauty．Inmuflicient light creaped a difliculty for the comphat finaliste who were five in number，so the reaults were drawn from hat．Mive Pinnock of ENFIELD AND D．M．A．C．was the lucky winner． Sidcup had a tine acesot in 1450 with four I ats in major contest．weven 2 nda，deven 3 rda and eleven thes plum the IS c．e．apeed record in the bald．Back to tinfield and we find the name of timnock suain in tup combat place for the club event，Jint Moecly won the Inmbridge fif truphy with hil sailplane in an exciting lly－aff．

At 7.30 every Tueaday at 189 Everton Drue．Stannme，it the meeting plice for QUEENSBURY AND D．M．A．C．now sixiecri ntrony and keen toi enter the new teasun＇s contcata．In the same ditarter，at NORTHWUOD，restular mecting is held avery other Friday at the local Darby and foan Clubs 14 of the 30 members recenaly antered the club glider event，won by Mr．Oyilvie．Yet another new name for thin column，mind most welcome one，too，is the DERDENAIRS at laughtan in Eascz， where there had alwayn heen prest interent in flying．Fortnightly metinus take place it 8 o＇clock in Loughton Ilall，lectory Lane， and Grange Farm Centre is available to and Grangs Farm Centre is available to for Siecteparial ddresses of these clubs．

WEST ESSEX opened the winter pro－ gramme sith two film shuws，one fasting over three houre with three projectors operated by Ken Marah，Sid Sutherland and Fred Cheter．lired demonatrated his sound equipment of the Ocraber 241h mecting． Sicornt Wiedracaday each month in clubnighe at Markhoume Road School，so if you＇re in the area－call in．

HEADING AND D．M．A．C．hal prown to 35 mrmbers，and plenty of dally in the kiny，while indoor R，T，P．and rubbet seakn race meetinge are planned this winter．In a cecent inter－club affir with FARN－ BOROUGIf the lavter club won with rop three individual places to their credit， headed by Maurice（iates and his freh Woven．Sipo ahing of interaclub mectinga， HAYES M．A．C．are jubilant that thev should win the L．D．I．C．C．C．From ST．ALBANS by 28 ：+5 to $20: 58$ ．＂The new hipht tenswn wircn at Chobham claimed their firse vetim when Jolin＇I＇hompson＇s power model was cleaved in whim．Sundsy Cit，flying taked place in Cranfield Park，and an open chatlenge is extended Jor a conbat match－ any takers？

Sumill Whatedern

Fred Bexall collected the Arthur Mullett Rose bowl from brother Rex ly scant 7 aecs．marrin in the BHICHTON D．M．A．C． open compl．；but Rey got has own back by winnung the Lanes cup for precision ：week bater．Alocal pond permits hydro dlying，מo
mateer what the wind direction，so we shall he herrink of floar evente in future．Nearby SOUTHERN CROSS A．C．found J．Wesi SOUTIIERN CROSS A．C．found
alop of the 1056 club champ．．and 1 tere alop of the 1056 club champ．．and a Christrias party．It＇s murpriaing how few of our cluba have this feature．

Noultiern

SOLENT HEIGHTS M．F．C．on the lsle of Wight have heen enjoying a film show among their winter indors meetn，and more indoor flying is on rhe programme for SOLTILAMPTON M．A．C．At the Stoney Cross nite，E＇，Gigule and Miss M．Pepper were int and 2nd in Kubber at the Asea Hally，and \mathbb{N} ．Worley and \mathbf{R} ．（）＇Rourke 2nd and 3rd in power．A new club has theen formed at CHESSINGTON now that the 1034 Sqde．A．＇T．C．in taking members from outside the Mir Training Corpa．Brian 1，aurence came 1st and 2nd in the Surrey Wing A．t＇C．Championships，edvanced denign clas．At DORKING rombat is in the foregrand and there＇s a flush of ETA powered ．Mercury Thumdevbivds ready for team racing．Cuntact F．T＇uck at 11 Park Way，Dorking，if you are in the district．

Gonth Midlanal

OXFORD METEORS will have the limelight when Ian Smith＇8－ft，apan scale Beverly Tranaport takes the wir under the power of four N．At． $25^{\circ} \mathrm{s}$ ．Just imadine that fusclaste valume｜i｜

Midland

Ster of BIRMINGHAM M．A．C．is Rer Lennox who hat placed in every open pubber event entered．Indoor seaten is in full swink with Mceari．Monks，Read and Poole excreding 51 min ．in small hall．At EEcfeding teR there＇s elen indoor nerivity ar Catharine Sirees School every．Tueday Cathatine Sireet School every，uediay clubroorn where tes and biscuits are laid on for the hunkry．Hemember that ono－winged combat model in last month＇s Mlodel Newa？ it was Mike kendriek＇s of WHST BROMWICSI and I learn that the other winy half was resoundingly gemoved by the hack of a pit crewmenis head！Jough luck． tuck of a pit crewmens liesd ough luck， suffurs insign wat the（inost，a（itint
creation，very papular in those parta．

Eant Anzlian

Menliers of CAMARIDGE M．A．C．have been asked to contribute old plaris and books to ：Club Library，whence the sume items will lec hired out at a few penee per weck． Sound like a roood ateady fund raiser．
At CLACTON the club has 36 menslect and vise of a site on Jaywick Marshes for riceflight and the locel recreation ground for（U）；building facilities are available at the C＇lacton（sunty Youth Centre，Farther up the const ar IPSWICII combar is being flown in two clasese，up，to 2 c．c．and $2-5$ c．c．for even matching arnong the chibitcra．Jetex R．T．P．speed has renderad life dankerous in the clubroom，enpecially when the Jelmastery get fiazing！

