250
 FEBRUARY 1955
 m 10
 1
 క3 3is

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/ member.php?u=107085

Digital Edition Magazines.

AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics. com/hpa plans/index.php

Diligence Work by HIsat.

$\mathrm{ALBBON}^{\mathrm{LBN}}$

Solves ALL Your Problems:

By offering a complete service for the power flier. Our extensive range of engines is backed by a comprehensive spares and accessories service, all of which are available at your local model shop. Any modeller or retailer who has the slightest difficulty in obtaining our products should contact the manufacturers immediately.

POLICY FOR 1955

We shall maintain our position as Britaln＇s leading mail－ardar auppliera both to home and overseas modeliers by continuing as foltown：－We acknnwledge overseas ordera by air－mail lerter Immediately；full official exchange raten allowed；carriage charged as cost；goode properly packed and insurad in trangle．Prompt and personal attention to home buyers．WE CARAY VERY LARGEAND UP．TO－DATE STOCKS OF EVERYTHING OF INTEREST TO modellers．

QUALITY KITS

Mercury＇s newest class＂A＂Team Recer．A kit of exceptional yalue
$15 /-(2 / 6)$

MEIRC＇IEI

Taxan C／L
Inr．Monitar
$13 / 4(2 / 2)$
Maga 38－Fif $\quad 19 / 9(2 / 9)$
Matador 50 ${ }^{\circ}$ ．．．．．． $21 / 5$（3／7）
Jnr．Mallard … ．．． $15 /-(2 / 6)$
Mallard
－．．．10／3（3／1）
blider
SCALE
Marance Sedan
Monocoupe 64 Skyjeep
Titer Moth Stinson 105

MEMIMERETM
POWER F／F SCALE
For 0．5－0．75 diesals
Piper．Super Cruiser，
Cosina 170 ，Luscombe $\} 18 / 6$（3／1） Soarar Minor ．．．．．．8／－（1／5） Soarer Major Slicker 56＂ Sourhernar … ．．．25／－（4／2） Gipsy 40° Rubber $\quad . . \quad 40,-(6 / 8)$ Gipsy 40 Rubber on 10,6 （1／9） Consentor（W）．．．．17／6（2／11） Competitor 32 ${ }^{\circ} \quad$ 7．．． $1 /(1 / 2)$ Pixie 23－ Bandic Stunt Queen C／L … 20i－（1／7） Skysereatc $40^{-} / \mathrm{L} \quad . .2 \quad 21 /-{ }^{(31 /-)}$ Ladybird FjF \quad 10．6（1／9） Junior 60° ．．．． $396(617)$ Southerner 60 $\quad . . \quad 40_{i-}$－（618） Erobild Champ．C／L ．．．10，6（1／9） ALSO FUL RANGES OF
Rubber fying Scale，each $3 /-(6 \mathrm{~d}$ ） letex Flying Scale ．．．．3／－（6．d．） and all othar K／K Models．

EEIBON

Sabre（D．Fan）25（417）
$\begin{array}{lll}\text { Sabri（D．Fan）} & \ldots & 25 /-(4 / 2) \\ \text { L．A．I7（D．Fan）} & \ldots & 25 /-(4 / 2)\end{array}$ Spiefirs Cil $\quad \cdots \quad \cdots \quad 27 / 6(5,7)$ Sea Fury C／L $\quad . .2$ 23／6（3／11） Panther C／L … \quad 25／－（4／2） Skyskooter（for R／C）25／－（4／2） QUICKYS，SOLIOS，LAUNCHES，

FIIRAMOIJT

Sunanvind Glider Moose 69 Glider

10／－ 224
0.5 Powared F／F ．．． $7.9(1 / 3)$ Hornet C／L Jetmater Saries Canbarra，Vulcan，Sky－ ray，otc．
Star Serian，each
Silhoulera，3／－（6d．）
－IS（SC（）
Jasco Tuto
sco Triumph
Rubber duration
Jasco Thar F／F Conceat
Jasco Trolan，Sogin－
JETEX
Skyriy $\quad . . \quad$ ．．． 9 （1／9）
Hawker Hunter \quad ．．．11／－（3／－）
5 wift
18／－（3／－）

Space Ship 42i－（5／8）
Pylon Race Car－－16）－（211）
Wimea Launch
4.3 （9d．）
$7!4(1 / 2)$
$10.9(1 / 9)$
8 8（1／4）

Send S．A．E．for Supplementary Sheat so add to your present A．M．Catalogue to bring it up to date，of Jd．in stamps for complete catalogue and Sup．Shnet． FIGURES IN BRACKETS REPRESENT PURCHASE TAX WHICH HOME BUYERS must ano to the paices of the gCoos shown

ARILUR MUIITI 16 MEETING HOUSE LANE BRACHRTDN－SUSSEK－ENG．

ENGINHA

EROM BRITAIN＇S LARGEST RETAIL STOEKISTS
Albon Dart Mk．II ．．．54／＝（10／2） Allben lavelin Allbon Merlin 0.76 Allbon Spitfire 1 c．e Allen－Mercury 25 Amico 3.5 8．B． Amico 3.58 .8 Amea 3.5
O．C． 350 G．F．
E．D．Baby .46 c．c．
E．D．Bee I c．c．
E．D．Comp． 2 c．e E．D．Huncer 3.46 c． E．D． 1.46 c．c．
E．D． 2.46 c．c．Racer Elfin 1.49 B．B
Frog isc．
Frog 50
Frog 150
Frog 500 G．P

Fog $5001 . \mathrm{C}$ ．
$70 /=(11 / 6)$
Mill：P 75
Milss 0.75 c．c．wist eut－
out ．．．．．．
Mill』 0.75 c．e．without
cur－out

Mills I． 3 e．
 WEBRA

75／＝（12／6） or tha home market
WINNER IS
MACH 15 is B B．do．lux 701
PICCOLO．B
A deluxe job．
Weighs If oz．
0.075 h．p．at

14，000 r．p．m．
（Exportonly）35／

ERAMIS C（ONTEOL

ALL E．D，and E．C．C．EQUIP．
MENT Including
E．D．Boameranginclud．
ing Escapement ready
wired crantmitter
and receiver \quad（10 $-1-(39 / 6)$
E．D．Boomerang Rxanly $89 /-(16 j-)$
E．D．Mk．II 3－valve．com－
plete trans．and revr．（14／17／6
（54／－）
E．D．Mk．IV Tuned Reed
3－Channel Unit
（Trans．，Reyr．i con－
trol box，less Escape－＊
ment）$\quad \leq 20 /-j-(75 /-)$
AEROMODELLEA ANNUAL 10／－（6d poscage）
AM－PULL vernier con－
trol C／L hande
56 （3d．）
ELMER Variable Pitch
Prop 22／－（3／5）
FROG NYLON PROPS
$6 \times 41 / 34(2+d.) ; 日 \times 5,8 \times 62 / 41$
（41d．）； $8 \times 8.9 \times 6.10 \times 62 / 10(5 \mathrm{~d}$.$) ．$
Frog Plastics also stocked．

Avionic Receivar－ $65 / \mathrm{*}(12 /-)$
E．C．C． 951 A Revr．．．．70／－（13／2）
E．C．C． 1061 Tranmmiter $70 /-(13 / 2)$
Fenners Pike Control
Unit
$49 /-(9 / 6)$
Fenners Pike Steering
Unit ．．．．．．
58／－（10／6）
E．D．Mk．III Escapement IB：6（3／3）
E．D．Mk．I Escapamans $47 / 6$（9／6）
E．D．Polarised Ralay ．．．30i－
E．D．Rudder Mechenitm $48 /=(9 /-)$
E．D．Mk．IV Conerol box $44 /-(8 / 2)$
E．C．C．SARelay \quad 25 $/=$
＂DROME＂AIRWHEELS
 31．2年 oz II！per pair．
Model No．3．zuarantend 5 yri． $2 / 6$ －ONDAGLASS
New sizekit ．．．．．．S／－（IId．） SOLAREO，TISSUE，FUELS OOPES，CEMENTS，etc．，etc＂

Specially recommended

N．V．E．NoIsEL CAIEs
The finest in the world．Full range af complete models and spares carried including：Marcedes Benz：Bugasti；11 litre Alta；＂E＂Type E．R．A．： IS9 Alfa homeo：Aerodynamic H．R．G．：each kis $12 / 9 \mathrm{~d} . \mathrm{R} / 2 \mathrm{~d}$. A6．G．C．S．Miseriti

Those familiar with aderomodelling will find no difficulty in producing piccures in wood veneers．We stock the best kics by Homecref； Modeleraft and Alan Wrighe．S．A．E，for leaflets and prices．

The world＇s tinest wols for modelling
No． 51 Knifa and 6 asstd．blades
No． 52 Knife and 6 assed．blades
No． 622 Knives and 12 blades
No． 82 Toal Chese in cabiner
No． 78 Wood Carving Sat on seand
No． 78 Wood Carving Sot on stand
Burlingeon

24 mn . apan, Conerol-line replica of the American lighe spors plano. A has elass " A " EMIT PRICE (Incl. P.T.)

SABRE

IB-in. Span supar quality kit of the well-known KIT, PRICE wapt-wing Jet now In service with United Nations Countries. Kit includes perlorly laid-out
plan togather with all materials (for "Jorex 50 ").

25 tha. Span control-line gtunt madel with comblied tlap ind ulevator control KITPRICE slving exceptional manoeuvrability tothigh $27 / 5$ (incl.
speed. For motoris of 1.3 ca 5.0 c.c.

ASK YOUR DEALER FOR THE FREE VERON POCKET FOLDER

SKY-SKOOTER

An ateractive Jittie cabin job, aspacially dasigned to suit the new uleratighe R.K. 61 Radio Coneral syetems. For amall Diasel and Glow Plug mosors of 1.0 to 1.5 e.e. capicisy, and will carry E Radio systam werghing up to 12 oz H's really ruper kis. Span 48 in . Wing area (N.A.C.A. 4415) 310 sc . in. Ruged and stable in flight at all cimes. Winner of many Radic Control Contesta both National and International
| Flying weather is on the way I... Now is the time to build your model for the new season and you cannot do better than to choose VERON for quality, value, realism, and performance... THERE'S A KIT FOR EVERYONE I

KIT PAICE
292
(inc. P.T.)

5s-in, span Control-line raplica of the Navy's turbo-prop-jet. Combined flap and elevator control sives axtra
manoeuyrability.
KIT PRICE (inel. P.T.)
$27 / 5$

VERON SOLIDS

A range of 24 Solide-thie tivan you a chance to choose your favourltes from world famous aireraft.

Suparsonic Figheara - Modern Joe Bombers and at prices renging from an litele an $1 / 5$ to 7/2 (incl. P.T.)

WATCH OUT FOR NEW
SOLIDS SOON:! !

The ourstanding successes gained by E.D. Diesels in open competition all over ${ }_{C}$ the world have made them the first choice of enthusiastic modelters. Designed and manufactured by skilled aircraft engineers, they are checked individually for accuracy and rellability to a standard that ensures the highest " possible speed and performance for your models.

At the official M.M.S. SOVIET STATES INTERNATIONAL held at 4 TUSINO AIRPORT, MOSCOW

IN AUGUST, 1954

JERMAKOV of the Ukraino was 2nd KUCEROV of Russia was 3rd BOTH COMPETITORS USED "E.D. 2.46 C.C. "RACERS"

The mere fact that we have succeeded in introducing E.D. Produets ineo Russia is News indeed, but to achieve success in open comperition in Moscow deserves a SPECIAL EDTTION. If further proof of the high qualizles of E.D. Products were needed, then this "curtain raiser" certainly supplies it.

It's wonderful news about a wonderful engine

AICTROTIC DEV:IORWINTS (SUWHEV) LTO

Kindly mention AEROMODI:LLER when replying to advertisers

You earn a Regular's higher rate of pay from the day you join.
You have the choice of a wider variety of ground trades and a better chance of promotion.

You get more annual leave and free travel warrants.
You are paid for your reserve service if you have a reserve training liability.

* For 3, 4 or 5 years - the length of engagement governs the trades available.

Get fuller details of this scheme by posting the coupan now
TO: ROYAL AIR FORCE (A.M. 126A), VICHORY HOUSE, LONDUN, W.C. 2 Please send details of short regular engagements in R.A.F. Ground Trades

NAME
ADDRESS

DATE ITF BIRTH
(Applicants from Brilish Isles only)
Kindly mention AEROMODELLER when replying to advertisers

THE MARINE 150° by
 TROE $\sqrt{\text { max }}$

Available now for all boat modellers is this new FROG marine diesel. A faithful follower in the FROG tradition of reliability and power, this model can be relied on to satisfy the enthusiast requiring the best. The Marine "150" is water-cooled with special cylinder head. and has a balanced, turned brass flywheel. A star performer which can be guaranteed to be a credit to the FROG range of models

Capacity I 49 c.c. Weight 6 ors.

FROG '50'
Mk II
Powerful yet compact, small and light, the "50" Mk. II is ideal for the smaller model. This new version incorporates several now leatures for preater power and casier for greater power and caster
staring. Capacity . $49 \mathrm{c.c}$ staringe. Capacity
Weight $1,47 \mathrm{ozs}$.

45/-

FROG AIRSCREWS
These airscrews are available in plastic and nylon the nylon ones being 100% increased in strength with 20% saving in weight.

Size	Plastic	Nylon
8 in, dia, $\times 5$ in, pitch	$1 / 3$	$2 / 11$
8 In. dia, $\times 6$ in. piteh;	$1 / 3$	$2 / 11$
8 in , dia ${ }^{\circ} 8 \mathrm{im}$. pitch	1/6	316
10 in dia $\times 6 \mathrm{in}$. pirch	116	$3 / 6$
9 in . dia. $\times 6 \mathrm{in}$. oitch	$1 / 6$	$3 / 6$
6 in. dia. $x^{4} \mathrm{n}$. pitch	\%d.	1/6

With a speed range of 2,000 to 15,000 r.p.m. this Frog "150" Mk. II is a contest winner of world repute. An unbeatable motor in its class-and now, in
FROG ' 150 ' Mk II

FROG '500' RED GLOW

A high-speed performer with plenty of punch. Designed for long life and easy starting, this model has acquired a world-wide reputation for reliability and power. Capacity 4.92 c.c. Weight with freeflight tank, 7.75 ozs.

X-acto RAZOR SAW

Made in iwo sizes. No. 34, 1° deep 44° long 2 . No. 35, 1' deep 4t' lang 2 ' 6 Na .53 . Razor Sow Set

- No. 5 honde and the twa blades 10/6

8.c.cto hobsy KNIVES \& TOOLS

Here's a new X-acto tool for the crafis. man, a tool for those sawing jobs requiring the utmost precision. Made of special steel it cuts wood, metal, bone, iwory sleanly and accurately with the minimum of waste. It is guickly fitted to the No. 5 Handle and, like all X-acto blades, is held in a vice-like grip. The perfect tool for perfeet work.
See it at your X-acto Agents.
TRIX LTD., 11, Old Burlington Street, London. W.1.

Still more skill

 at your fingertips made this famous engine so popular are retained, with the addition of a New and improved Crankcase, and a removable Exhaust Stack. "Twin ball races, giving smooth friction free running, make this the most powerful 3.5 c.c. engine on the market.

93/5 Including Tax

Try Our engine exchange service

We offer this service DIRECT to modellers who can exchange any existing B. B. Engine, providing it is complete, for a factory reconditioned unit incorporating the Mk. II improvements. SEND YOUR MOTOR WITH 33/- DIRECT TO THE MANUfacturers who will despatch within 48 hours

TRANSMITTER CASE Price 30 -

Save time and money by purchasing the famous Avionic Transmiter Unit and Case as separate irems. The C'ase is undoubtedly the most practical and handsome unit available, being in two parts, the upper for housing the transmitter unit, and the lower for bafterics or power supply. "Ihe aerial fitting is provided, and assembly is child's play. "The (nit is wired complete with piugs, and is accurately set to the correct frequency before despatch; all you have to do is fi: it in the case.

TRANSMITTER UNIT

Unit as illustrated is complete with valve and plugs, and ready for immediate use. Price $54 / 8$

AMCO MODEL ENGINES

WELL OVER

FOR SIX YEARS MERCURY FUELS HAVE REMAINED UNSURPASSED FOR

Theree's a greale for ecerg engine

"Covers the world of Aeromodelling"

VOLUME XX
NUMBER 229
FEBRUARY 1955
Alanaxing Jiditor - - C. S. RUsllimROOKE

Editor - - - - - H. G. HUNilliHY
Assistant Editor - $\quad-\quad$ K. G. MotiIOUN

In this issue
 Special features

"ATCNKEE"	68
THEORY ON EVGINE TEST'S	\ldots	...	70
DOUBLE ACI'ION 'TIMER			73
"MILES \$1-35 ISHELILULA"	\ldots	...	74
SOAP BUMBI,	\ldots	\ldots	81
"RIAJ-H.\.m"			88
THE PRONY SIILACION	99

Regular features

HANGGA DOORS			66
MAKING: YOUR OWN ENGINE	\ldots	\ldots	76
AEROPIANES IN OUTLINEYolland Midge	78
MO'TOR MARI'			80
MOIOEL NEWS			84
AKMCHAIR AERONAUI'ICS	. ${ }^{\text {a }}$..	86
WORLD NEWS			90
RADIO CONTROL NOTES	-	\ldots	92
AIRCRAF゚「 IJESCRIBEDPercival New Cull	\ldots	\ldots	94
ENGINE ANALYSIS- Webra 1.49 Record	\ldots	\cdots	96
TRADE NOIES	\cdots		100
CLUB NEWS	-..	...	102

[^0]
SOLID IMPROVEMENT

1)URIN(; THE intensive model building programme of the last World War, the production of "sotid" models was more prolific than ever before, and in no small neasure due to the abundant provision of hits and drawings.

With the end of hostilities, this type of aeromodelling "took a nosedive" and manufacturers were left with considerable unsaleable stucks on their shelves-and a siocable hole in their profits as a result. The causes were not hard to find; sudden cessation in interest in aircraft spoting; the facilities to once again put moulels instio the air instead of on the mantleshelf; and last, but by no means last, the return to other hobbibes of people Who had taken up the art of "balsa bashing" as a means of passing away time during the war years.

The return of interest in solid modelling, is however, the most prominent factor in atromodelling trends today, though the reasons for this are not easy to discover. From our own experience the sale of our world renowned three-view scale drawings have almost doubled within the last twelve months, and the demand is steadily increasiog. In addition, more and more manulacturers are including well designced solid model kits in their ranges.

We trust we may be excused a little trumpet blast on our own account on this subject, for the "A mobommentman" was the first to publish authentic scale drawings to satisfy those seckers after accuracy, and during the war years sold many hundreds of thousands of drawings of both modern and ancient aireraft. Since those days, our range has greaty increased, and we can today offer the most comprehensive range of scale drawings in the woild. Accuracy coupled with good draughtsmanship has been our aim, and the success of this policy is evident from the many expressions of appreciation we receive.

The well known adage that "imitation is the sincerest form of Hattery" is never so true as in this connection, for more and more aviation papers are introducing the threeview scale drawing into their editorial pages, in many cases an almost line-for-line copy of designs that have appeared in out pages!
'I'his spate of imitation has gone further than just drawings recently, for we are in recejpt of an increasing number of foreign modelling magazines, some of which have copied our layout and designs most faithfully, and at least two, our titleor at least, the native equivalent of $i t$.

We are flattered. . . for surely this is an admission that where we lead, others follow!

On the Cozer

[^1]

Heard

at the

Hanger
Doors

Bigurar PAA loads in the Id.N.A.

George Gardner, Educational Director of Pan American World Airways and prime mover of the PAA contests today, sent us a draft of PAAload rules for 1955 that incorporated many changes. Dallas Sherman, known as the PAA-load PAAppy in the U.S., suggested that the rules were becoming over-easy as a result of model development. The result is that whereas there were $\frac{1}{2} A, A$ and B classes in the States, they will now have only $\frac{1}{2} \mathrm{~A}$ "America" class (up to .8 c.c.) and a new "International" class for up to 2.5 c.c.

Dummy size to be standardised at the $3 \times 3 \times 1$ body with 1 in. square head but the weight to be reduced for this size from 8 to 5 ounces. 'Thus the small class would be carrying a larger, and 1 ounce heavier dummy, and the new "International" class would have to carry three such dummies (yes . . . 15 ounces totall). As the heading picture shows, the little man was to be left out in the cold and the bigger but five-ounce dummies took up three-in-arow position.

But all PAA-loaders with existing designs for the smaller dummy or single seater may breathe a sigh of relief, for as we go to press an unofficial report reads that the above suggestions are now to be changed. The small dummy will still be used for the "America" at 4-ounces-plus 1 ounce of cargo, or if a 1 c.c. engine is used (a nice International thought on their part) it must carry a 2 -ounce cargo, making a total of 6 -ounces. For the F.A.I. class, we keep the 8 -ounce single seater and carry in addition, 8 -ounces of cargo, making a total of 16 ounces. So P'AA-loaders are to be even heavier than before!

Inmediate effect will be to limit flight times by no mean margin, and the further adoption of the International five Hights of 3 min . maximum system, will certainly call for more competitor effort. As George Gardner states, "The changes are aimed at putting the premium upon skill in construction and flying and minimising the possibility of eatching a lucky thermal."

Scottinh Fentival of Model Iviation

A. T. Doughton, Scottish Sales' Manager for Pan American World Airways, has asked the West of Scotland Aeromodelling Clubs to organise a large two day Rally in the West of Scotland during 1955. A Committee has been formed with Mrs. Shirt as Festival Manager, and Mr. Mecehan as Contest Secretary.

There has long been need for such an event in Scotland, and the Committee look forward to the support of all aeromodellers. particularly those in the North. Everything will be done to make the event a success, as it may become an annual affair.

Below is listed the Committee's proposed Contest Programme, and they would like to hear from Clubs and Individuals' constructive criticism and suggestions for any other classes.

PROPOSED CONTEST PROGRAMME:-

1. F/F Unrastricted GLIDER.
2. F/F Unrattricted RUBBER.
3. F/F Unrestricted POWER.
4. P.A.A, Load POWEM, $1 t$ c.c.
5. P.A.A. Load POWEM, 2 t c.c.
6. P.A.A. Lond RUBBER.

FIFSCALE EVENT.
TEAM RACE CLASS "A"
TEAM RACE CLASS "B"
TEAM RACE
C/L STUNT.
COMBAT CLASS *A"
COMBAT CLASS "R"
CIL SPEED ALL CLASSES.
14. RADIOCONTROL.
15. CONCOURS, ALL CLASSES.
16. JETEX

The Festival is scheduled to take place on Saturday and Sunday, September the 10 th and 11th, 1955, and at the present moment negotiations are in hand for the use of Heathfield Aerodrome, Ayrshire. There will be a very handsome prize list.

All enquirics and suggestions with reference to the Contest Programme, Accommodation and Travelling Arrangements should be addressed to the Festival Contest Secretary. All General encuiries, (and those for Accommodation and Travel from enquirers NOT living in Scotland) should be addressed to the Festival Manager.

> Festival Manager
> Mrs. Freda Shirt,
> 13 Patmore Road,
> Sheffield 5.
> Contest Secretary
> Mr. W. Meechan, 110 Banner Road, Glasgow, W.3.

Ited Ietter dav for ateromodellers

Latest II Iungarian stamps-produced as much for stamp collectors as for normal postal use-feature aviation from A to Z. Lowest value of 40 fillers shows the young acromodeller at work on most ambitious glider: next value (50 f) shows him Hying it, though it looks much smaller now it's covered. Then follows air progress, value by value, through learning gliding (60 f) to fly in Zlin 26 Trainer (80 f) parachuting (1 forint), fruit spraying in Bucker Jngmann (1.20 f) and finally civil flying with a Yak 16 and military flymg with a Mig 15. Unused sets are available from most good stamp dealers at about $6 /$ complete.

Apart from a Russian l'ioneer issue, this is the only occasion when we can trace aeromodelling as the direct subject of a postage stamp, though stamps have been used for aeromodelling fund raising, as in the Swiss Pro Acro series. Dare we suggest to the I'ostmaster Ciencral that here is a grand opportunity of collecting for that Wakefield Fund, while anything over could always buy the R.A.F. a Folland Midge or so!

F.A.I. Gen.

Though a meeting of the F.A.I. Models Commission was held at the beginnaing of December, we have little news of what transpired as we go to press. One item however, will exercise the minds of those responsible for International acromodelling affairs, and that is the vexed question of who will stage the 1955 Wakefield T'rophy contest.
The original rules for the Wakefield state that the contest will be staged by the country winning the previous year, the Troplay being credited to the individual with the top score. F.A.I. regulations state that the country with the option for future running of the event is that which provides the winning team. Australia has applied for the contest in 1955, and America 1954 team winners have also made a bid for the event, and it will be interesting to see how this problem is resolved.
Personally, we favour the contest going to Australia-even though this may be contra to the current rules-for they together with New Zealanders have for many years supported the Wakefield by proxy, and it seems only fair when they have at long last made a successful entry that they should have their chance at staging this famed International affair. (iranted, it will mean that the majority of the entry will have to be proxy, but it is only fair to have the positions reversed once in a while. We understand the Aussies have a suitable venue at Benalla, an old R.A.A.F. acrodrome approximately 100 miles north of Melbourne.

Are sun indexal ?

A stamped and addressed envelope of normal 3 i in. $\times 6 \mathrm{in}$. proportions is all you need send to "Index" department, "Afromodeller" offices at 38 Clarendon Road, Watford, Herts, to obtain your copy of the comprehensive cross-indexed reference sheet for volume 19 of "Aeromonflier" for 1953. This is yet another A/M scrvice to readers as an aid to more and better aeromodelling.

How are, woll as at designere?

Good sport model and first-class scale designs are wanted for publication in "Aleromodeller". It is essential that flying scale models are accurate, and both types required should be for motors ranging from 5 c.c. to $2 \frac{1}{2}$ c.c.

Readers should not let the fact that they are not professional draughtsmen prevent them submitting designs. We prefer to receive zoorking drawings, rather than a design re-drawn for our especial benefit. (iood clear photographs of the model are also required. We like black and white glossy prints at least 6×4 in., but where the supply of these is difficult, we are cquite happy to receive the negatives.

All designs accepted are paid for at handsome rates, and those modellers who think they have something worth offering, should send photographs only in the first instance, with one or two brief details of the model to put us well and truly in the picture.

J/C and IPIRE-NGTIEY

A secemt apprtanth to the S.M.A.E. to discontinue de-centralised contests was not approved, it being the opinion of Council that-though not supported to the extent they should be-nevertheless such contests form a vital link with those clubs who still wish to stage events at other than Area or Centralised level. However, in future pre-entry will be required for all National contests, thus ensuring that the prevalent practice of only sending the top club time of a dozen competitors is discounted.

Associate Society members will be interested to learn that it is proposed to award a National contest to them, entry being restricted to this class of membership only, thus producing-we hope-an experts bareed event.

FULL-SIZE COPIES OF THIS I/5th SCALE REPRODUCTION OF THE A.P.S. DRAWING CAN BE OBTAINED, PRICE 6s. POST FREE FROM THE AEROMODELLER PLANS SERVICE.

POWHIt CIIAMID IUIDIIM DAS

Dremanta. . .

ATakee

> Pronounced "Ah-tah-kay". Atakee is a slang term from the French Athaquer. . to attack. It is used as a tuar cry when one is very enthusiastic and was chosen for this model because the side elevaion gives the impression of being aggressive.

The das twins, from Haarlem in Holland, are internationally renowned for their artistry in producing wonderful cutaway drawings of full-size nircraft. Technical drawing is their business, and aeromodelling their hobby. 'The two facts combine to give us a model of striking lines and an enviable contest record.

Rudolf I las designed the first of the Atakee series for his lilfin 1.8 diesel in 1953. He had been impressed by the Mexican "Mattiri" design with its long nose, long fuscluge and slim pylon, and so he decided to use a cowled engine blending into a swepe pylon for similar effect. 'I'ests were good. A vertical climb without use of any offset on the engine, and regular ratios of $11: 1$ led to a number of high contest placings and ad demand for plans from fellow club members. Re-designed for easier construction in later ' 53 , five new models were made by the laarlemse Cluh during the winter, two with Elfins, one with a Frog 150, and two with Wehra 1.5 Records. Test flights showed an average of $3: 15$ from 15 secs. engine run in good conditions. Both VTO) and nommal take-off can be used, and at the close of the '5t season the contest record included four 1 st , one 2 nd , and three 3rd places plus five team wins for the Harlemse club.

Design points of this F.A.I. formula model are: (1) Long nose with low thrustline and swept pylon, giving an enlarged loop radius and no requirement for downthrust. (2) Thick tailplane with swept planform for directional stability. V'r) points, and keeping more of the tail in the slipstream area, (3) Span less than length for good rolling characteristics, large wing chord for good glide without affecting the climb.

Suitable engines are: Webra 1.5, Elfin 1.5 P.B.. Allbon Javelin, Frog 150, 'lorpedo 15, Allen Mercury 25, Elfin 2.49, or other similar front rotary intake engines. Suitable props range from 7×4 to 8×6, according to engine power.

British engines shown on the plan are the Allbon Javelin Mk, II and the new Allen Mercury 25, each of which is admirably suitable for Atakee as a contest model. With the A.I 25, performance is outstanding hut it should be remembered that for F.A.I. regulations, all up weight of this version must be more than 17 f ounces.

Fleet of Atakees at right belongt to the succesafful Haarlemas club and sercei to demonstrate the popudarity of this praven design among Dutch modellers. "Siupt" linea are apparemt in top siow showing Hebra 15 zersions.

Wing.-Start with centre-section spars and build wing on plan. Iinish wing tips before joining the centresection. As a result of the wash-out of the tips the trailing edge must be fitted after the tip is removed from the plan, the diagonal spar is fitted later. Cover with light Modelispan

Fuselage.-Cut out all formers. Construct SA (Sub Assembly) 1 to SA-t on plan. When set, mount F 2 and $F 3$ in SA-1; fir SA-3 in F3 3 and plue it on SA-1. Mark the correct position of $1 \cdot 4$ on $\operatorname{SiA}-3$, and plue F4 in SA-2. Fir $\mathbf{F} 4$ with SA-2 in SA-1 and SA-3, and cement SA-2 to SA-3. Fit 1:5-F8 and sheet fuselage bottom to F.5. Fit spruce in F3 and F4, cut out wing plat form and glue in place, fit SA-4, engine bearers, F .1 and botom planking of $3 / 32-\mathrm{in}$. Mount engine, tank, ncoprene tubing and clockwork timer.

Start the Fin with I.e. and t.e. When dry, fit $14 \times 1 / 8$ cross member by glueing it to l.e. and through t.e. Check the correct position on the plan. Now cut out fin-tip and cement in place, as with the $1 / 8 \mathrm{sq}$. contourmembers. Mount tin on SA-1, fit fuselage struts and sheet fuselage. Cut cowling-top from thin celluloid to suit engine. Cover fusclage with light Modelspan tissuc.

Tailplane.-Prepare t.e by cutting out for lap joint. Pin down t.e. and l.e. on plan. Fit even-numbered ribs, then fit the other ribs between. Mount auxiliary-fins after covering the stabiliser with light Modelspan.

Finish the model in a dark colour for better visibility. Original colour scheme is black and white.
Trimming. -The right Hight path at half power is a $\mathbf{2 0 - 3 0}$ degree climb, straight or in a right turn. A left turn must counteracted.

At full power, climb must be fast in a tightening right spiral path of $80-90$ degrees. Should the climb ratio fall back after a good start fit a prop with more pitch.
'The right glide-angle can be obtained by observing the amount of stall and the recovery after engine-cut without the a:to-rudder operating. The stall recovery must show one tum of fairly large radius (about 20 yards) without any further stalls.

With the auto-rudder practically no stall should be observed. Always use more than 10 sec . engine run when the auto-rudder is not functioning. When properly trimmed the Atakee should have a ratio of $12: 1$ to 1+: 1-and don't forger-always use the d.r.!