South W＇estren

fingl rally of the season of the S．W．R．C M．F．S．was held on Novemtier Ithh at Crownhill Dawne，near plymuuth，If we ＂fly－for－fun＂day，with no official rontesta． Mest nerformances were by liarry Stilling＇s ＂hoom＂in fast atums neser the ground fonce clearing the deck by 3 feet at the Lontom of a actemring luopl and Roy Dumitan＇s own． design Fi．l．24t powered madrl．tlitzon O＇Helfernan＇s Roils was irgubled with uncsen moter－rums，but perfarmed well otherniee．Armual aub are 100 ，for fiving members and Sa，for associase，All $\mathrm{R}_{\mathrm{i}} \mathrm{C}$
enthuiastl in Cornwall，Devon．Somerves and Worvet are elisihle，full details from the Ilon．Sec．，II．Stillingy， 6 Alphe Street， Excter．

Western

Ihapite the weather，CHELTENHAM M．A．C．has had it best scison to date if content wima are ericerion．theat including B．11．Wager＇s Area，Glider T＇ronhy and Spile Champion＇s Weston Cup for area t／r champ．At the local Ilobluiez Exhibition in Segrember the club flew aver 7 mile with 3s．Dd．scale kity tinw．n ret．p．，conauming 36 yerds of rubber in the proceas．Combut Aying with these models in exciting we are told and damage mainlv confined to tiemuel
HRISTUL AND WEST M．A．C．con－ gratulatea membar liryant jones on him aeventh place in the 1956 Cilider Champion－ shios．Interest in wakeficld modela is imcreaning，though the thest are arifl falling short of a 4 －min．tin－still－air performance． lixperimentel types l＇arm and san heve developed ${ }^{1 /}$ revolutionary．A／2 which they inviat is capatile of a minking apeed of less inust us capatile of a sinking apeed of lese than one froot
remain evnical．

BRISTOL ACES are leen on R．＇．．${ }^{1}$ ． acale and ut ia hoped thar atriangular event will te tun between the three Bristol clubs． SWINDON M．A．C．concluted the 1956 acsson with slope soaring on the Wilashire dowria，won by II．Wicthem．Clut chum－ pionshig is mill rusile between Tony Rionstion and fe．Passons．

E゙ant Ditelliamil

LONG EATON D．M．A．C．at Nixtinglam save six Hying displaya at fetes and cornivala and have now ofganised a sinter programme of R．T．J．and film shows．New members will be welcomed any Firidey sight ar the Youth liouse，Derby koad．

Treside and Wistrict Gyln an Ortober 14th had fine weather．winnern haing T．M． Unsworth．STOCKTON M．A．C．power 12：28：R，Swinder，DARLINGTON M．A．C：wlide：（He／tran）．8：32：T，B． Chambert．STOCKTON M．A．C．rulber． 9：00：W，Watmon．THORNABY PATH－ FINDERS，T＇eam Rece；1．Sroker，TYNR－ MOUTII MA．C．combat，Searching for \because model at Kufforth，four Darlingtonians were chased by to bulle（rhas＇a loi of

THE NATIONAL GUILD DF AEROMODELLERS

Statement

In the niddle of the year 1953 wo sert to a number of persons who wicre anxious to obean thind party cover under the inausance selieme operated by the Nitional Guild of Aeromodellers letters recontmending thother Insuraice Scheme instend．

It hys been broughe 10 our notice that theee letweri could have been read as meaning that the N．O．A． echeme was nol sativfactory and that persans insuring under it would nat be fully or adequately covered agains： hird party raslis．
We denare to exprese to N．G．A． Led．and to iti director immediately concernted，Mr．D．太．Rustell，our very aincere resret that we should unwittingly have sent out letters which coald lave heen so inserpreted and we take this opporiuniry to ntate that there is no foundatiun or juatification wharever for the adverse reflections to which we luve teferrad．We whould also like to record our gincere regret that the Society of Model heronsatical Fra－ ineere Lidd．，a nueiety of the hishemt repute，has been involved in these proceedings．
bull 11) and three jumped it deep mateam to eacape. "Spacemsn", the fourth member. wan liter seen swhing his trouserm in a nearby pond, and it wuy culd, tool

Hon. Prasident of the NOVOCASTRLA MA.C., Sqdn.-ledp. Janica Kubh. Heal presented a traphy for open competition which may go to the champion of an annual rally on the famou Cown hoor. Team raciga is gaining a great hold and one han to queue for a turn at the practice uround. two lady mernliery are actively partahinse in the flyimg and tt the lyarlington meering Fony Kay came second in Class A.

The fourch annual IIYDE Rally went with swing, in the sight darection (whoatl). with resulti ef follow:
Poeref A. Collinson Inmdford $9: 00$
Rubber C. S. Perry $\begin{array}{lll}\text { C. Whall } & 8: 12 \\ \text { Cherfield } & 7: 25\end{array}$
Ghider 1. Fictenwer Cmortioner $6: 17$ N. Hutchimen Thome 6:13
fiadio Conrrot: ©. Parkinson, Kiendall,
186 points.
Tram Race " A ":-F. Vaukhan, Chenterfield skylinars.
Pezer Fuulken who han worked hard for the aucceas of the mere orgonised eventu in moon to lie wied, und the ares in to recompise his services by gresensing him with a tolent of their citeen, on the ureat occation. Best wishes, Jeter! 'The Area Championships for Rultber. Glider and Overall (could bo - movelry cvenul) ka lo John O'llonnell, whose WHITEFIELD club talen the Reores 'I'rophy. Jolin to witu reigning S.MIA.E. Seruar Champ. 1 gather that the abovementiuned "do" at Hyble wem ormenised by one man who left it to the tlyern so run the une man who eft it to the tyyers to run the
eventi. Only une timer for mill of free-fight they tell me at Whitefield -urely alasaic case where the modellers could have got together and found voluniter helpers: but didint. D. W', Jacheon of ASHITON is lle Area Power Champ: ! see he ropned the Ares results for the Halfax 'l'rophy with 14:00, bul do not have the national resulta 10 hand. Kimek. unock! AE mentioned in 10 hand. Kimek, unork he mentioned in
my iniro, HEANOR D.M.A.C. have cancelled their January foth cungrul-line rally due to the petrol rationing. 1 hope thin wilf be the only meeting affocted by the rembictions this aesson.