A theory on ENGINE TESTS

by Ron Warring

As readers are zeell azvare one of the talking points of the year has been the development of new engine testing gear by The Aeromodeller achich has thrown doubts on the validity of previous engine test data. In fact, such new data zould appear to exemplify exactly, comments by Sir Harry Ricardo, F.R.S., on the subject of engine testing, from which we quote Ref.'.
"The testing of internal combustion engines is by no means the simple problem it appears . . . We place an exgine on a test-bed, couple it to a dynamometer . . . and start it up, it makes an unconscionable noise and seems inordinately busy. The dynamometer and speed indicator tell us, more or less, the pozver it is giving-usually an acute disappointment . . ."

The fact that different authorities concerned with model aero-engine testing have produced such different results may not, therefore, be so surprising. However, somewhere or other there must be a reason for such differences and so as a further talhing-poim-and perhaps a glimpse of the complete picture-the follow. ing theory is presented as a possible explanation. It is not a theory dreamed up by "armchair analysis" but is based largely on a detailed study of all test results which have shown inconsistencies or marked differences. It is by no means the final word on the subject, but could supply the anszer to a question which nobody has yet attempted to solve-other than bluntly state that "so-and-so's tests are rerong". It seems in fact that both "so-and-so" and the other fellow could both be "right" within the broad meaning

that a single engine could in fact yield test results differing by as much as $25-30$ per cent. with all normal errors or losses accounted for. The implication that a model engine may give entirely different power outputs under different operating conditions raises the pertinent question of zohich "level" of performance is, in fact, the one to accrpt as standard. Some detailed comments on this very subject form the bulk of the theory.

Since brake horse power is a derived value it is more convenient to talk of engine power in terms of torque output which is the actual turning effect produced at the crankshaft. Other authorities prefer

to talk of brake mean effective pressure rather than torgue although the two are essentially the same. All forms of reaction cradles and dynamometers actually measure torque. To find brake mean effective pressure (B.M.E.P.) it is still first necessary to find torque which is then factored by a constant guantity to yield B.M.E.P. In simple terms brake horse power equals torque x r.p.m. x a constant. B.M.E.P. is that proportion of the actual gas pressure within the cylinder available to do external work-hence again brake horse power equals B.M.E.P. x r.p.m. xa different constant. Also, B.M.E.P. is in effect, "torque per unit capacity". Plotted on a graph, both the torque and B.M.E.P. curves are identical, although in different units. For all practical purposes they mean the same thing.

When any size of propeller is fitted to an engine it represents a fixed load. 1 lence, logically, the engine will speed up until the power absorbed by that load is equal to the power coutput of the engine at that particular speed (Fig. 1). Different propellers will yield different fixed points on the curve i.e. different operating speeds depending on their power
absorption characteristics. For any given "family" of propellers the latter should be directly relatable to diameter and pitch.

Thinking now in terms of torque that same propeller will be absorbing a certain torque at its "fixed" speed. With the torque curve fixed as a characteristic of that particular engine's performance it should always turn that propeller at the same speed, for given adjustment and the same fuel (Fig. 2).

Measurements were taken on a torque reaction

rig where r.p.m. relative to propeller sizes can be established along with the corresponding torque reaction (i.e., torque absurbed). It was intended that these tests should form the basis for propeller calibration data and also enable a direct comparison to be made between the torque curve so derived (using a whole range of different propellers) and a similar torque curve for the same engine obtained on the eddy current dynamometer. Such differences would have given a good indication of the modifying effect of slip stream, which is one of the incalculable losses on a reaction rig. (Blanking off the slipstream with a shield, or using reverse pitch propellers which produce no rotational inflow over the engine is now known to be unsatisfactory since this produces untealistic working conditions, such as lack of cooling.)

Apart from the fact that certain propeller sizes seemed very "bad" for certain engines (yielding excessive vibration even when the propeller itself was statically balanced), the really hard-to-explain feature was that with certain propellers torque readings differing by as much as 25 to 30 per cent. evere obfained at the same speed (r.p.m.). In other words, a 9×4 propeller, say, gave 10,000 r.p.m. and yielded a torque reading of 16 ounce-inches. On a check run the same propeller again gave 10,000 r.p.m., but the torque reading was now only 12 ounce-inches! Sometimes this change would occur on a single run.

A chat with N. K. Walker of the L..S.A.R.A. on the subject of discrepancies in engine test data yielded a clue as to the likely reason. An extensive series of runs on an Arden test rig in America had been condemned as unreliable owing to the high "scatter" until someone discovered that the bulk of the results could, in fact, be ploted on a wave-like

curve of the form shown (Fig. 3). The "valleys" occurred at regular intervals and were subsequently traceable to excessive vibration building up-cach valley, in fact, representing a harmonic vibration period either of the whole rig or some major part of it. T'aking just one section of such a curve (Fig. 4) it is now easy to see how, with just a small decrease in r.p.m., a very considerable reduction in torque reading car result.

Normal practice with scattered test data is, of course, to plot an "average" curve (Fig. 5). Here both peaks and valleys are eliminated to produce a smooth curve. On first sight, the true curve would appear to be one drawn through all the high points, i.e., joining the "peaks" since any lower readings are almost certainly losses caused through vibration.

However, it is an inescapable fact that a single cylinder two-stroke engine is a vibration producer. Due to its nature it cannot be dynamically balanced and so vibration is an inherent feature of its operation. Also its degree of vibration will depend enormously on both its method of mounting and the nature of the load it is driving.

Considering now its operation under conditions of different degrees of vibration, but such degree of vibration consistent (i.e., no resonant effects) we can say that torque output is represented by a band of smooth curves, as in Fig. 6, the top curve representing the ideal condition of absolute minimum vibrational losses and the lower a practical maximum of vibration where the conditions of running are so bad that no test data would be taken to be reliable; or in a practical installation, steps would be taken to cut down vibration such as by balancing the load, revising the method of mounting, etc.

In practice, harmonic effects would be superimposed somewhat to affect the actual torque curve

R. P. M \longrightarrow

obtained over a wide range of r.p.m. depending on buth the type of load and method of mounting. Such effects need not be excessive, however, nor do they modify the conception of a torque band rather than a torque curve as characteristic of a model engine"s mechanical performance.

The interpretation of readings obtained within the band can, of course, vary cnormously. A large number of actual test readings are shown in Fig. 7 (reaction cradle rig), from which one could draw either a "high" or several nominal "average" torque curves. The resulting difference as affecting derived brake horse power curves is well illustrated.

Mechanically the engine mounting on this particular rig is more rigid than an average model aircraft installation, also the suspension is reasonably vibrationless. The "high" points probably represent the practical ideal operating conditions-nonresonant operating r.p.m. for the whole rig and perfectly dynamically balanced propeller loads. Lower points probably approximate closely to normal working conditions. The very low points to bad unbalance of the test propellers or unfortunate combinations of propeller unbalance and inherent engine vibration.

Using dynamically balanced loads throughout a series of test runs would not automatically guarantee more consistent, high tesults. Inherent engine vibration is the over-riding factor and this, in turn, depends to a large extent on the way it is mounted. Clamp it down to a rigid mount and the inlarent vibration has got to go somewhere-into the independently balanced load, or the coupling connecting it to a scparately mounted rigidly fixed, balanced load. In the latter case, running may be exceptionally smooth, but the torque output may be lore due to excessive internal friction zevithin the engine which is literally battering itself to destruction.

Adopting the conception of a torque band, the refore, it is very difficult to say which torque level is the one of most practical significance. It would seem necessary to test engines mounted in a similar manner to that in which they will be used-quite possibly leading to the interesting result that model engines tested on race-car type installations could show better performances than the same engines on model aircraft mounts! Perhaps, even, for a particular rig, different engines may test out at different levels due to inherent differences in balance. Thus not only may there be differences between different types of rig, but the same rig may operate at different band heights with different engines.

Much of this is still conjecture and will need considerable further research to prove or disprove. But the probable existence of a torque band somewhat narrows the field of research, which is to be welcomed. Almust certainly, however, with any practical installation there will be r.p.m. zones to be avoided because of harmonic vibration effects and resuiting dropping out of the torque to a lower band level. These will not be indicated by a performance curve which has been smoothed out and will vary with the particular model installation involved.

Another thing fairly certain, too, is that a large number of previous hrake horse power tests have been based on too limited a number of spot readings. Curves established on perhaps only four or five spot readings may appear to join up smoothly, whereas they may, in fact, represent a hypothetical curve traversing the torgue band, rather than a consistent level curve.

Full-size engine testers do not have the same vibrational problems inherent with single-cylinder two-strokes nor do they have to consider testing in regions in excess of $10,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and at torque figures where the use of conventional tachometers is not possible without introducing either serious power losses or other inaccuracies. To end by quoting Sir Harry Ricardo again, speaking about these more docile large engincs.
"An engine may be regarded as a creature of infinite and dogged cussedness, but entirely lacking in a sense of humour-a very fit subject for the practical joke, and the art of testing consists really in keeping our patience and inventing new practical jokes to play upon it." ${ }^{\prime}$-Ref. ${ }^{2}$.

Ref. 1 and 2.- Forctiord to "The Testing of Internal Combustion Engenes'", by Young amf Pryer. I'ub. English Univervities Press.

After the twin perils of the loop and spiral dive have been successfully overcome, perhaps the biggest unsolved problem confronting the average free-fight enthusiast is the stall when the motor cuts out. 'The worst aspect of this problen is that it penalises the really good, fast climbing model more than the mediocre performer, and is certainly most aggravating to see your model throw away much of its valuable altitude in a series of futile stalls before setting into the glide.

As mentioned in my previous article (December, 1951) the writer is a staunch advocate of the timer-rudder system of trimming, in which the timer arm is connected

Jim Fullarton describes his

to both fuel cut-off and the rudder, so that the same movement that stops the motor also pulls the rudder to give a turn on the glide. Quite carly in these experiments I realised that if some way could be found to let the motor run for a short time after the rudder had come over, then the stall problem would be solved, but for lack of a practical way of doing this the idea went into cold storage for the time. At that time I was using a plunger type cut-off which stops the motor instantaneously. 'The final inspiration came via an "Arrowobeller" gadget review, which showed an Air-Hleed type of cut off fitted to a fucl tank. '1his is the type fitted to some diesels, in which the opening of an air hole permits air to enter the line and prevents any more fuel from being drawn from the tank.

This was just what I had been looking for, as the admission of air into the line meant that the motor would continue to run onf fuel lying betwien the cut-off and the needle-valve, and by reculating the length of this piece of fucl line I could conerol the duration of the motor run after the rudder had moved over. A period of experimentation followed, which, needless to say, was not without some unforeseen and at times amusing incidents. The device has now been fitted to three different models with successful results, and I teel confident in recommending it to any modeller who is having stall trouble.

It is not hard to visualise the action of the cut-off; the model is in a steep climbing attitude when the timer operates the rudder. As the motor continues to run, the model banks over into what is really the start of a spiral dive, but before this can develop, the motor cuts leaving the machine in the correct gliding attitude, with no loss of height. Some experiment may be necessary so find the correct amount of delay for each particular model; as a guide, the writer has found that a g -in. length of z -in. inside diameter plastic tube does the job nicely on a $1.5 \mathrm{c}, \mathrm{c}$. motor. When testing, it would be safer to err on the short side.

The construction of the cutoff is shown in the sketch, and should give no trouble to anyone with a little knowledge of fitting. The outer sleeve is cut away at the top to act as a stop in both open and closed positions. To ensure correct alignment of the air holes the outer

slecve is drilled first, then, locating this hard against the stop in the open position, the drill is run through into the inner cylinder. The final operation is to solder on the lower tube and base plate and, to prevent the solder from going where it is not wanted during this operation, a temporary paper washer is fitted under the outer sleeve, to be torn free when the job is completed. The cut-off shown is intended for crankshaft valve motors, and has holes to pick up the holding down boits. With back plate induction motors, such as the E.I). 2.46, it should be possible to get a much neater installation by soldering the cut-off directly into the top of the tank.

The model shown in the close-up has an Filmic diesel timer completely enclosed in the pylon in an inverted position. With this timer rudder system it is most desirable to have the fin and rudder built permanently on to the fusclage, which means that they need in be placed either forward of the taiplane, or, as on my latest model, underneath the fuscluge. The trim used by the writer was for a right turn on both climb and glide, using right thrust on the motor, slight left rudder on the climb, changing to right rudder on the glide. This system would also appear to be particularly suitable for models trimmed to climb straight, a method which appears to be favoured by many of your leading free flight men.
Austratian Jier Fullarton ases a matire "Snbra" 1.5 diespl an modal in hadiling to domonatrate use af this driayed artion trim scherme.

full-size copies of this \& scale plan can be obtained. price th. 6r. POSt fae froh aeromodeller plans service.

planking area is continued through the fusclage length on either side to transmit engine loads, add the side panels first.

Before fitting top and bottom panels, switch to the Mainplane centre section which is made up complete with undercarriage, sheeted between ribs R1 and firmly cemented by the 1.c. and mainspar to F6 and F7. Fit the rear whecl and the engine cooling duct. Then complete the fuselage planking.

Add a noseblock "blank" cut to side and plan views, onto F1 and fix the windscreen former, then curve to shape. Make rear access hatch, engine cowl around mounted engine, fit a tank and arrange a neoprene tube carburettor extension.

Wing outer panels, stabiliser and fins are next completed, only points that need special attention are the wire fittings for band hooks and incidence setting of the mainplane.

Cover whole airframe with lightweight Modelspan, give two coats of clear, then colour dark earth and green canoonfaged upper surfaces and duck egg blue undersides. The prototype " p " is in yellow like its surrounding circle, and the pusher airscrew would be black with yellow tips.

When colouring is completed, balance at the indicated c.g. by adding nose weight. (On the original, a heavy pilot did the trick.) Now test glide over long grass, and if anywhere near to being flat and straight, you are ready to start low power take-off attempts. 'These show up any violent turning tendencies which are corrected by offsetting the engine. A small celluloid trim tab on the port rudder will effectively trim the Libellula to any desired flight pattern, and be quite invisible in the air. Turns to the right are to be preferred, and providing the stabiliser and mainplane settings are exactly as per plan, no incidence alterations should be necessary.

Making your own ENGINE

Part three.
Tools and their use
described by
Dave Sugden

Since most of the work is turning, lathe tools will be dealt with first. Fig. 1 shows the various types for general work. Each turner has his own pet way of sharpening tools and those shown will merely serve us a guide. A few general rules apply to all lathe tools. Overhang from the thal post must be reduced to a minimum to prevent chatter. 'T'op side and foont clearance angles of no less than 3 degrees should be allowed between the finished surface and the tool, so that swarf cannot jam between the tool and the work, thus spoiling the finish. It has been found best to set up a tool at centre height despite what some people may say to the contrary. It is advisable to touch up the tool tip prior to taking a final cut, especially on ferrous metals.

Turning High Tensile Steel.-(A) The cutting angle should be made fairly large to strengthen the cutting edge and reduce its wear. Because II.T.S. work hardens rapidly the tool must not be allowed to rub and is best operated with a coarse feed at 200 to 400 r.p.m. with as big a depth of cut as allowed by the motor power. Soluble oil and water is a suitable coolant if the work and tool overheat.

Cast Iron.-Although C.I. crumbles off when machined, it requires similar trearment to H.'T.S. On no account should a cutting fluid be used as this witl cause the tool to rub.

Aluminium. - 'This is easy to machine and any combination of feed, cut and r.p.m. can be used, though for a good finish bigh r.p.m. is best Larger rake and clearance angles may be used and, inderd, are essential for some of the softer alloys which tend to build up on the tonl tip. Daraftin used is a cutting oil cures this erouble.

Brass. - Being such a soft metul, brass is so easily cut that a tool as shown at (IE) with no rake angle plus side angle to prevent digging-in must be used. No lubricant is required. Any combination of feed, r.p.m., and depth of cut is permissible.

Phosphor Bronze. - Ahhough a fairly soft metal, it is very tough and quickly work hardens. It should at all simes be treated with respect. A sharp ordinarily-shaped tool will be satisfactory. If dificulty is experienced, cutting fluid may be used to good effece. Any speed with moderate feed and cut is suitable.

- ©provial 'Tonls

Knife Tool. - "This tool (C) is for cleaning out syuare corners. It is made either left or right handed with more rake angle than usual. 'I'he point is not robust and will not stand heary wear. It may be used on any of the various metals above with cutting fluid if necessary, and in general the r.p.m. should be sumewhat lower than that used with the ordinary tool.

Parting Tool.-(1): Cutting takes place on the front edge and corners which should therefore be ground true

Twe of Dave Nagrien': 2.5 cif. diespla, one at trft shoure how she cylimier is retained sn the crankctuse.
and square to prevent the tool from wandering. A small clearance angle is given to the sides, but adequate metal must be left at the root to take the cutting loads which can be heavy. Even on a good lathe a parting tool tends to chatter and a low speed is often used together with a coarse feed. To stop chatter the feed must be increased. If this does not do the trick, the speed has to be lowered; 200 r.p.m. is easily possible on dural and also on H.'T.S. if the tool is good. Always use cutting fluid to prevent the chips from jamming.

Screw Cutting.-A screw cutting tool is ground to the profile of the thead as shown (W). It may be fed in either perpendicularly or at an angle of 27 degrees and is set up with the aid of a special template. A 5 -thou. depth of cut is suitable and r.p.m. are governed by chatter and the skill of the operator; bottom speed is best for a start. Choose a thread pitch which divides evenly into the pitch of the lead serew so that the "nut" can be engaged at any position. A screw-cutting dial cases this problem. Having set up the gears, and with a suitable cut, make a run, disengage the "nut" when the tool has run into the groove which should be provided at the end of the thread. Wind out the tool, return it to the beginning, and reset to a new cut. Should anything go wrong, don't panic. Stop the lathe and wind out the tool instantly. Cutting Huid is often useful, as is also a touch of emery cloth to ease the tops of tight threads.
Boring- (F) A boring tool should possess properties similar to an ordinary turning tool. The overhang which tends to make the rool chater should he kept as small as possible. This reduces the whip which makes boring to an accurate parallel diameter a little difficult. Provided that a good finish is obtained the tool may be mounted above centre height so that it does not foul the hole. In general the r.p.m. will be slightly lower than that used for plain turning.
Milling- - 'The chief difliculty here comes in putting up the job. It is fairly easy to grip it in a machine vice bolted on to a vertical slide which permits 3D motion, but it is considerably more tedious to clamp it on to the cross slide. A vee block with lots of packing including paper is most useful here. The cutter mounted in the chuck will be run at maximum speed and often completes the operation in a couple of minutes. Cutting fluid is usetul in preventing clogging.

An end milling cutter will be found to be the most useful for surfacing, cutting transfer passages, lightening pistons, etc. Its size will probably be governed by the radius of the curves. For milling exhaust ports a Ay cutter is most convenient. 'This is similar to a boring tool, with the tip ground like a parting tool, mounted in the
chuck. 'lhe bar part of a Nulok tool with a bit as shown in (G); is admirable.

Grinding.-Means of avoiding grinding and the construction of a small internal grinder were described in Part I (December issue). Should you be lucky enough to have a friend who can do grinding for you the following hints may be helpful. Grinding is often done between centres and if at all possible the part should be made with centres for this reason. It will be necessary to leave about 5 thou. on the diameter for grinding. If centres cannot be made and the grinding has to be done in a shuck, a hoss suitable for gripping in the jaws must be armanged, and from 10 to 20 thou. left on the diameter to allow for eccentricity of the chuck and setting up. An extra 5 thou. should be allowed for distortion if heat treatment is being carried out prior to grinding on parts which are not robust.

Lapping.-'This is the process by which the accurate finish and fit of the piston and cylinder is obtained. The principle is that of impregnating the surface of a piece of metal with rubbing compound which is then used to "wear" the part down to the required dimensions. The rate of cutting is dependent on the amount of compound charged into the lap, the coarseness of the grit, and the fit of the lap to the part. A softer material than that being worked upon is used for the lap, so that it will absorb the compound. C.I., copper, aluminium, and brass are the usual materials. Because the lap is made of a soft metal it tends to wear rather rapidly, and if the rate of cut and accuracy of finish are to be maintained the lap must be expandable. For 1 -off jobs where little lapping is needed the extra complication of expanding laps is not justified, but on parts which are at all distorted, probably due to heat treatment, they are essential. (II) and the accompanying photograph (below) show the usual types.

A corkserew type of motion is applied to the part held ny hand with the r.p.m. at about 600 . Medium grade valve grinding paste has been found to be most suitable; it then only takes a few minutes to lap out a cylinder from the reamered finish. The surface obtained is fairly smooth, but is rough enough to enable it to run in easily. A dry lap with little paste gives the best finish. As always, to remove metal quickly power must be used, and on one occasion when lapping out a case-hardened cylinder which had distorted 5-thou. out of round, a cast iron lap tightly expanded with a liberal amount of paste, employing paraflin for cooling and lubrication, trued the bore track in half an hour. 'l'he part was not held by hand as is usual as the torque and temperature were too great. A hone as marketed by Delapina is far superior is your pocket will stand it.
Taps and Dies.--Taps are made usually in threc forms: taper, second, and plug taps which are used to make the initial through to the final cuts. After each half turn the tap should be rotated backwards far enough to free the chips, which on soft metals tend to clog. Cutting

[^2]

D BIT
oil should always be used except on brass and C.I. It is a good idea to withdraw the tap completely several times to clear the swarf. I arge taps are manipulated with a wrench and frequently have a centre hole in the shank which when located by a centre greatly assists a erue perpendicular feed. Small taps are best gripped in a drill chuck.

A died thread should always be made after the tapped one since the die is adjustable. 'The swarf is freed und cutting oil applied as for taps.

Drills. - Modellers should need little introduction bere, though a fery hints may be of use. It will be found easiest to drill most holes with at least 2 drills. The last drill then has a better chance of producing the hole to size since only a small portion of the cutting edges is being emplayed. It follows the hole already made by the first pilot drill which should therefore be in very good order, or new if possible, to ensure that the ditll does not run off centre. Always start the hole with a centre drill or a good centre pop. Should the drill not be starting on centre before the lands enter the hole, it is possible to pull it back on centre by culting a groove with a centre pop on the side of the conical depression to which you wish the drill to return. Use cutting fluid to assist swarf removal and cooling and don't use too high r.p.m. with large drills (about 300 r.p.m. for a \quad-in. drill in steel) otherwise they may burn out. For small sizes steel wire sharpened to a suitable point is often useful with soft metals.

Reamers.-Reamers are made either to size or expandable. They possess a small taper for the first onethird of their length and so should be able to pass through the hole being finished. Iots of cutting oil and a fastish feed are combined with low r.p.m. to remove only 3 to 4 thou. of metal. A reamer will not produce a good finish if called upon to remove more than this and for sizes where drills increase by $1 / 64$-in. the hole must be bored out to bring it to a size suitable for the reamer. If the hole cannot be bored and an expanding reamer is not to hand a badly ground drill might be used after a pilot drill to produce a sloppy hole which with luck might be acceptable to the reamer. An accurately ground drill having the corners rounded with an oil stone may be used with a fast feed in soft metal to replace the reamer for finishing the hole. In the smaller sizes, below about $\frac{1}{\frac{1}{-i n} \text {., reamers can be replaced by }}$ D bits or taper drills (I) made from ground silver steel, hardened and tempered if necessary.
(Next monih, in this pophtar series, we shall cover forther impartant uspects of marliming your orch cugine.)

PARTING TOCL

KNFE TOA

Fig

TAPER CRILL

For some time past, the trend of modern fighter design has resulted in large, heavy and complex aircraft. 'l'o call a halt to such eendencies, Folland Aircraft Led., under the guidance of Mr. W. E. W. Petter, C.B.E., B.A., E.R.Ae.S., the Managing Director and Chief Designer, began investigation into the numerous problems involved in the conception of a light fighter.

Meticulous study proved that certain components were required on a standard fighter only by virtue of its size. Such were discarded, and a sulstantial weight saving was effected by a reduction in size of essential items.

The weight saving thus achieved permitted a corresponding saving in structural weight. There then emerged the prospect that a light fighter with a performance equal to that of a standard fighter could be produced, with a weight no greater than that of a 1939 vintage fighter, subject to the availability of a suitable engine.
At that time, the Bristol Acroplane Company were developing an engine, the Saturn, which had the necessary characteristics for the liolland Gnat (Makers No. FO.141) light fighter project, and consefuenly design work on the Gnat was commenced. A few months later, bowever, the development of the Saturn was terminated.
'To avoid the grave delay that would have resulted in awaiting the design and construction of an alternative power unit, it was decided to build a low power prototype, utilising an existing engine. To avoid confusion with the ultimate Gnat, the name Midge was chosen for the prototype, manufacturers number being FO.139.
Work on the design of the Midge began in 1952, and on the 11th August, 1954, the first Hight was made from Boscombe Down, piloted by Sqdn. Ldr. E. A. Tennant, D.F.C.

Structurally the Midge is very simple, being of all metal stressed skin construction. The wing, built in one picce, is attached to the fusclage by bolts at four main points, a system that readily permits quick assembly, and remoral. Being small and of conventional construction, the wing has the recpuired strength and stiffness for supersonic flight. With a thickness-chord ratio of approximately 8% the wing area is in the region of 123 sy . ft. Manually operated outboard ailerons with scaled aerodynamic balances are fitted. 'There are no flaps.
The long fusclage nose provides adequate space for the radio and radar required. V.II.I. radio with

AEROPLANES IN OUTLINE NO. 20
by J. R. ENOCH

a standby set and Distance Measuring Equipment are carried. A cockpit canopy of unusual design is fitted, the gunsight windshicld is fixed and the blown hood which affords excellent visibility embodies a light metal fairing at the forward end. Cockpit layout which conforms to a standard being considered by N.A.T.O. is simple, with all controls most conveniently placed. Air conditioned, and fully pressurised with provision for a Pressure (Anti-G) Suit, it contains a lightweight ejector seat developed by Folland from original S.A.A.B. design.

A novel feature of the design is the "dual purpose" tricycle under-carriage. The three units retract backwards into the fuselage ; when the under-carriage is partially extended, the doors which are attached to them act as very efficient air brakes.

An Armstrong Siddeley Viper A.S.V. 5 (long life) turbo-jet with take-off power of $1,640 \mathrm{lb}$. static thrust, powers the Midge, aspirated by the lateral air intakes. A small auxiliary intake is on the starboard side of the fusclage. Fuel is contained in three tanks which have a total capacity of approximately 140 imperial gallons.
(In the limited power available the performance of the Midge is indeed exceptional. Level speed is in excess of $600 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., and the aircraft has exceeded Mach $1 \cdot 0$ at $24,000 \mathrm{ft}$. in a dive from $37,000 \mathrm{ft}$. with no adverse effect.

Externally, the Gnat will differ very little from its admirable forebear, the essential difference being that it will be fitted with a Bristol Orpheus axial flow turbojet of approx. $5,000 \mathrm{lb}$. static thrust.

All control surfaces will be power operated, inboard ailerons being adopted which will allow a very rapid rate of roll and excellent control at supersonic speeds. 'Top speed and ceiling of 725 m.p.h. and $55,000 \mathrm{ft}$. respectively are expected.

In addition to the two 30 mm . cannon, provision is made for the Gnat, in a Fighter-Bomber role, to carry $2 \times 500 \mathrm{lb}$. H.E. or Napalm bombs or 12×3 in. air to ground rockets. Wing tip fuel tanks and a braking parachute may also be fitted.

Compared with the standard fighter the Gnat has several very significant merits. Tooling time for production is halved, and 25 Gnats could be produced in the time taken to produce 5 standard fighters, and at a small fraction of the cost. It is readily mobile, being casily transported by land, sea or air, and pilots can be taught to Hy it in less time because of simplicity:

"J" TYPE I/T2ND SCALE REFRINTS AND "A" TYPE $1 / 40 T H$ SCALE DYE-UNE PRINTS OF THIS ORA-WING ARE AVAILABLE FROM A.P.S. PRICE 6D. AND I/-RESPECTIVELY

MOTOR MART

Let's get a bit of sense into this argument about engine brake horse power performance. Our contemporary is repeatedly anxious to credit us with the statement that model engine performance docs not excect 05 B.H.P. per c.c. and as final "denunciation" quotes the new lita " 24 " performance figures of - 13 B.H.P. per c.c., arising from a peak B.H.P. of about .65 at $16,(090$ r.p.m.
Now as we have tricd to point out before, emphasis on peak 13.11.P' can be a most misleading criterion. If, by modification to the design, you can continuc increasing the range of operating r.p.m., you can continue to increase the peak $13.11 .1^{\prime}$. Starting with a plain bearing engine, for example, modification to the timing and porting can advance maximum r.p.m. Add ball bearings to reduce frictional losses, and up goes the maximum r.p.m. figure again, with possibly still further modifications to the porting. Quite likely, in the meantime, torque output at moderate speeds has dropped.

Thus, considering only peak B.IA.P. as a "pertormance" criterion, your "best" engine may be a very indifferent performer down in the range where a lot of people may want to employ it. On the other hand, to adopt an arbitrary level of speed (operateng r.p.m.) at which all engines could be compared (asy lb.fIP' at 10,(x)t or $12,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.) would he unfair to the engenes which do prak at high r.p.m.

Hence peak 13.1.P'. figures alone have no very great value, unless allied to the operating r.p.m. concerned as a major factor of selecion.

Now as to specific powser output, we still stand by our original statement that published performance figures have been exagerated-..at times grossly

exaggerated. Comparisons on the hasis of H.II.1'. per c.c. are open to the same objections as above. Hence such generalisations can only be applied loosely. We have never said or implied that an output of . 1 B.H.1'. per c.c. is impossible. In fact, it is most certainly possible with good designs and good construction, particularly when peak power is developed at 15,000 r.p.m. or above. As far as "overall average" figures can be given, we think .075 13.H.P. per c.e. a good level for any normal production engine which peaks in the region of $11,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

Unlike our contemporary, we have tried to find reasons why there should be such differences in quoted performance figures. Rather than claborate on this particular theme we refer readers to the article on page 70.

The Frog "150" is shortly to be available as a watercooled marine unit. Hasically this will be a standard " 150 " motor with brass water jacket and turned brass flywheel, the latter of particularly generous proportions.

Some years ago the Low Speed Acrodynamic Restarch Association devised a turho-prop adaptation for a standard Jetex unit, the idea being to turn jut thrust into shaft torque for driving a small airscrew. Oyerall etticiency is believed to have been relatively low, with power run, of course, Jimited to the duration of the Jerex charge. Wilmot Mansour are known to have done some further research on the project with a view to producing it in commercial form, bur have so far released no additional information on the subject.

In the meantine a turbo-prop unit, operating on a slightly different principle, has been announced in America. In this unit the jet thrust (from a modified Jetex unit) is fed through tubes attached to the blades of a propeller. These tubes are curved to exhaust at right angles to the direction of rotation of the propeller at slightly over half radius.

Standard Jetex fuel is employed and the total weight of the whole unit is 1 ounce. Starting is by fuse, as with at normal Jetex, and thrust output is claimed as "comparable to 1 A conventional engines" Price is roughly 28 s .
1.argest kit firm in the (C.S.A., Berkely Models Inc., introduces the PSST 50 a jel/rocket unit "tor Jetex " 50 " and similar fuels" at one dollar each or $\$ 2.75$ for three. Unit resembles the Jetex 5013 with simple end cap. In New Zealand, Messrs. Hettair are marketing a similar Velojet 50 -also to take Jetex fuel.

Back to the (American) manufacturing field comes Orwick, with a new "29" glow motor. "Orwick" was quite a name when the spark-ignition motor was in its heyday, the Orwick " 64 " being one of the outstanding performers in its class.

The new "Orwick 29" comes, virtually, in the individually-made class and consequently sell's at a considerably higher figure than its contemporaries (\$17.95). We understand, however, that it is an exceptional production job, on the lines of our own Oliver diesels.

Mercury-Allen 25 's, coming into the shops now, have internal mods as mentioned in the October, 1954, analysis, and a larger diameter comp screw with much finer thread pitch to give more delicate compression adjustments. Another engine with mods incorporated is the Ameo 3.5 BB. A new crankease die casting, strengthened at places where experience has shown a need and a detachable exhaust stack, are among extermal distinguishing features, while a new hand at the whed of production has brought about internal improvements. Exchange engines will be available for all Hil owners, see advts.