At TIMPERL.Y they had a novel engine starting conrest, where the entrant had 10 natemble and start a diesel, then run it for 30 sec . F'aileat was junior member, H. Shaw, who rearramged him Millin 75 end ran it in $1: 28$, followed hy anolher gunior, C. Eadell, it $1: 29$ with an F.D. Ralay. Top aenior wis M. Rothwell al 1:30 with enoxher failhful Mills 75. Indoror R.T.P. en entenajue luilding programmo and radio consrol activity make J'imperly sound like a farl moving cluth.
SHARSTON D.M.S, sored $21: 51$ in the

Mrmel Finginest leam glider comp, lop individual being E. Helliwell and his Inch Worm; he also huppena to be Clut Chermp lor the necond year runnung. with seven lats and three 3 sda in ten cornps entered. four membern have A.P.S. Cirefos on the way for the suew tgaton.

Iralanel

The DROGHEDA M.F.C.' Fifih Annuat Kally at Hutlin's Holiday Cemp. Morney. wat Rreal tuccean due manly 10 the pleasant incresue in entry. Tony Morelli of مleasant incresere in entry. Tony Morelit of Sumin won tole butlin Tropily entlat the ream racine. J. J. Carroll (Jublin) won upen stumt und j. Evans (Shenhill) the clau for Hying acale. Prizes were presented by Aldermin L. I. Waloh. the Misyor of Dmahede,

A tragic accident in Tiger Noth near Bublin ended the acaive life of ltilly Kenny. founder of the Sfount Atgus and Brimpach acromadelling the and we are sure that all who knew him will jain me in extendink sympathy fo his dependents.

sinctiand

At the Weat of Scotland Area C/L, Ciala beld teecnely. Class A aterwered an unusually large eniry. PRESTWICK M.A.C. had two modele in the finat, borh powered by Muir runcd engines. T'he "Tiger 'lerror". lspping ar aver $90 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , came in firse for the Harris 1 Muir team.
R. Yule is champion of BUCKSBUUN A.I.T. wirh Ron Kohertson 2 nd in his first year of conteat tying, using a Khumueen and - Fordeflime. Clutb won the sitrathouore "I'rophy after a stern light with MONTROSE and iasue the hope than othert in the Lesgue will pull their socke up.

Fram Einaland: For Marcello Taddei. Hrewsmone (\&2), lcaly, comrob-line fan. Iry: Jan Hajic. Praha XIV, Kro. Zelenvnruh 357. C'zechonlovatrin. Im radio comsrol fan. Kapa Pawel, siemiradzkieqo 6 m57, Kutno, Paland. mn acromodelling inatructor.

From U.S.A. en Carnada: For Kevin Hlarris, 10 Wialh Road, Wientown. Now Plymouth. New Zealand, 14 yeara ald Alnn Wilkea, 179 Williamthorge Road N. Wingfielit. Nr. Chesterfiell, Dertoym. 13 veari ald. Master Harrison. The luckey Wills sichool, lednal, Worcemenhire, Hille yens old.

And so, to sit harh like Buddlua and contemplate another month of waiting for your reporta, I sign off amul un

THR CLUBMAN.
NEW CLUBS
WOOL.TON WASPS M.A.C
13. Hiplon, I Northern Road

Speke, Liverpaal 19.

GLASCOW GREMLINS M.A.C. R. Douglan, 2316 'laisley Rasd Wesr, Gilmow. Q'w. 2
1)FBIDENABR (LOLGHTON) M.F.C.
R. G. Harris, 14 Sandford Aventue, Loughton, Jisser.
NEWかARKET M F C

1. II. Dlenkin, Mendernton Road,

Sewmarke, Suffolk.

P, Dufly, Eseg ou Litchfield Roed, Northwood, Middlerex.
THENTERDEN \& DISTRICT M.F.C. R, II Jerkin, I Smallbythe Road, T'Tenterden, Kens.

SECRETARIAL CIIANGEA

CHESSINGTON 1034 SQION, A.T.C. P. l'inch. 32 Orcharal Rond. Chestinutan.
CI.ACTIOX \& DISTRICT M.A.C. M. Warten, 43a 'ithe Svemue, Hurruville Park, Clacton-an-sie.
NOVOCNSTRJA MAS.
名. Sanderzon, 9 Aabbrook Streep, Kenton. Newcuatle-an. Tyre-
WESY MiDDLESEX M.F.C. M. R. Whippey, + Xlacrom Road. Fiblitu. W. 5 .

1937 N. $9 . . \mathrm{A}$. (GDIPBTITIGN FIEMEIEMME

17h March
Gastagl Cup: Unrestricted $\left.\begin{array}{c}\text { Risbber }\end{array}\right\} \begin{gathered}\text { De- } \\ \text { centralised }\end{gathered}$
3/al March
S.M.A.E.CLT: N:2 Area

Kfir, Tgoriry : Tem Power / Cenisulied
284h April
Guttrande Tmophy:

19th May
Astial Tropify :
Iower Elimninator
Weston Cup:
Unrestricied Rubler

9th June
ERITISII NATIONAIS:
Tmurston Cup: Unrealricted Glider
Shont Cup: 25 c.c. Clana
BAA Iond
Gom 'Tmorry' Cu Stunt
S.M.A.E. 'Гhorny: Radio'Con.

Intehnatiomal. Talliedy
Davies "Thophy: 'Tram Kace A
SPE\&D: All Clames

Ceniral-
ived

This drawing gives details of the Javelin Trainer variant to supplement the vievs on pages 28/29.