1 ringing the family right up to date, Davies Charlton announce a Marine Merlin is on its way, and knowing the popularity of this inexpensive point-eight for aircraft, we foresee a flood of Merlin boats in the future.

by Ray Monks

> Rav Wumks is one of Rritain's best all-romuders, and currently in the top fight of indoor flying emhusiasts. Holds the Rritish records for R.O.C ${ }^{(}$. Slick, Trilless and Helicopter slasses, and weripes with a rcealth of experience to back up his sfatements.
"SoApbunbif." has been developed with the idea of providing begimers with a model of high performance, yet of simple enough construction to enable the production of a successful model with very little tromble. It should not be forgotten that the building of this specialised type of model aircraft brings about its own particular problems, paramount being the great importance of keeping weight down to a minimum. Nevertheless, one does not need to be put oft on the assumption that one needs the slimness of a woman's hand to handle the delicate pieces of a "microfilmy", delicacy of touch and a little more patience than usual being all that is required to produce a model capable of 5 to 6 minute llights with consistency.
' 10 construct the Hying surfaces, spars are cut from sheet stock, having first "hollowed" the sheet as per sketch to automatically taper the spars in one dimension. Rectangular section spars are always placed with the greatest dimension vertical.

Ribs are sliced from quarter-grain sheet, using a ply or metal template. With a length of sheet cut to maximum chord dimension, make a cut around the template, then having shifted the template down the required depth, slice around template again, thus producing a thin protile which supports the very light covering. At the centre section (and at dihedral breaks on larger moelels) a base piece is used, connecting the nose and tail of the ribs, with a small vertical piece insertec to act as a compression member.

Full-size plans overleaf

With the spars ready formed around the sheet former as in sketch, ribs are placed and secured with the minimum of cement, varying rib lengths according to taper being mer by cutting excess from the rear or trailing edge of the cut ribs.

Wotor sticks are mostly constructed from 1/64 in. guarter-grain sheet stock, the larger model the bigger th: tube diameter, but retaining the same thickness ratio. Circular section sticks are best, hut are pather more difficu.If to construct than the tear-drop type. Cut the blank to size, and soak in hot water for 5 minutes. 'Then wrap around former using tissue strips to hold in position. Hake in an oven for $10-15$ minutes until dry, then remove tissue and former and cement seam. Add end caps, prop bearing and rear hook to complete.

Paper tubes to carry wing mounts are made from tissuc, and eemented into place. (A very useful drill for this dclicate drilling can be made from sandpaper as indicated in the sketch.)
'The tailloom is constructed in similar manner to the motor stick, but here quarter-grain sheet is not essential, and the former is tapered as shown.
'I'o produce a film for the covering of small models, which are really guite strong, ordinary clear dope to which a few drops of castor oil has been added is cuite satisfactory. A teaspoonful of the mixture is poured on to the surface of water, and removed with the aid of a wire frame. Allow the film to age on the frames for a few days before use to get the best results. (A leaflet on the technigue of "Making Nicrofilm" is available on receipt of a stamped, addressed envelope to the "Aекомор:LIER" offices.) Apply the covering to framework, adhesion being obtained by first licking the outine, then trimming excess film by means of a hot wire or a brush dipped into solvent. Wrinkles, ecte., can be removed by passing the component over a hot wire or light bulb, care being taken not to set light to the thing!!

On a small model of this type, a built-up prop is not really worth the effort. Carve it in normal fashion, but much thinner than for outdon models.
"Soapbubble" is ideal for low ceiling flying, and can give a great deal of fun in a fairly small space. Those who doubt their immediate ability to cope with microfilm may like to cover with very light tissue paper, but watch out for candid comment from those who wish to fly the more vulnerable filmcovered article!

MODPE NTWS

FEW monleas can boast a polished natural mahogany finish: but in the case of "Model of the Month" which is another of Captuin Milani's superb scale coneroliners, the red grained veneer is true to life. 'This $1 \frac{1}{2} \mathrm{in}-1 \mathrm{ft}$. S.V.il. is a replican of the atcobatic ace pilot Capt. N. Palli's own aircraft and is complete right down to the moving controls in the cockpit. An Ohlsson 60 Custom is completely hidden beneath theleaten and polished metal cowl, while scallop effect on the trailing edge is reproduced by using cotron instead of a wooden te. Nylon covering does the rest. Notes of interest are the use of dope bottle tops for wheel hubs and the accurate laminated mahogany prop.

A firm favourite in the A.P.S. glider plan range is the 'I'emple 'l'ribute-a model which demands a little extra patience but always rewards the buider with fine results. No. 1 picture shows CPl. Merry of R.A.I. Syerston with his Tribute which placed first in the Concours d'llolegance event at the R.A.F. 'Iraining Command Championships. In complete contrast, a model which sacrifices appearance for the acme of performance, picture ' 2 shows John ()'Donnell's "Haddock" Jetex contest model. "The fact that this model collected the I.C.I. Challenge trophy plus a useful f20 cheque speaks enough for the performance. Note :he forward fin and small thrast rudder in the jet slipstrearm, which is used for power trimming. The L'nit is a Jetex 350, and John always allows the first charge to hurn away be fore launching in a contest 'The second charge is more powerful. I.ightweight construction urfortura ely means a high fusclage mortality rate.
Hack to elegance in :B where photographer Kon Adams has demonstrated perfect use of daylight Hash when taking this shot of his wife holding his Mercury Aeronca Sedan. Vivid scarlet and light blue finish is still not marred after many flights on Allbon Javelin power. Another scale model in 1 provides a variation on the A.P.S. I.uton Minor which we featured in December 1952 as a full-size plan. Converted in control-line and fitted with a Crafteman "1"win cylinder engine, this unusual Minor hails from Derek Wilson of the Malton Club in Yorkshire. The J,uton Minor is now one of the most popular scale designs fying; we have seen twices size freco-flight
versions and from the l's.A. hear of : hallf size "Rambi" powered miniature. 'The Bird Dog from this last December issue is now rivalling the Minor and we wonder just how long we shall have to wair hefore we hear of variations on this design.

An own design Biplant by D). R. Camps of C'ambridge appears in $\bar{\pi}$ and displays aturactive semi-scale lines for its 43 inch spars. Coloured royal blue and chrome yellow (a scheme to be recommended), it weighs just under 13 ounces and has a Mills .75 engine. Why don't we see more frec-lance sport designs of this calithre?

With the Wehra 1.5 featured in lingine Analysis, and the Atakee design from 1 Holland built around a "Record", it seems fitting that the contest power design in $\triangle 1 . N$, this month should have the same power unis. Ron Pollard is seen in 6 holding his l.a. I formula model of 48 in spansand 303 sg . in. wing area. The $30{ }^{\circ}$ taiphane looks diminutive at this angle and this is accounted for by the long profile fuselage. Performance is in the region of four minutes off 15 secs. engine run.

Something quite out of the rut appears in 7 where we see M. A. I.eadbeater's 7 ft . model which balances the scales at $6 \frac{1}{2} \mathrm{lb}$. An E.1). 3.4 up on the high thrustine provides ample power and a most impressive 30 yard take-off run: but the reaction of the model when the motor cuts (it tends to balloon up) thas Icd to didition of another etmine. 'IThis is a smatler diesel, mounted at the rear of the mamplane in tandem, and which gives continual power through the glide, and keeps the nose down into a normal glide angle. In the next picture, number is a scale Siwedish SAA.A. Safir 91 b by Hoh frang-chuin who is studying in that country. A Webra 2.5 Winner tlies the model at over 60 m.p.h. on +4 ft . lines, the flying weight being just under 1 lb .

Only 2 ft . span yet fully defailed and a vereran of many Hights with its 1 -rog 50 engine, the scale Swordfish in $\$ 1$ is held by chubbe Hrian Winters, son of the designer who comes from Fast 1 lam. At last year's R.A.F. Champs., this model attempted to enulate learus by folding its wings after take-off: but it survived to be repaired and fly agnin. Colouring detail came from an old cigarette card collection and shows an aireraft from II.M.S. Furinus.

more

Armchair Aeronautics

reviews by Owen Thetford

In abouve

Aircraft Today, Edited by John W. R. Taylor. (Ian Allen I.td., 9s. 6d.), 104 pages. Illustrated.

Editor John Taylor has collected in this review of modern aviation articles by such diverse nuthorities as Air Marshal Sir Robert Saundby, Sir Frederick Handley Page, James Hay Stevens and Mike Lithgow. There are articles on rockets and space travel, flying saucers, jet fighters, air power and sea power. Royalty and aviation, and llight refuelling. There are pages of rare photographs, such collector's pieces as an ArmstrongWhitworth Ape, a twin-tail Prentice, a Fairey 111 F with a Napier Culverin engine and an Airspeed Horsa glider with a Comet windscreen.

It is the ideal present, either for the air-minded nephew or his uncle! In fact, it has something for everytody.

Inceselopedin Aprobanatica

All About Aircraft, hy D. M1. Desoutter. (Fiaber and Faber, 25s.), 474 pages. Illustrated.

All About Aircraft is aptly named for there are, indeed, few questions one could pose about the science of aeronautics which could not be answered by consulting its index. Its scope and sweep is immense and speaks volumes for the industry of its author who is, incidentally, Assistant Editor of Aeronautics. Its illustrations and diagrams are clear and plentiful and it even includes a page on the Rolls-Royce "Flying IBedstead." Apart from masses of technical facts about turbojets and aerodynamics, there are sections on aviation records, all neatly tabulated, an aviation chronology and a chapter on careers. Most aircraft types flying to day are described and illustrated and all in all, the book is excellent value for money.

Spotter's Deliphlt

The World's Fighting Planes, by William Green and Gcrald Pollinger. (Macdonald, 12s. 6d.), 240 pages.
The Observer's Book of Aircraft, by William Green and Gerald Pollinger. (Frederick Warne, 5s.), 288 pages.

The World's Fighting Planes is, as it were, a pocket edition of the earlicr The Aircraft of the World, covering mercly military aircraft and brought completely up-to-date by the inclusion of such types as the English Electric P.I and the

Grumman F9F-9 'Tiger. It is in every way a most admirable publication and the names of its authors guarantee its authenticity.

The Observer's Book of Aircraft, smaller in format, covers both civil and military aircraft of the world, but in this bools the less importint or older types receive less space and have no silhouette. For reliable, succinct information on the world's aircraft, this little book is quite unrivalled. Specially to be commended in this latest edition, which contains 150 brand new pictures, is a page giving a rapid classification of all types shown (with page references) under basic configurations for the benefits of amateur spotters.

Niat-Top Saцa

Sea Flight, by Ifugh Popham (William Kimber, 15 s.$)$, 200 pages. Illustrated.

This is a truly fascinating brok. Very little has been written about the work of the Fleet Air Arm in the Second World War, so that Ilugh Popham's story of the war as seen through the eyes of a carrier-borne fighter pilot has, apart from its intrinsic merits, all the advantages of novelty.

After learning to fly at Luton in the middle of the "blitz" of 1940 (with (ierman bombers attacking the nearby Vauxhall Motor Factory), the author continued his training in Canada on Battle 'Trainers before returning to England, Fighecr School at Ycovilton, and initiation into the ways of Sea Gladiators, Skuas, Fulmars, and Sea Hurricanes. First taste of aircraft-carrier operations came with a posting to No. 880 Squadron (Sea Hurricanes) aboard II.M.S. Indomitable.

Back in Fingland, converting to Seafires, he is involved in a mid-air collision, bales out, breaks his back and finds himself in a lunatic asylun!

Surviving this bizarre experience. l'opham Hew Seafies of No. 894 Squadron in H.M.S. Illustrious, was present at the Salerno action, and afterwards transferred to Escort Carriers on routes to Russia.

Hugh Popham has an extremely readable style and handles with equal skill the vivid description of epic sea-air battles, pen-sketches of his fellow pilots and irascible C.O.s ("The Butcher" is a particularly memorable portrait of a former Walrus pilot turned martinet) and the humerous anecdotes of which the book is full. Sea Flight will surely take its place among the best accounts of wartime aviation.

tilapalisitaras avar Minlta

Faith, Hope and Charity, by Kenneth l'oolman. (William Kimber, 15 s.), 200 pages. Illustrated.

This is a story which had to be told one day and Mr. Poolman has done it well. As the reader will have guessed, it is all about the epic fight of the three Sea Gladiators nicknamed, "Faith," "Hope" and "Charity," by the Maltese, which alone defended Malta against the might of the Italian Air Force in 1940 . It is a tale of desperate courage and resolve by the ex-flying-boat pilots who Hew them, and of almost incredible ingenuity and skill by the ground staff, led by the able Flying Officer Collins, who contrived somehow, anyhow, to keep these battle-scarred veterans in the air. Some interesting new facts emerge about how Mercury engines taken from Blenheims were modified to suit the Gladiators after the original engines have given up the ghost. One of the Gladiators, in an effort to gain more fire-power, had its original four guns supplemented by twin guns above the top wing in the manner of the 1914-18 Nisuports and S.E.S's. 'This version (not in the recognition charts) was dubbed "the IBloodiator."

In Olal Neriend in New fímise

Flight Handbook (Fifth Edition). (Hiffe and Sons I.td., 15 s.$), 282$ pages, Illustrated.

Compiled by the staff of Flight this invaluable text book on the theory and practice of aeronautics first made its appearance in 1938 and it has now been brought right up-to-date, its 200 odd photographs and drawings covering such types as the Hunter, Sabre, Stratojet and Fairey Rotodyne. Virtually a miniature encyclopacdia it provides hasic information on every subject from theory of flight to ram-jets, aireraft structures to guided missiles, gliders to helicopters. Few questions could be posed about modern aviation which this classic reference book could not answer.

MII Abont IEnorketw

Development of the Guided Missile, by Kenneth W. Gatland, I.R.A.S. (Iliffe and Sons Lotd., 15s.), 242 pages, Illustrated.

One marvels, reading this book, that such a wealth of information could be gathered on a subject so heavily cloaked in security as rockets and guided missiles. Yet the author, a world authority on his subject, has not only given us chapters on every aspect of rocket research and development, both for military and peaceful purposes, but also added an Appendix with data on 140 different types of rockets and missiles from eight different countries.

'The Nilent vervice drobss Wimge

Fleet Air Arm, by Lieut--Comdr. P. K. Kemp. (Ilerbert Jenkins, 16 s .), 232 pages. Illustrated.

It is difficult to imagine how such absurd errors could have found their way into this book-errors which nullify its claim to be a scrious work of history. W'ritten by the Admiralty Archivist, a Fellow of the Royal IIistorical Society into the bargain, it shows an ignorance of aircraft types
beyond belief. There are such remarkable statements as that the lelycatcher was among the types in service with the Fleet Air Arm in 1939, a Swordfish is alleged to have a rotary engine (page 100) and a Wyvern torpedo-strike aircraft is captioned as a "naval interceptor." I'airey Aviation will be interested that their laarracuda was among the many American types of aircraft supplied to the Royal Navy during the war! 'The author does not appear to be aware that the Martlet and the Wildcat are the same aircraft or that, in the R.A.F., the Beaufort was designed as torpedo-bomber and not "adapted" for this work. Nor was the Beaufort known as the "Torbeau"-this was the torpedo version of the Beaufighter.

The chapter on "l"he lnter-War Machines" is a travesty of the facts. 'The Swordfish, we learn, was a replacement for the Ripon (there is no mention of the intervening Baffin or Shark). The Flycatcher was superseded, oddly enough, by the Sea (iladiator. There is not a word about the Hawker Nimrod which, in fact, linked the two types. Such types as the Fairey 111D, Avro Bison, Blackburn Dart, Hlackburn Hlackburn, Hawker Osprey and many others might just as well not have existed so far as this Alice-in-Wonderland history is concerned.

On the right track

Eagle Book of Balsa Models, by Bill Dean (Hulton Press Led., 6/-) 64 pages, illustrated.

Eighteen full-size drawings with stage-by-stage photography and numerous line sketches are compiled by Bill Dean in this excellent book for the beginner. Exploiting all the possibilities, from chuck glider to space ship, Jetex speed boat to box kite and sailing sloop to scale Britannia airliner, we find more use for sheet balsa within these pages than ever published before. It is up to date. Every word, line and photo can be understood, and for the beginner it represents a perfect course of iniation into balsa model making. Moreover, it also contains many an idea for the experienced man.

ERisht exporsurre

Camera-Tips for everyone, (Fountain Press 1/6d.), 32 pages, illustrated.

We know from the standard of photos submitted to Aeromoneller for publication that the average man would profit from a small investment in this pocket size publication. Not dealing directly with model portrature, it does nevertheless provide advice and examples of close-up photography that should be an education to all camera shutter-bugs.

Covering the liolbles

Model Acroplanes, by Norman C:. Taylor (Cassell, 4/6d.), 78 pages, line drawings.
'This work reminds us of a proverb, "Jack of all trades, master of ?." (ilossing over the facets of our hobby, the athor strives to cover all the popular branches of the hobby but many could do with more foliage. For the price, it gives the beginner an insight on construction with 57 illustrations.

High performance lightweight Float or Landplane BIM－baM

By R．J．COLES

（）NE SQEARE FOOT for lightweight wing area is just enough to provide a good ratio of size against pertormance for a rubber powered model and this product by R．J．Coles fills the bill to perfection． With the three－minute flight maximum in vogue， Bim－Bam，a dual purpose tonat or landplane of only 32 inches span，can put up just as good a show as many a far bigger model．All up weight of 33 ounces as a floatplane and a half ounce less with a peg leg does not necessarily mean that it calls for the most expert construction．On the contrary，any modeller capable nf butt joining two pieces of balsa，will find Mr．Cole＇s simple structure a very casy job which can be completed in a week of evenings．
＂The original model was buile especially for the ＂Model Engineer IExhibition＂，（1951）with the intention of Hying it afterwards as a landplane version．It won top junior award．（Phopgraph in January，1953，Aeromodeller．）

The model also won the club＇s junior contest with a total time of 7 min ． 15 secs．A few wecks later the J3im－I3am came third in a rally at Choblam， and a few days after this，flying on about $l(k)$ turns it hit colossal lift and went away for only 5．33－ and by the way it was going up one might think it would never come down．

Fuselage．Start with the laying all longerons and fietink cross－members over the plan．Only point to watch is that the wire parasol does not distort the frame－work．A sood fillet of eement should be adequate to hold it in place，but if you are of the type who would rather bind it in，do so，only to the

Bim－ Ham_{n} is Mileal for －fub＂orme－ m．．．atiol conteois． fuハーシise copies rof the $1 / 3 \mathrm{rat}$ ecale pilan cpporita
cambe Euppliad ty A．A．S．

longerons because if the model shosuld get a knock following as＂prang＂ifnd the parasol bas reasen to move，it will not pull half the cross－members out．

Make sure the foats are rigged at 10 and are 12 in ．apart，（outside measurement）and 8 in．inside measurement．

Wings and tailplane－pin down leading and trailing edges and have all ribs fitting frecly without any tendency to bend．All joints are hute joints leav－ ing the leading and trailinge elfe＂spars＂free without slots to Weaken them．Do，bot use too much cement per rib，as this also tends to bow them and the section becomes uneren．The tailplane is built on exactly the same principle as the wing．
Finishing．Cover fusclage and fin in lightweight Modelspan and s ings and tailplane in Jap if possible． After water shrinking give wings and tailplane and fin one coat and fusclage two coats full strength dope and then finish by giving fin and fuselage one coat 50% thinners．Lave about 24 hours hetween coats．Floats should have one coat of dope and two of banana oil．
Trimming．Start on $1(0)-150$ ）turns after checking that the glide is shallow，and trim under power to the right and on the glice to the left．Trim for a slight stall in straight glide，but counteract this by applying the turn．The original model needed $3 / 32$ in．side and it in．downthrust．（）n a maximum of abour 800－850 turns（note the different power used for cach version－see plan）the model should climb rapidily to about 400 ft ．in cither a straight fast climb or a series of Immeiman rolls．＂The Aloat－plane version is basically the same，but do first flying tests over long grass－water should lee avoided at these early stages，as a ducking will stop flying until the model has been drained out．In the event of water getting in，a pin－prick in the covering，and only a pin－prick will allow the water to run out．

WORLD NEWS

Interesting tale of the month is the story of setting a New Zealand National duration record for $A / 2$ gliders. John Sheppard, whose Karoro seaplane joined the ranks of A.P.S. designs in January, 1953, decided it was about time the standing record was raised.
The date was decided (such weather confidence!) and time-keepers briefed. Little wind, overeast sky and stable air conditions blessed the day and John was set for the first flight. Apparently a five-flight average was the aim and the first launch was not exactly suceessful, resulting in only a minute from a poor release. Next flight, the $\mathrm{A} / 2$ caught a riser and a 22 min . $11 / 5 \mathrm{th}$ secs. time was recorded, the slight drift taking the model no further than a half-mile from the launch point. Two more poor releases with low times and a final 9 min . 6 secs. O.O.S. brought the figure to an average of 6 min . 50 secs. for the live tlights. Incidentally, this last O.O.S. Hight finished some six miles distant after a followed time of 38 minutes - the wind must have risen to British standards! We relate this tale to give some idea of flying conditions in this part of North Island, N.Z.-a factor which appears to be much in favour of acromodellers. John Sheppard's flights took place 70 miles from Hamilton, which was to be the site for the Nationals, held over the New Year holidays.
'There has been a complete change in the administration of the N.Z.M.A.A. and the new council, bused on the Wellington area, is composed entirely of distinguished and active modellers. Trends are the adoption of the F.A.1. class as the principal power contest and the use of P'.A.A.-load rulesthough we wonder if they know of those mentioned in Hangar Doors. Radio Control is advanced in N.\%. and variations such as combat, racing and llying through "goal posts" are not figments of imagination but actual fact. An entirely new r/c design layout has emanated from the demands for better r/c flying, and next month will see first publication of full details of this model which is capable of, among other manoeuvres, a climbing roll!
The Australian Nats. were held over the new year break on R.A.A.F. Station Mallala in South Australia, which meant a round trip of anything up to 2,000 miles for the N.S.W. and Quecnsland modellers.
'The Soviet zone of Germany had a Nationals last August we now learn, and three r/c models were in evidence, flying with great precision but rather handicapped by lack of reliable relays. Lightest relay showing any degree of reliability in

[^3]February, 1955
the east weighs $5 \cdot 3$ ounces. Diesels from behind the curtain include Schlosser 1 c.c. which won the zone championships and a new supercharger-cuminjection pump mini-diesel from which great things are expected. As in pre-war days, the German modellers in this zone are supplied with material free of cost by the State.

This side of the curtain, we learn of a German motion brought up at the December F.A.I. meeting to change the title of the F.N.A. cup to Coupe Alphonse Penaud in honour of the "inventor" of the rubber driven model. 'The M.F.K. has also decided to make definite Wakefield and Power entries in 1955, though it seems inevitable that models will have to be proxy flown.

We enquired of two aces in the U.S.A. What plans they were making for 1955 , and the results are shown over at top right. Alex Schneider, the radio-control wizard shows his modified Piper Cub, winner of the 1951 and 1954 Nationals against great opposition. He reveals an airfoil choice that will surprise many who have seen the colour film of prolonged inverted and outside loops which are part of the Piper's repertoire World Power Champion Carl Whecley was the other man, and he confesses that since the big event last year, he has hardly had time to touch a model. llowever, the new look will be as sketched, and to match the fin, Carl is at last going to have rounded wing and tail tips.

A new form of A/2 wing construction, based on Jedelsky's airfoil developments and the AustroGerman use of ply trailing edges, comes from W. M. Schlosser in Holland. It follows many years study of bird flight and bird wing sections and at the same tinse introduces an casy method of obtaining the absolute in trailing edge fineness ratio. The leading edge is flat on the chordline, and the balsa part of the rib slopes up and back for approximately two-thirds of the chord. 'Two hardwood spars, also placed flat and approx thin. top shecting complete the forward section, whilst an absolutely flat 8 mm . ply sheet continues the airfoil to full chord.

Mr. SchIosser has used this airfoil on one A/2 with excellent results in all conditions. A block tip helps to retain some rigidity in flight and we have no need to emphasise that this form of structure would be most robust. With some of the airfoil pundits calling for extra attention to the trailing edge of glider sections, this use of ply should be one answer to the problem of the knife edge t.e.

I ast but not least-we hear that modellers crossing the State of Arizona, U.S.A. must put at least one frying pan in with their models in trailer boxes. Clubsters travelling to the Nationals last year were charged a fee for not carrying household goods aboard their trailers. Sounds like a perfect excusc for making a flying saucer!

1954 U.S. NATIONALS R.C. WINNER by ALEX SCHNEIDER

Abses: Fantoua U.S, radia fier rereals hown afiractive a fully asmbatic radin momlet can br. Helowic: Now look for tha Forld Champlon'a next model.

Bifint: Small and fast in George Zigir's FiAl. model frotm rugosiaria for thm K. and H. 15-a theory being followed by neveral prominemt molellera in 1955.

$$
\begin{aligned}
& \text { WEIGHT } \\
& \text { MOTOR } \\
& \text { PROP. }
\end{aligned}
$$

At an I.R.C.M.S. mecting Mr. Peter Cummins who has about the best in radio-controlled boats, and is one of the best "electronic brains" in the movement, was talking of a friend who complained of lack of range with the radio equipment. Mr. Cummins pointed out that the trouble was due to tuning the receiver to too strong a signal from the transmitter. The usual super-regenerative receiver tunes much too broadly for finding the correct spot with anything but a weak signal. The writer had personal experience of this at Cranfield when to avoid taking up too much time, the receiver was tuned at no more than 50 yards, and the model Hew out of range at two or three hundred yards down wind, yet when tuned on the home Hying field, the receiver had given full current drop at over half a mile. Normally the equipment is tuned on the home ground a week or so before a meeting and left at that, but in this case the receiver had been tuned to a different transmitter only a few days before. Mr. Cummins whose friend was using $465 \mathrm{mc} / \mathrm{s}$ equipment, suggested on the spur of the moment that the transmitter be put in a dust bin to reduce the signal strength. That is all right for $465 \mathrm{mc} / \mathrm{s}$ equipment, but will not be practical with $27 \mathrm{mc} / \mathrm{s}$ due to the aerial length. It is no use removing the aerial because that will most likely alter the transmitter frequency. One of the best methods that will avoid a long walk for tuning is to use a crystal controlled transmitter, and then use the crystal in a low power oscillator for the tuning. A method used very successfully by the writer during the last year has been to use a transmitter that has been carefully tuned to a receiver that had already been tuned to a crystal controlled oscillator, and the crystal oscillator was then always used to check the receiver tuning. At the 1954 Nationals Mr. Gerald Eastell checked the transmitter with a high-class frequency meter and measured it at $27.14 \mathrm{mc} / \mathrm{s}$ which was only $.02 \mathrm{mc} / \mathrm{s}$ different from what had been tried for. This proves that it is possible to tune a transmitter to a super-regen receiver, providing it is done with care. Mr. Sommerhoff has been criticised for suggesting such a method, in one of his books, but perhaps the critic had not actually tried this method. Due to the broad tuning it is by no means ideal, but it can be satisfactory.

The crystal nscillator referred to was suggested by Mr. F. G. Birden over three years ago, and the

circuit is shown in Fig. 1. Almost any "mains" type valve will do, triode, or pentode connected as a triode. 'The writer uses an ex-government E.F.50, and it is arranged to plug into the power supply of the transmitter. The range is about five or ten yards according to the receiver used. A battery valve can be used, such as the 3.54 or 3136 , or any similar type, with the circuit shown in Fig. 2. The range then may not be more than a yard or two, but it is still satisfactory. The component values are:-

C 1	20 pf.
C 2	.005 mfd. mica
C 3	20 pf.
C 4	.05 mfd.
C 5	.001 mfd. mica

R1 50 k ohms.
R2 50 k ohms.
R3 1 k ohms.
C5 . 001 mfd mica
The acrial can be a piece of wire a foot or two long. 'The crystal frequency should be between 6.74 and 6.82 or 8.99 and $909 \mathrm{mc} / \mathrm{s}$. (This crystal can then be used in a transmitter circuit such as Fig. 1 given in the September, 1954, Radio Control Notes.)
Please note that if an attempt is made to tune a transmitter to a pretuned receiver, they should be some distance apart. Mr. Sommerhoff recommends not less than 50 yards. For this an assistant is needed to wave his arm in sympathy with the meter needle on the Rx.
With an oscillator like Figs. 1 and 2 there is no tuning coil to fiddle about with, and oscillations will occur at the crystal frequency and its harmonics. It will be necessary to pick the correct harmonic, and this is casily found if the main transmitter is already tuned correctly. The receiver is tuned to the transmitter, and should then respond to the crystal oscillator at very close range. 'The receiver is then moved further away for final tuning. If the trans-

mitter is incorrect, then it may be necessary to borrow a correctly tuned one to start with. One point though is that most receivers will not normally tune satisfactorily to other than the correct harmonic of the erystals mentioned.

When experimenting with Fig. 2, a 31) 6 valve was used, and with 90 volts H.'Г. the anode current was about 2 milliamps. Attering RI to 100,000 ohms. lowered the eurrent to $1 \mathrm{~m} . \mathrm{a}$. and the range increased from 1 to 2 yards. Decreasing R2 from 50,000 ohms. to 10,000 ohms. the anote current rose to 3 mat. and the range did not alter to any extent. 'l'hroughout these measurements the receiver used was an Ivy type.

It seems to the writer that it should be possible to have a low power oscillator of the above type available at contests and mectings where $12 / C$ modellers get together so that people experiencing trouble could go a few yards away to sort it out.

Mr. Sinfield of I ,uton has sent along a few notes about his popular $3 / 1$ receiver which was described in these "Notes" in January, 1953. He says several factors have emerged concerning its components and sensitivity, and the circuit is given in Fig. 3.

A few receivers have had low sensitivity due to leaky fixed condensers. All these (except C10 of $\cdot 1 \mathrm{mfd}$. which can be paper) should be mica or ceramic types. 'The condensers $C 4$ and $C 7$ of $\cdot 01$ mfd. each must be of extremely low leakage, and should be tested accordingly. Leakage through C4 causes grid current to How and this cuts down the audio input to the valve very considerably with corresponding decrease in sensitivity. Leakage chrough C7 upsets proper operation of the crystal diodes. For best operation it is essential that these liodes have a very high back resistance. Cheap germanium diodes such as are commonly available for use in crystal sets must NOT be used.

There are three possible conditions in the receiver.

1. Carrier only.-'This reduces circuit noise in the receiver; giving minimum input to the audio section, so that bias is minimum and anode current maximum.
2. No carrier. - 'The circuit noise provides slight biassing and less anode current than in condition 1.
3. Modulated carrier.-Modulation provides maximum input to the audio section, maximum bias, and minimum anode current.
The maximum sensitivity will therefore occur with carrier on and by keying the modulation only. Although the original transmitter gave adequate change by switching from 2 to 3 , a slight modification to switch to conditions 1 and 3 would give better range.

It is probably possible to work a reed unit with the receiver by substituting a high resistance unit for the relay, and omitting the rectifier section (diodes, and C7 and C9). C8 should then be selected
to tune the reed unit to the middle of the modulation range. However this has not been tried in practice and should be much less sensitive than for the correct method of operation, as one stage of effective amplification is omitted (D.C. amplificr).

The transmitter can easily be modified for reed operation, and this, as carried out by Mr. Verney was described in these "Notes" in April, 1954.