Molegura

SCALE MODEL CARS
A naw book by interameionally temousaxpart Harald Pratlay, who revent, his own mashod in bulding perfect replicas in miniature of vateran, vintige and modurn motor ears. Includer informazion on preparing daea from tha actual car, drawing plans. making individual parti in wood or matal, whemela, including wirt wheels, pins finish. the workithop. sourcet of informaxion, famens modals, choice of prototygas. Bound in seill cerd with a two-calour photo cover, in pages, 20 ghote pisturas insi, 20 ghote pieturas.

FLYING SCALE MODELS

Firse time subject duar caverod fully. Ron Moulton, Aset. Edrear of AEROMODELLER. has writesen what will be " "standard work" Evory aspact of flying acele madel aiferaft comprehennively cavered, with detalls al suisabla model tyeti. every mathod of propulnion, including warking modal jes and ducted fan models, diatalinadrubber powered. Ausamitic cantrals for super.estability, mulec. engined designe. rare "gen" for complete acal. accuracy, camoullago sables. control llne cypes and maihodi of eperation. Bound In limaon board. two-colour duat cover. 128
 phore bikeurn.

THE AMATEUR ROD MAKER

How many modalmakers go fishing? In this book, C. W. Taylor shows how tha handyman can develop the popular "da "yoursifi" cult and make hix own rody and other fathing accesserves to the higherit profetisional standards without the ute of any aborate warkshop or sottitil tools. Typies chapter headinge include "Tools and Makerals". "Fittines and Sundrias", "Rad Bulding"" "目ack Rod Design", "Cara and Maintenanea oil the Rod". "Mahing Wood and Lighs Allay Reals". "Accenaries". Clear and explicit drawing by the aushor, Bound of itif card with bright swo-colouf cover 64 pages, size 71×41 inc. 20
$4 / 0$

CONTEST MODEL SAILPLANES

Modern model saiplane devign and conseruefion coverad lor the firit simin in this country. The tamous intermatianal Nerdic A/2 ciass it oxhaustively eovered, with sil irn wariztions, latest developmants and styles amongit the meny countries interasced in it. The naw Iunior Clam Apl 11 also considered and halplani madals In tenural. All marhodi of construction ate given, includimg autemestic rudders. Gethermalistry, slab-iders, wream. lina gypses. and all the onthusizat raquiras. Matnificent deawinge chat sell arory in themselveh. Baund in usif card with imot
 picuren

BOAT MODELLING

Comprehensave book on conseruction of all cypas of model bout by ace aeromodellof boat desimer. Yis Smeted. Fulfang chaptarif covaring Clasas, seols. tord chine hults, round bule hulls, ete. suparetructepa, fitsingt, gnganes, hydroplanas, ere.. ere. With the aid of thin book a beginner can etrecesatully build a model racing yache or any of a wide variety of power boass from neralch. The appendices cive contisaly eobulated information of contiderable yolut many model boat enthuriest-in fect. thus publication in connderad 10 be sht finest value available. Now in escond print: rewiewer stareti: "This is a remerkible book lor the mounc of inlormarion is conmeiny and for the comprahanive way in whwh is covers the rubjert
 mODEL AERONAUTICAL PRESS LTD., 38, CLARENDON RD., WATFORD, HERTS

SIMPLE RADIO CONTROL

Especially wrincen for those modeheri who, for the first time wish a cry their hand at Radlo Centrol. Complet explanation ol the prineiplat of operation, deteled descriptioni of componimet. chapters on singeby-itate construction of luch fomasat the "Aeromodaller Recaivar" and Tranamitter, the Pikg XFal Receivar and Bayer Masti-Purposo Mecer. Other chaprars includa Inskallation. Tuning Relay Adjusement Faule Finding. Flight Tasting.

Bound In miff card with ewo-colaur phace covar. 96 pages. tize $81 \times 51 \mathrm{in}, 97$ line
drawing, 41 phoso pictures. Priea DESIGN FOR AEROMODELLERS

AEROMODELLER ANNUAL, 56-57
Reflects the year'i trands in aspomodelling, Special learurar meludo articlan on Building an Ultra Light Arreralk, Negative Winglorm, Under I e.c. diesal anginas. Naw Slanes on Coniral Line Srunt Flying. a Special Aaromadallar's Sllde Rule. Plascica and Adhasivat. Moror Sarvos and Hydraulics. Evolution of the Powtr Medel, Improvint Contest Glidern. Bount in linson boards, thretcoloup dust cover and Prontispiece, 160 glongy payes, lize 0_{j} pirturas, ove. 100 plans, diacrums,

[^2] eurcrats including metal, olititic moulding, geodetc, esc., use, Bound in stif card with wo-colour phoso cover. 96 pages of 351 in . 187 line AEROMODELLER ANMUAL 54-55 Containing 160 pagns, sue $84 \times 5 / \mathrm{in}$. over 150 plans, dogerams, halftona pictures. bound in green $\theta^{\prime}=$ wish gold blorited tisle. Price AEROMODELLER ANH

 frontispiece. over 100 pacturas and | plans. Fully bound rold |
| :--- |
| blocked sitle. |
| $10 /=$ |

 The why, what and how of modal dasign. Bound in stiff rard with size $8 \mathrm{l} \times 5 \mathrm{fin}$, 104 line drawe $\mathrm{S}=$ CONSTRUCTION FOR

AEROMODELLERS

AEROMODELLERS

NEVER

 BEFORE

 BEFORE}
have handicraft workers been able to obtain just the right quantity of enamel for the job!