Mrading nppoaite ahows H. Moy: Launching Tred Silla' clipped Sparky

German r/c equipmeni, known as OMU showring hattery box in's agerm. bly angen abore, and conpled to $103 E$ receiver brlow. Produr: tion is in futl aving at right, all-in price being 10.M 260

The mew gull. was described in the November, 1945, "Aeromonfiler" and since then one of the breed has re-appeared and its history is by no means over yet. This is $\mathrm{G}-\mathrm{Al}: \mathrm{XF}$, the most farmous of a design which was a consistent winner from its first appearance in 1934. 'CND, the prototype, first flew, ostensibly to test a wing section, with a Napier Javelin engine, 'This P'. 2 had irs faults and was drastically rebuilt into the P. 6 with a Regnier engine, later changed for a D.H. Gipsy Six I to become stiandard. 'Three more P.6s were built and all were entered for the Schlesinger Race from Portsinouth to Johannestburg in September, 1936. G-AEKL did not start for it had a taxi-ing accident with al larr, the prop of which killecl its pilot, the great Campbell-13lack. Numbers 1 and 2 were Mew Gutls ZS-AHM and ZS-AHO (ex- G-ALMO), their South African registrations appropriate to the nationality of their pilots, respectively A. M. Milne and S. S. Halse. Only the winning Vega Gull completed the course and 'AHM, named "The Golden City" on the port side of the nose and, in Afrikaans, "Die Goadstad" on the other, retired at Belgrade with fuel feed trouble.
ZS-AldM became G-AlSAF and passed into the capable hands of Alex Henshaw who got off to a good start by winning the 1937 Folkestone 'I'rophy at 210 m.p.h. 'The King's Cup brought three Mew (Gulls to the line-the repaired 'EKI, their creatur's (Catat. Percival) own new P'.6a with Gipsy Six "R", and 'EXF. Henshaw dropped out with water in the fuel, but C. E. Gardner won on 'lEKL at 234 m.ph., and, as in 1934, 1935 and 1936, Capt. Percival plus Mew Gull clocked fastest specd, $239 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. this time. Preparatory to next season, 'XF returned to Gravesend for serious "hottingup"; the main alterations being the fitting of one of the

Gipsy Six "R" engincs built for the D.H. Comets, -omplete with Ratier v.p. prop, and new Dunlop wheels in close-fitting pointed spats. After placing 2nd in the llatfield-Isle of Man race and 3rd in the Manx Air Derby, both at $247.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., Henshaw was out to win the 1938 King's Cup and 'XF was the fastest-looking machine at the start with a D.H. prop which had needed a lot of engineering on the front end of the " R " engine, of which an outward sign was the raked and lengthened intake cowling. There was a long spinner and a low canopy and all this proved its worth for XF won at 236 m.p.h.- to this day the fastest ever winning speed! An attack on the Cape record was planned and 'XF returned to Fissex Aerol Idd for preparations. A 205 h.p. Gipsy Six Scries 11 was fitted, tankage increased to 87 gallons and navigation lights were some of the modifications and various records were set up during practice flights over Europe.
On February 5th, 1939, 'XF Jeft Gravesend and after 39 g hrs . reached Capetown, averaging $154 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. for the 6,030 odd miles. The return trip took 9 mins. longer at 153 m.p.h. and with the record in the big, Henshaw received a hern's welcome at Gravesend, when the magnitude of the attainment was realised. Henshaw was lifted from the tiny cockpit suffering from malaria, his head cut by bumping against the roof and he had flown through three nights. Not only was this a great feat of technical achievement, but also of human endurance.

After this 'XF placed 2nd at $217 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in the Itarfield-I.O.M. race and was sold in France in July,'39. fitted with a Ginsy Six froms Vega Gull 'TEA, (also still with us!). Stored dismantled in a stable during the war, 'XF was reassembled after the war by D. Bianchi, flown back to Blackbushe and overhauled for the 1951 King's Cup. This was rained-out and before the S . Coast race, 'XI' had shed her engine through running into a ditch it Shoreham. The noseless Mew Gull stood on its l.e. at White Waltham for many months uniil Bianchi again put her on her undercarriage, for 'Nat' somers. For tnday's short-leg races with 'P'ylon tarns "XF"s cockpit was a disadvantage, so a new canopy was fitted ready for the 1953 (Goodyear 'Trophy at Wolverhampton. Somers made a spectacular climbing turn from take-off but was handicapped out of a chance and carne in 18 th at $199.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Next airing was in the Kemsley Trophy where a harsh handicap apain put XF well back in yth place at $202.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. In 1954 'XF joined F. Dunkerley's stable and accuuired a deformity in the shape, and size, of its fourth cockpit

"J" TYPE I/72ND SCALE REPRINTS AND "A" TYPE 1/48TH SCALE DYE-LINE PRINTS OF THIS DRAWING ARE AVAILABLE
canopy. This is very practical for fast pylon turns but ruins the lines of this most famous racer, and it is thought that the wash from it may be affecting rudder control. In this, its present, form, 'XI' was 11th in the 1954 (joodycar 'l'rophy at Shorcham at the close of the season. Now, the same Mew Gull which was the star of the prewar racing field is still the fastest piston-engined racer on the scene and it is hoped that better handicapping this year will bring forth some wins in the style of Alex Henshaw.

Specification: Span 24 ft . 9 in . L Lengely 20 ft . 91 in.; Max. Wt. 1,850 lbs:: Empry Wit 1,240 hbs.: Max Speed (Gipsy Six "1R') $256 \mathrm{~m} . \mathrm{ph}$. at nea level. C'ruising speed (Gipsy Six series II) $225 \mathrm{~m} . \mathrm{p} . \mathrm{h}_{\text {. }}$

Construction: Conventional all-wood construcrion. Fusclage has basic box frame with four spruce longerons. Whole airframe is
covered with ply (stressed) except controls, which have fabrie covering. I'wo-pars split flaps are manually operated. Main tanks in wings, extra lank fitted in luggate locker for long range.

Colour: 1951, glossy white overall with dark green lettering and black raeing No ty above and below wingtips, hoth sides!of cowling, fin and rudder. '53-'54, letters changed to deepest blue and racing numbers aitered in size and position except on wings. Spinner and prop have natural dural finish.

Bnttom Left: in aeen G.AEXF, alina 2S.AMM, with the original cockpit cower, ready for the Jo'burg rarp in 1936 . (Photo by A. C. Palmar). Rught, in XF' in her fasteas farm in which ahe uran Ren 38 Kjng's Cup. Note sha apinner, nate and corkpit. ("Rlighe" photo.)
Righs: Here, the pre-urar and firat poat-har cockpile are compmered. In the upper photo 'Xi' weara Brepen lnaters for 1951 King's Cup, and in lower 1953 pirture, the Hicarhi carkpit, Somera' T. B. Ii. badge and flag are added. (Photaa by C. A. Cull)

Reviewed by

Ron Warring

Tuis month's test engine has the somewhat unique distinction of having "starred" on television. It was one of the engines used by Harry Hundeby in his 'I'-V' Sparky, which was the centre'piece of a feature film on the construction and tlying of a radio-controlled model acroplane, shown on the Children's 'Television programme in October last. Although of only $1-5$ c.c. capacity, power output had already proved more than adequate for landling : 4 ft . span $2 \frac{1}{2} \mathrm{lb}$. model. The makers,
in fact, claim that the Webra 1.5 is the most powerful engine of its size in the world.
It was pretty obvious that by the time this particular engine reached the test shop that it had already been well run in. "The periornance "life" of an engine follows a typical pattern-the runningin periol, during which moving surfaces are belded down and performance progressively improves (duc to a reduction in internal friction); a period of life during which the engine is operating at the

SPECIFICATION

Displacement: $1.48 \mathrm{c.c}$ (.09 cu. in.)
Bore: 51 in.
Stroke: 45 in.
Bore,Strohe ratio: 1.13
Bare weight: 3 ounces
Max. R.H.P.: . 133 at 13,800
Max. torque: 12 ounce-inchea at 8,600
Power rating: , 09 B.H.P. per c.c.
Power Weight ratio: . 044 B.H.P./oz.
Material Specification:
Crankcase: Pressure die-cast Light Alloy
Cylinder: Steel
Cylinder jacket: Dural (anodised red)
Contra-pliston: Steel
Connecting rod: Dural
Crankshaft: Steel
Crankshaft hearing: Plain

Manulacturers:
Fein-und Modelttechnik, 5 Genestrase Berlin-Schoneberg, Germany.
British arent: Arthur Mullet, 16 Mectinghouse Lone, Brighton, Sussex.
Retal price in Gerrnany DM 33 (Marime version DM 40.50).
Retail price_in U.K. for export only 65/=
peak of its performance and should be particularly consistent in power output; followed by a slow but continuous decline in performance as wear becomes apparent. 'The change from the second to the final stage may only be noticeable in such specialised applications as speed models.

Condition of the Webra on its receipt almost certainly coincided with the "best" period of its life. It proved particularly casy to handle with a consideratle degree of Hexibility as regards control. With most sizes of propeller loads tried it could be "throttled back" quite effectively by reducing the compression-in some cases more than a whole turn without the engine stopping. Response to needle valve adjustment was far less marked. Peak r.p.m. with any given load required adjustment of both settings, statting with the needle valve a bit rich and then increasing compression, as necessary, for maximum speed. A further increase in speed could then be obtained by turning down the needle valve slightly and re-adjusting the compression again (increasing). We found, however, that there was a tendency for revs. to be lost as the engine warmed up-a feature common to all the fuels tried. For all the measured test runs, R-M fuel was used as this mixture has been found to suit all the Webra series engines particularly well.

There are several possible sources of power losses which need checking in operation. The steel cylinder is screwed into the crankcase without a gasket and must be tightened right up to avoid leakage. Similarly, the crankcase backplate has only a very short threaded length and can quite easily work loose under vibration. As the engine gets quite hot when running, a final tightening right down,
after an initial run, i.e. whilst the engine is still hot would appear advisable before mounting in a model. After an initial familiarisation run in a bench stand, for instance, we found that cylinder, cylinder jacket and crankcase cover could all be unscrewed by hand.

Starting seems to present no problems at all. It is not necessary to prime through the ports, although this technique can be used, if preferred. Provided the fuel line is first filled, one or two finger chokes will induce enough charge into the evlinder for starting, which should then be accomplished in a couple of ficks. Re-starts can be made in a similar manner without touching the controls. If preferred, compression can be slac.ened off and re-adjusted when the engine is running.

For positive starting, the propeller needs licking over quite rapidly, particularly when a small diameter size is used. 'The Welbra tends to be a Jittle bit vicious if handled too gently with a small propeller. With propeller loads corresponding to an operating r.p.m. of 10,000 and below, it is a most docile engine.

The Webra 1.5 is a fairly generous "vibration producer", due in no small measure to the guite heavy piston. We did notice at some speeds in the region of 13,000 r.p.m. a tendency for the compression adjusting screw to vibrate off. The needle valve lock, on the other hand, is completely positive and of the simple spring ratchet type so popular years ago, but which now appears largely to have fallen into disfavour.

Constructionally the Webra 1.5 is an exceptionally robust unit, yet total weight is only 3 ouncesa good average for European designs of this size.

Most of the weight is accounted for by the strong
 The crankshaft is a sturdy If in. diameter, tapering at the foreward end to a $\frac{3}{6} \mathrm{in}$. diameter thrcaded length, onto which fits the propeller backplate with a $\frac{3}{B}$ in. diameter spigot facing forwards-necessitating propeller hub holes to be drilled out to this size. Locking of the backplate is by the orthodox method of forcing it back onto the taper length of the crankshaft, as the propeller is clamped in place.

Crankcase volume is quite small. Transfer ports are semi-circular in section, three in number, milled into the sides of the steel cylinder and conservative in volume. These terminate abruptly in right-angled entries (to the cylinder). Exhaust ports are unusually deep for a cylinder of this size and there is an appreciable overlap between the two. This has meant locating the transfer passages in triangular section "pillars" which, in effect, block off about half of the 360 degree exhaust port "ring".

The deepening of the exhaust ports means that opening is extended upwards, i.e. the exhaust opens carlier in the power stroke, which is particularly beneficial for high speed operation but generally results in loss of torque at lower specds. This does, in fact, appear to be confirmed by the test data which show the engine to be quite an average performer up to 10,000 r.p.m. or so, but from then on to give a high and sustained torque. In fact, operating this engine below this figure is to waste its potential value, and so propeller sizes must be selected accordingly.

Manufacturer's recommendations are a $7 \times+$ or 8×4 propeller for free flight. To achieve the required operating r.p.m. with standard 13ritish commercial propellers of these sizes some reworking of the blades would undoubtedly be

PROPELLER TEST fIGURES

Proreliden		r.p.n.
ria. pitch		
6×6 (Stans)	,	13,001)
7×6 (Stant)	11,410
7×6 (K-K)	,...	10,260
8×4 (Stant)	10,000
8×6 ('l'rucut)	, 1	8.610
9×4 (K-ふ)	...	7,900

Fuet usedt: R,SM. dirsel

The Hehra Record dismantles to reveal conservative intate and tranafer port armas with a generous exhauat timimg. Stroke in short ond crankshaft rommendobly large, renulting in a amall jlange for the crank web. Note cumbinutiun radial ond heamt mount on introlved crankeaze casing
necessary-thinning down and, in particular, paying attention to the aerofoil section. Our own impression is that a 3 in . pitch propeller would probably be better-either 7 or 8 in . diameter, according to blade form. A $6 \times+$ propeller would give the revs. but would not be so efficient.

The Webra 1.5 makes no bones about swinging high pitch propellers at high speeds. provided the diameter is reasonablv low, of course. The manufacturers recommend a 6×8 for speed control line work and although we had no opportunity to try a comparable size, with proper attention to blade shape and section we feel this could be a very happy choice. For stunt work 6 in . pitch propellers are recommended by the makers, either 8 or 7 in . diameter.

With regard to possible team racer application, once again the point must be stressed that the Webra is a high speed engine. Attempting to run it at any "economic" speed will mean, first, the loss of any power advantage the engine may have to give you and, second, the virtual certainty that fuel consumption will not be "economic" even at reduced r.p.m. With the wide opening exhaust a fair proportion of mixture is sacrificed in the intersts of better scavenging and the lower the operating speed the greater this loss is likely to be.

Summarising, in fact, we can say that it is the high speed characteristics of the Webra 1.5 which are the most interesting feature. Whilst retaining orthodox design and construction practice, the makers have succeeded in getting something better than average from a plain bearing engineand of course, by so doing have awarded the complexity, increased weight and increased eost of a ball bearing job. As such, therefore, the Webra 1.5 appears to show considerable promise as a contest engine.

The main features we would criticise are: small flaws apparent in the crankcase casting (although these have no effect on running performance); needle valve too near the propeller dise for comfort; and lack of mating screw thread length on the crankcase back cover. But, it should be noted, none of these can be called faults.

In its original form the Webra 1.5 was produced with a radial mount, e.g. a generous fiange cast in with the crankcase unit. In the later model tested the crankease die has been modified, so that, whilst the flange mounting is retained, additional beam mounts are also cast-in. To use the beam mounts it is necessary to cut away a certain amount of the Hange metal to clear the bearers. 'This can be done with confidence since it will not affect the strength of the casting. If radial mounting is used, then we would suggest that the beam mount lugs are retained instcad of trimming off (filed to a triangular shape for neatness, if you prefer).

Sidelights on organisation of the '54 International contests

By virtue of their 1954 double team win, the U.S.A. (under F.A.I. regulations) would again be allowed to stage the International Finals in 1955. The ever increasing talk of having these important events staged in predetermined countries is mecting with much favour, but the possibility of this happening by 1955 is so shim it looks like this year there will be a big list of proxy models leeing sent.

1954 saw a drop off in entrics, and this is not what any of us want to sec. In the following paragraphs 1 explain how we went about this proxy situation, and from it we hope that those of you areund the world who were eligible to compete, and didn'tby proxy or otherwise-will take note, and from it gain a surer conviction that, by having your models flown proxy under existing rules and conditions, is almost as good as being there yourself.

First may I say that if Australia could have had 4 models in attendance, they could very well have won the 'leam prize. As it was, with only two men, they meeded only $10: 42$ to $\mathbf{w i n}$, so one can see the necessity of having full teams.

Proxy lliers accounted for three out of the first five places, and placed (ireat Britain 2nd. in the Wiakefield team results. Actually, Britain could have won if it were not for an extremely bad piece of luck. On his last proxy flight for Hugh O'Donnell, Cliff Duntplaisir, U.S.A. Wakeficld team member for the last two years, was disqualified on take-off. Necdless to say, the dight was a maximum-to the bitter disappointment of the rest of the proxy team. 'This was the first "assist" ever called on Cliff, and be says it was either that or the model pranging from a bad gust of wind as he let go of the ship. If this had not happened, proxy fliers would have accounted for four out of the first five Wakefield places, and liritain would have won the 'leam Cup.

[^4]Although the U.S.A. is a long way for most people, it must be remembered that we have an abundance of really good qualified flers, who are-and weremuch interested in making this event a success. One proxy flier, Manny Andrade, came 3,000 miles, Carl Hermes 2,000 from 'lexas, and still another 1,900 miles. All this way by car just to fly someone else's ateroplane has to show intense interest!

Proxies were not picked at random. First selections were made from those who had been former U.S.A. team members and still active and had entered the '54 eliminators. All proxy men paid their oztn say to the meet. The rest of the thers were picked from those men who competed in the final team, selections held over here on a de-centralised basis, (4 semifinals, each to pick one man for each event).