6 COLOURS FOR $1 / 3$

There is no waste with the interminable colours of Humbrol Art Oil Enamel in capsule form. Buy a packet today from your local Handicraft Shop. Humbrol Ar! Oil Enamel is also available in $t-0 z$. tinlets al 8 d . and 2 f -oz. tins for $1 / 6 \mathrm{~d}$.

such quality paint

such \$8 SPREADS quICKLY AND EVENLY 38 ExCELLENT GOVERING POWER

* SUPERB gloss

\& SIX INTERMIX ABLE

X-ACTO TOOLS are essential for better model making. They are precision made from the finest materials, enabling you to do faster, more accurate work. There are three balanced knife handles with twist releases for speedy changing of blades. and rememterThere's an X-acto blade for every cutting job
 thres X-acto knives with all blades, pouser and routers, is black plane, balsa sirigpar, steel rule. ipasenhave sed sandrag block. The pertect Conatmos gift for bobarist and madellen $\quad 11_{4}$
THIX LTD., II Old Eurlington st. London, W.I

TIB 10 B

The Modellens

Choice

 Among the wide choice you will find "CONVAIR XFY-I"
VERTICAL - TAKE - OFF - FIGHTER

Cemplete Kis consdats of 37 parts includine Pilot and ceen, clasr canopy, lending gaar wheale with movable atruts, colauriul decali and basy-to-lollaw plans. Moulded In glamine matalic silvar. 7h In. wing. apan, fifin, lant. t in, Itele. Equipged with contra racering propallari powarad with racatin propalari powarad with
plate drive encased in apianep.

Pon and Pkg. \&d,
12/Spitifa $\quad .$. Yill M.I.G. fighter ... \%/II Thundarcmptar i2/- Spiriz of Se. Louis ;1l

This wonderiul book gives full details of all model Alperate, Tralns. Boats. Cars, akc.a and acceasarion available at GAMAGES Including many PLASTIC
MODEL KITS, nleo many interenting Facts, figuret and Photographs of Airway, Railways. Llners, Carm, etc. Pont 4d, specisl Price $=$
Lallatr CONIURING CATALOGUE IH (Fart 2d)

Always look for the name Equado when buying balsa. Ie is your guarantec for better model making - and costs no more.

E. LAW \& SON (TIMBER) LTD.

272-274. HIGH STREET, SUTTON, SURREY TELEPHONE : VIGiIans B291-2

Trio from the MACHI+SERIES

Medium scale, jet-propelled models easily assembled from ready-shaped ("Tailored") parts, inelvding wings. keals, bulkheads. Fusclages, too, are all-balsa. "pre-formad" in two halves. Each "Tailored" kis is complete with Augmenter Tube and motor clips for Jesex 508 motor. price 10/9 inc. tax Illustroted: Jetex Hunter, Jetex P.I, Jetex Gnat
ASK TO SEE THEA AT YOUR MODEL SHOP
JETEX

SEBEL PRODUCTS LTD., "J" Division, West Street, Erlzh, Kent. Talephone: Erith 3020, Telegrams: SEBELCO, Erith

ARTHUR MULLETT'S

PLASTIC KITS

STOCKS AS UP-TO-DATE AS THIS MONTH'S "AEROMODELLER"

 OVERSEAS OROERS. HM. SERVICES. WTVFE FOH

* Nal arders ouer 40s. from abroud acknowlodged by Nir Mail.

直 Orders despatched within 24 hrs. t Goods properiy pacifed and Insured. * C.O.0. in cauntries where Postal ficulations permit.

Planid add t/3 Powtare and Poxhint on ordera mp co $17 / 6$

ARHUR MuIITI 10 mianic house lant Batemander

TBaitim suplies -
 F.O. BOX 2GO NEW PLYMOUTH, NEW, ZEALAND
 Calling all NEW
 ZEALANDERS\&

SPECIAL SALE OF REDUNDANT STOGK!

Having adopted the policy of stocking only those dines we can give full service to, we now offer over $£ 1,000$ of stock at the following prices-ali subject to prior sale. No. C.O.D. ALL Cash with order.
E.D.:

Bee £2/5/=; Hornet 12:716; Competition Speciol E2/IO.-
Racer 63/5/-; Hunter 63/5/-
Boomerang Radio ell 10 .
Mk. II Radio $£ 15$
Mk. IV Miniature Radio £18;18;Mk. IV Senior $£ 20$; Mk. VI Everest $£ 23$ E.D. Motor spares Less 10% of List price

JETEX:

35 ATOM 7;6; Jetex 100 17,6
Jetex Scorpion $\mathbf{E 2}$
ELMIC-TIMERS:

Standord Diesel	$7 / 6$
Standard Glo	$7 / 6$
Dethermaliser	$6 / 5$
Mini-Glow	$7 / 6$

KEIL KRAFT:

Truflex Propellers II x 4 2/6
POSTAGE EXTRA: AUSTRALIAN CUSTOMERS PLEASE PaY WITH British Postal Orders-All Prices in Sterling

Remember wa supply the AEROMODELLER Magazine 21/- year: MODEL MAKER 25/-; AERO ANNUAL $10 / 9$; and All A.P.S. and M.P.S. Plans to which please add 3 d . For every $5 /$ or part of $5 /-$ cost of plan. Thls to cover duty and postage.

> BETTA MODEL AEROPLANE SUPPLY CO. PIONEERS - LEADERS - SPECIALISTS IMPORTERS • MANUFACTURERS • EXPORTERS

DON'T MISS YOUR COPY OF

Authentic

Britain's Biggest-selling Science Fiction Monthly

Containing stories of the furure by the loremost authors of today; articles, book revicws and departments of interest to all with imagination. From your newsagents or direct from the publishers:

HAMILTON \& CO. (STAFFORD) LTD.

 108 Brompton Road, Knightsbridge, London, S.W. 3TODAY'S FICTION - TOMORROW'S FACT

THE

 ELFIN2.49 c.c. Twin Ball Race Engine incorporating clack valve price $70 / 8$ inc. p/tax

Prices of other Models as follows:- Including P.T.
1.49 e.c. Standard 55/6
1.49 c.c. Ball Race $77 / 7$
2.49 c.e. Standard $85 / 11$ 1.8 e.c. Ball Race $77 / 7$

Ball Hace Marine Models avallable $16 / 4$ extra

AEROL ENGINEERING:
 :

-Distributors
Home Trade:
E. KEIL \& CO. LTD. Wickford, Essex

Export:
LANG OVERSEAS LTD. 33 Gearge Street, Liverpool 3

-CHANSTFIFID ADVERTISEMENTS
 PRESS DATE for lanue. Fabpuery 175T, Decamber 20, 1054. ADVERTISEMENT RATESI
 Pifote Minimum Is words Sti, and Ad. per word for esech subeaquent word.
 Trada Minimum is words l2a, and Pd. per word far each aubsequent ward.
 Box numbers are permisaible, to count as 6 worda when costing the advertisement.
 COPY and 息or No. repllas whould ba sume ta the Clamined Advartinamant Deparmmene, The "A eramodellur," 30 Clarandon Road, Watford, Herts.

FOM SALE

2 E.D. 3.46, Frog $250-15 \mathrm{~s}$. emch; 1 thart 28 . All good condition, nemist olfer eccure. Hearmon, 48 Dyart Avenue. Kingaton, Surrey, Super Cyclonc 10 e.c. \& 510 m, Spaor Ilug 444 \& 110 . Cub 075 Dieal, New. \&3 104. Mille 75 c.c. $\subset 2$. Milli 2.4 c.c. 63 . Frog 500 Gluw $\mathbb{C 2}$. Yulon 49 , New, $\{210 \mathrm{~s}$, Smath 10 e.s. petrol engine with E.D. magneto C610w, Kis. KK Srumt Queen ifa. Mercury Marlin 12a. 6d. Mercury Speedwartan (debolt) 60 KI. D. A. Pierpoint. 17 Thornton Avenue, Stresshant Hill, S.W.2. Tel: Tulige 11ill 9400.
Allbon Javelin, juat run in, ton. : worn Allion Spitfire 12n. od. E.D. Comp. 30s. Milta. 75, 30n. 37 Waldrras Park Road, Woking, Plone: 354. Mercury Aeronce Sedan fittod E.1), 2.46, Airwheels, E.1). ME.111

 R.A.F. Pedipole Lane, Weymsuth, Darset.

Dart ' 5 now, only trin four timen. Complete in original box with inatructions and mountiny holte 40r. "Ladybird" kit, formen rcady cut, 100. J. Morsh, 72 Darclienter Roed, Poole. Dorses.

Indoor balht $4-5 \mathrm{~J}$. " C ", cut $1 / 64-3 / 104$, sd. wheet. Phil Read, 20 The Worminge, Birmingham 30.

Spotlea new type Frog 250 R.B, run 10 minusen on bench 50m. Brix 504.
Keil Kraft Junor 60 with envine ready fo fly, for quick asle, 16 , 30 n . Collect from S. Alulholland, if Wondalock Road, Greenock, Sootland.
E.L). Hee JOe.; E.[J. 3-4h c.c. 45s. Borh excallent eondition. Also booke, plana, kits marl acromodelling eccessories. Sand S.A.E. Lor lies. R. Weatherili, 31 Siray Park W'ay, Pengegon, Cembome, Cornwall.

Galleon manufacturer offers: Printing Blocke, Plans, Took, Popular fint-clans models, remonable. Hox 503.

Unused E.D. Hacer and Sea Cormmander Boat Kit ineludins prop shaft C6. Iddon, lixyin. Holywell. Flints,
F.L). Hacer (bench run only) 65n, Allbon Merlin 30w. Frog 3027 a . 6d. All with props. Jetes 508 Ss , Vilextrotor 5 . Quantity of Uales Wood worth $155_{\text {. }} 9 \mathrm{~g}$. Allbon teat stand 101. P. Forrear, 222 Hury Ruad. Tortington, I.anca.

From 150, run in oniy. 35n. Also deromodrlems Jenuary, 1941jonusry, 1957, good contition: few miming. Offert? Paken, 9 Lewris Rond, Stirchley, Himminghar.
Solid modelian' baygain packal Send mout S.A.E. and 13. P.O. For bumper $1039-45$ wartimo tranafcr eet, Eritish. German, Japanese, with mold model whecls, or 2 . Kd. for zame plus balat knife, dummy radial engine, propellers, crtra whecla. Worth treble II $\begin{aligned} & \text { C. Herring. } 152\end{aligned}$ 'Iomswood Mill, Harkingide. Venez.

WANTED

Copies of Flight dazed July 171h, 1953, January 1ar, 1454, April 22nd 1855 March 31as, 1956. c/a Lambert, Boz 1764, Accra, Gold Coast

Anderson Spitfle. Atwood Champion or Twin. Must be in mood condition. Hiert, 4 Kinuwell Avenue. Clecton, Easer.

trade

Enginez, Sald of Exchanged. Satiafaction or money back guarantee Cesh paid for engines in mhed condition. "Engeine Exchange", I Thord Rond Avenue, Howden, Nr. Goole.
BOOKS
American Mrgaxines. Year's subacription Moded Airplane Vear 35: Fult Cablorue Iree Willes Lal. (Dept 1), 9 Drapern Cardens, Lamdob, E.C2.

THE EHILL It ECEIEEIS

A complete wit ol pesistors, condensent (including trimmer) diodes, valwe holders, Maddin formar with cora and ing paxollm panal (undrilled). All naw componiontiand aracrly as apacifiad-17/4 pone free. Corelacking campound -ils pur tube. pont froe
Type PS3 Rolay as speciffed 38 /6 P.A.P 8d. C.W.O. Plase

1. DOCKERTY

36 SWARCliffe road. harrogate, yorks.

AEROPLANE PHOTOGRAPHS

Lares relaction including 1914-18 and military and evilis latase Americian and Brixish |err., $51 \mathrm{in} . \mathrm{x}_{1} \mathrm{Im} .$, Ta. Ad, par dozen Including Pupchasa Tak ind postaze. Single carde led. akch. Sand is. for spaclman photatraph and lise. Also ships, rílway and 'buses. Thene alag pricen ab above.