Almost to a man, these fellows wanted to come, and we picked those with a wide range of experience; some with frec-wheel experience; some with gear experience; and those that were scrious and had the right attitude. In all, 23 Wakefield men ware selected as this was the number of models expected to recpuire proxy flying, but only 11 acroplanes were flown, so the "best of the best" Hew. Other picked Hiers acted as team captains, and in other official capacities.
(In Greaf Britain in both 1949 amd 1953, proxy fliers zeere selected from the results of the selection Trials. Top men formed the Britis/i Teams, and proxies delegated from the top of the list dosemeards sumil sthe required number of men had been appainted. Such proxies therefore hud earned their appointment by wirtue of two Eliminators staged on a district basis, followed by the Trials, where all competed under the same conditions. The netl result is thas virtually the same as that achiesed by owr American cousins, i.e. only tried and lested men are emirusted with the extremely important task of proxy flying.-liditor.)
(contirued on page 101)
Bratom, doft: Manny Andrastr srimiling his proxy, model of
 manfol, uras evioce a majar, repair. Might: Bill Dean from the ['.S.A. and John Gorhari's Ver Tig O achich he flers sa well.

trade NOTES

Currenc balsa is our hobby no matter what branch of aeromodelling we follow, yet how ferw of us bother to use the hest available tools for doing this simplo job. A stiffbacked single edge razor blade will cut through sheet up to $\frac{1}{8} \mathrm{in}$. if reasonably sharp and for thicker sheet there are many commercial balsa knives with is variety of available blade profiles. But what does the average modeller use to cut up a piece of block balsa? We've seen everyshing from a broken hacksuw blade to a crosscut saw used for this purpose, and the amount of waste, not to mention the inaccuracy of the cut is enough to make any carpenter of repute go berserk. Now all of this is happily solved by the latest additon to the

New Rasor Saw by X-acto
X-acto range. Known as the razor saw, it is the simplest way to an accurate and professional cut we have yet seen, and all for the small charge of $2 /-$ or $2 / 6$ according in size. Made of Swedish steel, backed for rigidity and ultra thin with beaatifully fine teeth, the razor saw is well-named and fits the X -acto Number 5 handle.

Old farourites in new boxes with revamped contents are the Bateman WW II Solids including IIurricane, Spitfire, Mustang and Kirtyhawk at $2 / 9$ inc. tax. Eixtending the range to modern Jets, the lunter, Swift,

Hatemane solids of WiFH fightera

Eifitorial congpation a! recent wur of Lines Bros. worky includes C. S. Runhbrooke,
 and advertisomens managur Linus Lrow, II. G. Ifundtrly with E. If. F. Cianh in thr ahair

Javelin and Vampire are among the $1 / 72$ nd scale series, while the D.H. Comet to $1 / 1+4$ th will satisfy those who want a modern airliner. We like the Ibateman range, it makes no pretence of infallible accuracy. provides a clear drawing for a true semblance of the aircraft and gives just the right kind of cleanly cut blank material for producing a good table top model

The Model Shop (Newcastle-on'ryne) range of plastic tanks cositing from $2: 2$ to $4 / 1$ according to size and shape, are indispensable for the sport Hier. Wach is fitted with moulded lugs for mounting on either the fuselage side or a bulkhead, and a novel arrangement we spotted on the flying field, was simply to have the tank inside the fuselage with just the top of the filler protruding through a cowling hole. 'The effect was most realistic.

If you missed out on that Wolf Cub outfit you were hoping to get for Christmas, a new savings scheme introduced by the makers will ease your pocket, if you have to buy for yourself. Wolf accredited dealers throughout the country can issue a special savings card which enables the customer to build up his "Wolf" account and purchase against the amount he deposits, see your dealer for details.

Humber Oil Co., to whom we paid a visit in last month's special feature, have sent us a list of their dope range that reveals quite a number of items many a local model shop does not carry in stock. 'The old fallacy that the shop proprictor should only repeat order items that he considers popular, is shown by the number of queries we answer from "Aeromonemen' on the point of "Please where can we buy camoutlage dopes?' Britfix dopes inclade all the prominent service
colours in matt-plus a long list of gloss linishes from I'rench Blue to Dark Admiralty Grev. Carrying the lesser-known tones on the shelf is good business. Mr. Dealer-why not try it-the modellers will appreciate your stock.
'l'wo control line kits by Jasco

M.S. Tanks for oll free-flightern
have recently passed through our warkshops in doable quick time, and they are the 'I'rojan trainer and 'Tracer full stunter. The Trojan with an Allbon IJart has been the subject of considerable prangery yet still survives to tell the tale and with two newly trained pilots to its credit. It is a little toughic, ideal for the young c / l beginner and for 10j-- "You can't go wrong with it" as they say in the advt. 'Ihe Tracer is a lightweight stunter for bigger

Netr Janco Tracer is full-atune

'14.'18 Fighters in Birdflive kifa
engines and ours had the Yagoslav Oskar 150.
Flight tests showed a need for much more tip weight than specified. We would advise about 1 to $1 \frac{1}{2}$ ounces in the Starboard rip for hest line tension and then the 'Iracer will go through any manoucvre you care to mention. Fuschage construction is uniquein two halves fore and aft of the wing and the price is reasonable at $20,9 \mathrm{~d}$.
A new range of $1 / 48$ th scale solids with $14-18 \mathrm{ft}$. warplanes as the subject for the series is introduced by Birdflite Lid., and distributed by E. Law and Sons. Known as the Veterans of the Air, the sample sent us for review was a Sopwith Camel and in the kit were moulded plastic wheels, metal guns and a silver backing sheet for the engine cylinder. Lifting surfaces are accurately die-cul from sheet, also the propeller and struts
while the fusclage is cat to plan and side elevations. A plan with copious detail enables an accurate solid to be made and there are printed roundels for decoration. A pity these could not be centred better in the printing stage-we would rather have transfers for this job in any case. Price is $3 / 6 \mathrm{~d}$.

Travelling for the Mercury kit and accessory range is that experienced and jovial modeller, Nex Mol)omald. Known for his r/o activity in the I,ondon Ares, Alex can answer the retailers with any question they care to put on the subject of the model market. Many will be asking about the Mac and Monarch kits which are about to make their mark. When lenry J. was about to shut shop and go out with liall Morley to test the prototype Monarch (Allen Mercury 25) who shoald come along but Henri Stouts, the reigning e/l World Champ. in stunt. Sa Henri met 1 lenry and the Monarch went through more paces than ever intended by the Holloway Road establishment. After a thrilling display of complete confidence in the model's second-ever and his first-ever flight of the Monarch. Henri Stoults passed the Monarch and the AM 25 as a perfect stunting pair.

Reference to our recent classified adves. will show an address under the beading of Duplicating. We decided to give the good ladies

Jetrex Shyrorket kif is anpert in detnil; a trua "flying aolit" "
who run the speedy duplicating service, a try, and sent along our own local club bulletin. Just rough pencilled copy and all mames clearly printed for the salke of spelling. As advertised, the copies came back by 24 hour service, intelligently lad out, clearly printed-nosmudges at all and with a smart stenciled heading. Charges for these services are 7/- per 50 foolscap size or 100 quartn for B/bd. See classified.

Making your own engine-the series by Douve Sugden-is most popular and many mon-engincering readers tell us they like to learn about the mechanical process even though they cannot hope to make their own-at least not yetawhile. If you have a yen to follow in Dave Sugden's footsicps, a note requesting literature from Myford's, IBeeston, Notts, will give you information of the $3 \frac{1}{2}$ in. lathe as used to make those engines described in the "Aeromodeller."

The Proxy situation (contimued).

Wost of the proxy men arrived by the Iriday in order to test fly and become familiar with the models, and, if necessary, to repair damage done in transit. No major damage was found, due to good packing in strong boxes.
'Team captains played an important role in seeing that all went well, making sure that the little details were taken care of, and setting up a flying order. Also important was ensuring that retrievers were present to chase, and when models got lostas in the case of Upson's power model, to see that it was returned-although this particular task was no small order! Frank Parmenter, Upton's proxy flier, lost the model on test during the Saturday evening through the failure of a d / t. Darkness and an approaching thunderstorm made the problem worse. Team Manager Dave Call hurried to the hangar and rounded up-with some difficultyenough men (after a ra-ra pep talk about "beine a good sport, and what if it might rain!"'). After an hour's search in drenching wet, the search crew returned victorious.

The Gas boys could not do much, with the exception of Johnny Ciorham's proxy Bill Dean, of Massa-
chusetts, who would have secured a higher place had it not been for a faulty timer, which gave one 5 second engine run for a Hight time of only 64 seconds. V.'T.O. launching of this model gave Bill some grey hairs, until he found that sending it off down-wind was the best way to get it off safely.

Quite a few things need bringing to attention so that future team qualifiers can benefit from past experience. First, DO NOT place much (declared) value on the acroplanes if they are to be sent. Customs duty is high, and depends on the value declared; British models were valued at $\$ 8000$: 00 and a lot of time and money could have been saved if the value had been declared at $\$ 10: 00$ for the lot?

I'lease sec that enough rubber motors are sent, made up, pre-wound, or if not state the condition of the motors. Include lube with the models, or state what should be used-if it can be obtained by your proxy! Please state whether your model is adjusted for wind or calm, and what can be expected of the model under both conditions. Power men should remember to include plenty of the correct props., and details of the fuel shur-off system.

Now that we can look forward to a large proxy entry, I am certain we can all expect a proxy-flown winner in 1955.

Club News

A noticeable trend recently is the growth of postal inter-club contacts, and very good fun they can be too. Our November ligue saw the HASTINGS M.A.C. of ber tasue saw the HASTINGS M.A.C. of New Realand istuigg an invitation; in a challienge. Horh these clubs have quickly been raken up, the Czech one by several British cluba. In October we nublished under "New Cluly" the ALLERTON M.A.C. who tell us that aince then they have received quite a few lettera from different parts in and out of this country (including one from the AIR BLAZERS club of Now York) all wanting to swap plans, accessories, Ren. etc. This getting in touch with other fellows, whether to compete or mercly swap ideas, etc., is the next best thing to travel for broadening the outlook and, of course, improving your acromedelling. Our pages are always availahle to help you make such connections; why nor take a leaf from the excellent Rotary International scheme and establish permanent "contact clubs" ?

Enemferm

What could be the first carrier built for C/1, work in this country was exhibited by CHELTENHAM M.A.C. at a recent town hobbies ahow, 32 -ft. long by $4-\mathrm{ft}$. wide, the carrier is suitable for models up to 42 -in. span $1 l y i n g$ on lines of $30-55 \mathrm{ft}$. and was huift hy elut-members nut of club funds. Cost was a fraction over $C 5$. The carsier is just coming into use and is causing quite a bit of amusentent. Landing is, of course, the tricky bit, the iden being to atall on and hook the cable. when mandbage apply the andiar.
Heorganisation in SOUTH HRISTOL M.A.C. follown the recent A.G.M1. and commenren with a popular move-reducing the subgeription I Indoor rubber team racing is on the yo, and a flying field involving is on the wo, and a flyng field involving a shorter journey than the six nites to
Lulsgate is in the ofling. Meetings are held on the first liriday in each month (that manked the next one fielorilary 4) in st. Mary Kedcliffe Church Hall; new mermbers very welcome.

South Mialiand

Greetinga for 1055 are extended to all old member by OXFORD METEOR A.C. A new leane of life is being felt by the club which now numbers 50 and meets, through a kind citizen's generoaity, three nighta a weck in premises in Hurst Street. Radio is the main club activity, and embraces a modd shippine section as well as the aircraft side Club clampionship for 1954 in the WEST HERTS GROUP wene ro John Lamble, whose final spurt in the eliminatort gave him a clear lead over runner-up A. Weston. Ron Moulton and wife lietty placed 3 rd and 4 th on the list. All round, the club had a very promising season; current performaneca augur well for an even better one in 1055.
Sport ficers orcupied much of READING D.M.A.C.'s A.G.M.. bur no decision could be seached on how to cater for them in contests. Chief objection to most typea of events suitable was the delerring effect of the complen rules required. (The hest type of cuent we've experienced for such modelicrs is the simple "three flights to total 3 minutes" comest where the neareat to the total time, over of under, wins.) One hundred members and friends enjoyed the annual dinner and dance, but the first of the newly-instituted winter contests saw more spectatora than entrants.

Dinnt dinstinn

A large number of intact models is ore zesult of 1954's appalling weather, rejor:s

NOIRWICII M.A.C., but this appears to cause little check in the spate of new building. Fifteen-vear-nld 1). Mickleborough has chalked one up by building an entire R/C outfir (including actuator) with great success. Among interesting models are are success. Submong interesting models are several Subur Boigadiers for R/C. . lots of scale
stuff, chiefly from A.P.S., a Bilkri style sluff, chiefly from A.P.S., a Bilkri style
W'ske, and C. Sparsow's unorthotox effort Whe, and C., Sparsow's unorthodox effort which defics brief description! C/L, fans are getting organised for lots of racing. New members, especially ecriors, are invited to drop in at the club room in the "Spread Eagle", Sussex Street, Norwich.

With the triumphe and despairs of 1954 behind them. CHELMSFORD M.A.C. are getring all aet for a bumper 1055. P'repmintinns are already in hand for a Whisum exhibition, in which all Iiast Anglian clubs are invited to participate. A floollight tattoo in which the club gave a CRI, display is one of last year's fond memories-lines shortened to 40 ft . 20 clear the arena liphts and 3.5 atunters on the end-some fun!
 ficld is actually believed to be buildine an $\lambda 2$ to replace his veteran fader 60, which during a somewhat chequered career has even been used as a cricket bat (they build em etrong in Fissex 1). 'lwo other velerans, Thermulisis belonging to Messrs. Pueh and Kemp, ard still giving good service in more normal spheres \mid

Northerm

Collectors of the 1954 silverware in BRADFORD M.A.C. are: power and Krown- Muff (Seniner Champion) "lrophics, S. Ianfranch; Silvio Cup (Bliders). 1. Oxiey; Coultas Trophy, C. P. Niller Adcock (Junior Champion) 'I'rophy. J. B.' Creak. The club enjoyed a successful vear except in the seven domeatic competitions, which were badly hit liy weather and reduced membership. "This season a link-up with Lecds club is probable, which, while with Leeds club is probable, which, while
keeping both clubs identities, would result in pooling trophics, etc.
Regular crowda of bectators witness Sunday fyink hy THORNABY PATHFINDERS M,F.C. and a special turn was put on by K . MacDermot who dropped the handle when his Ambas sador's moror cur and rushed out and caught the modell Stocks of rusthed out and caught the modelf jobsarks of Ceverabs are beang huili in anticipation of several proposed diaplays and exnibitions.
Combat is the chief winter flying putivityGrectings and pood wishes for 1955 are offered to all modeliers

All two entries in LEEDS M.F.C.'s December scale contest pranked, so the event was declared a draw between D. Perkin's liox 59 Ryan and K. Walton's

Mustons. Jerkins had better luek to win upen stunt. Other C/L, news is F . Gudgeon's Mac 29 racer, which is currently knocking out 44 laps at 95 on an 8×8. One member is producing very smart plassic badges at is. bol. a go, which is extremely gond value. II. Epgleston's Creep M/k. 12 is down to 7 oz. less Oliver Tiger, while C. Thorn hos pruduced a really contemporary glider with turbulated and end-plated wing, 14 per cent. tail, mixed balsa and alloy structure, and hest-refecting colour patterns.
lew mwist on the mostal contest business by IIUDDERSFIELD D.M.A.C., who were one club to accept the invitation for llastinys, N.Z., is the swapping of results by short wave radiol A lacal hioni is obliging ar this end, and presumably amimilar set-up is arranged slown under. "The event has ateracted considerable interest locally. and the boys are putting some new modela together in the hope that better performances than were returned in their own winter contests will be furned in!

Giouth Wiastern

1954 individual champion in the Area proved to be Rex Boxall of BRIGIITON D.M.A.C., and this club proved top dog in the club list, its team of Moxail, Boxali, and Giggle aggrecatink 121:43 in the six eliminators held in 1954. againat runner-un Southern Cross with $56: 51$ and Eastbounne, third, with 52 : 18.

The Area P.R.O. announces