REAL PHOTGGRAPHS CO. LTD., Vitaria House, Southport

GIG
 EIFFLAENDER REBORING SERVICE
 FIELD BANK, CHESTER ROAD, MACCLESFIELD
 REBONES: BEES Surlan 1 and PB ELFINS, IAf, HALF c.c.s, 291- OTHERS It which are 22/., Pricen canh with order. Return pastega fram. C.O.D. nevice 2/- axtra, SPAMES itociked and fited. ENQUIRIES, 5.A.E. plazee Ior Immediate atzention.
 PROMPT SEQVICE with 30 day ${ }^{\prime}$ guarantee. WELDING carriad out at ownara' riak only. We do not bare ringed motora

TIBUCUT PRECISION AIRSCREWS

E.C.C.
 Radio Repair Service

Service and repairs promptly carried out on all E.C.C radio equipment. All work Guaranteed. G. G. Davie, 7 Davidson Road, Thorpe. Norwich, Norfolk, Norwich 33528.

How-to-do-it Magusine of Ml. Modeldam

Read flyIng MODELS. the only American magazine devoted exclusively to model aviation! Every issue Includes how-tobulld data on new model alrplanes of various types (with full-size plans wherever possible) . worth-while hints . . . photographs . . . how-to-do-tt information ... and features for sport a-plenty!

Now published every month.
Annual subseription (12 copies) 8196 Including Postage

Mall your order and remittance coday to: atLas publishing \& distributing Co., LTD. (Datt A)
Ia Bride Lane, Fleet Street, London, E.C. 4 .

LATEST PLASTIC KITS

CONVAIR	12/-	LOCKHEED V.T.O.	10,6
THUNDERCEPTER	12/-	LIGHTNING	11.9
CUTLASS	12:-	SPIRIT OF ST. LOUIS	9,11
HUNTER	12/11	SPITFIRE	711
MIG 19	7/II	D.H.I 10	8.6

AURORA-Viking Ship 24/-
These are really firse-class kits, fully detsiled.
Supplies are limited, so order NOW1
Please add pastage for Prompt Mail Order Service.
JONES BROS of CHISWICK
SI TUANHAM GREEN TER员ACE, CHISWICK, W.A
phona CHI 0.5. (I min, from Tupnham Gpan Sinion) Ei4, 191

G. Honnest-Redlich wishes to apologise to all of those to whom he has not been able to give personal attention. The reason has been in fact too much work for one to handle.

All future mall should be addressed to: RADIO \& ELECTRONIC PRODUCTS (G. HONNEST-REDLICH) 52, ROSEMONT ROAD, RICHMOND, SURREY

Avalloble at the moment an wall at all odverised R.C. muliiple shannel esed equibmeat, are:
Solenold neeuntors for sircraft rudder operation. read or pulee aysteme. 25)"Uniac" unlvernal moter(hed actuatorn 45/.. \$18 reand unita $60 /$. Elahe reed unite 70/e. Throtele controle for E.D. J.46 or $\mathbf{S c c}$. 2216. Yo order enly. Miles ac.c. diatel, complate wieh ihrotile contral (12/10).

```
AMERICAN PLASTIC SCALE MODEL KITS
    The finest kits available with all main external details
    incorporated into the mouldings. They are easily
    assembled into a perfect scale non-flying model.
American Aurora Kits
    CONVAIR. "Vertical take off kit"... 1/48th scale 11/9 per kit
    LOCKHEED, "P38 Lighting" Kit ... I/48th scale II/9 per kit
    BOEING. "P26A" Kit ... .... 1/72nd scale 11/9 per kit
    BOEING."B29 Superfortress Bomber" kit 1/48th scale EI/II/-per kit
American Monogram Kits
    CONSOLIDATED. "PBY Navy Catalina" Kit
    DOUGLAS. "D.C.3 Airliner" Kit 1/72nd scale 11/9 per kit
    1/72nd scale 11/9 per kit
    |
    FORD. "Tri-Motor" Kit ... ... I/72nd scale 11/9 per kit
        NII Prices plus packing and postage
        BOND'S O' EUSTTON RD. Ltd.
        357 EUSTON ROAD, LONDON, N.W.I
    Est. 1887
                            Phone: EUSton 5441-2
```


-it sticks everything! Keep atube in the home

Easy to BUILD - Easy to FLY!

BOTTEN
An Itidnch rubiber modal complaes with plaseic propand noathlock, plastic wheele. comans, sindpaper, eramiferx, xisatil ind rubber mator. Oualify balua is usad throushout and all garta ate accurataly prineed. Suitably medified Is Is an ldeal modal for the Allben "Aambi" 5i\|\| diasel. Price including ton
T (A CE
A 31 i-lnch span Stunt Model detiened for boginnarl and uxperce alike. The kit it complate evan ta rha cemant and en Ankined model will no through the geum echedula with ease. 3 ulzabla for 1.5 c.c. co 25 c.c. antimed-indudine Lay $16 / 11$
JUNIOR AIRCRAFT SUPPLY CO.LId

Kindly mention AEROMODELLER when replying to advertisers

The first Commercial Transistor Receiver

E.D.. of course, are again_first to introduce this new technique. lts advantages in size, weight, current capacity and quality of reception will appeal to all Radio Control enthusiasts.

This valve transistor Receiver combines all the

The benefics of current rise io the wiznal are well kmown
RECEIVER
size
$2 \mid$ in. $\times 1 \mid \mathrm{in} . \times 1$ in in

Wetrhe

21815.

curpent ehonee from apppoz 2 idling up ka 4 Mz ili connertions vis
7.way cable and plug

2 Pole iwitch is supolicd to brest L.T. and H.T. It operates from eny srandard carfier rype Iransmitter on the 27.12 Mice band

湢ICE E5.4.0
plue \& 2 PuFとhuer TגI

Order from your Model Shap advantages of multi-valve modulated Receivers. regether with simplicity and very low Receiver/Battery size and weight.

The XFGI Valve is used as a detector in a low current circuit: at 100 to 300 micro-amperes.
the valve life is therefore considerably increased.
The Transistor is not used as a current amplifier but reacts to the "Noise" level of the detector valve. Upon receipt of the signal the noise level drops and the
Transistor conducts.

Write for our new iflustrated Jist ;
fiving full bapliculers of all
E.O. Entines. Asdio Conlrot Units
E.O. Entines, Asdio Conlmor

[^3]
Satisfied Customers

Dear Sir
You 1. ny loe anterestm to know of the perfarmance of any "Mivimosa" wlitler. On Saturday, Nas-17 al liferom, it dicl a thuht of $4 \frac{1}{2}$ minutes and as week later, May 24 at the same place, It thew our of sught and was formunacly feturned the sext day from Marden a fight of approxmately six miles. Theve are just twa al the excellent thights I have hand with the moxlel.

1. J. 'J., Morden, surrey

IJcar sirs.

You may toe interested in at thigh made by one of your "Polakis" ghider models, which took place on Siunday,
 repaifed Idalaris mamel was latunched by land about halfway up a seep lall. The model flew steadily across the valley and then commenced to gain height, flying in harge circles. Its progreses was followed with the help of lielde glasses for about al guarter of an hour, when it disuppeared from view almost wrumht overhead. It was last seen flyme strongly and still eationg lecight it an estimated altatude of $5 .(6 \mathrm{k}) \mathrm{fe}$. \mathbb{P}^{2}. S. Dent, forkshire.

Dear Sirs,

On Sunday, Apal 14, I was llying my K゙ell Krafı "Invaphe" and launched by winch, the glider was timed 31 minimen 0.0.s. I have withesese of the flight.

IR. A. D., Itereford

Dear Sir.
May i compliment you on your "Achali,se" 24 in . duration kit. I haught gine recently, and I was hmized at its luw cost and smple building. I firse flew it on the Chester race course und I have comstantly had dights over 1 mint, and in one thighe the plane liew for 2 min. A sucs. Its stabibity ame wheatly llying are all that conuld be desired. My next kit shall be the "Ajax" and 1 hope it flies an well as the "Acminds".
W. E. M. Belsington, Yorks.

24 in. Rubber powered

The most suceesslul "pyion" contest ofbdel evort designed. 42 in wimpton 21/-

PHANTOM
21 in, Control 22-

Sole disiributors in U.K. for
ALLBON a D.C. Engimes ELMIC Timers and D Ts. ELFIN Engines AEROKITS boat kits
Also distributors for E.D.. E.C.C., BRITFIX. AMCO. and the famous

Almost every post contains a letecr or a newspaper clipping with news of a record night or competition win, from yet another "satisfied K.K. customer". Here are a few typical samples from our postbag.

Dear Sir.

On Siunday, September 2, near lludderslieded ut 3.30 pm .
 15 minutes an al 20 -second congine rum. Ifeel that this was in outstanding light, even for a Slicker, and therefore woreh while lringing to your notice.

1). I. IS., Gomere, Verrks.

1)eir Sirs,
()n Sunday, July 20, my lieil Kirafi "Comiknotor", on its second llight, and with ti0) turns on the motor, was timed out of sight after 5 min 30 seco. Ohe flight was thened and withessed by several persuns.

P. N. C., Kingwhury, N:W. 9.

 Dear Sins,May I ofter you congratulations on your teally exedene model " Ajax" " Ae the school we have a nuniter of warious types of machines, but the Ajax wins every time! I myself have three of this make and for consistently good Hying, I have never seen any machine to come up to it.
M. IF., Ifimingham 27.

Dess sio.

1 recently purchased a Keil Kiraft "Puantona" control line model kit, und I am very pleased with the result. I find that the model is everything gou claim for it, I ant a beginner to C I. Ayinu hut I find the Phantom is an ideal trainer. The construction is extremely robust, wa witness by the fuct the mudel did a wing over and crashed nose tirst into terra firma (due to my inexperiencee), and all that came adrife was the detachable cowl. (.) (i. It., (inventry.
1)ear Sir,

I have made a Fairey Gannes, " Spitfire", S.f.t.5 amd 13.11110 and I really think your kiss are wonderful, becaluse they are instructive and fun tos thake and they turn out very well.
'I'hery alse show that you go all out to plesese customers.
1' M., Sarrati, Ilerts.

INVADER
40io. Tomine zider. 7/6

MINIMOA
so in. Towine zlicor.
86

30 in , Rubber powored duration model. $7 / 3$

BUY KEILKRAFT

AT YOUR LOCAL MODEL SHOP
If no model shop convenient, order directfrom KEILRRAFT, Please add 6d. entra pleking and postare.

Manufactured by E, KEIL \& CO. LTD., WICKFORD, Essex Phone: Wickford 2316

[^0]: Tops Winser neane ni Crech compedtora dm alopnomaring KjC. zopenf at Vrehlabi in tha Haheimian manntainn, pramara is fly
 ima. A car. Wabra Pícroloe by Mr. Hafriui Zirmior of Calogron, ham retrardiep andercarriage. Joflam: Internadional flyer 2inhro
 oubygriphed trealimys

[^1]:
 ohin marel hinh thrtant atenign luy J. Mf. I.nirmon
 -wdider ronitaf' it laft; forriwj of saigon rithusiatfo will their mismet tong iff Clli acele
 and finsth ramres. An fenf of hark rom ta

[^2]: DESIGN FOR
 AEROMODELLERS 5/6 CONSTAUCTION FOR AEROMODELLERS $\$ / 4$ AEROMODELLER ANNUAL 1954/SS 10/9 AEROMODELLER

 Prices inchude partarge and packing.
 Send empen and P.O. is cever amount te addrass of under:
 NAME
 ADDRESS SCALE MODEL CARS
 FLYING SCALE $5 / 6$
 MOOELS IO
 THEAMATEUR ROD
 MAKER S/-
 CCNTEST MODEL
 SALPLANES $5 / 4$
 BOAT MOOELLING
 SIMPLE RADIO CONTKOL
 ?

[^3]:

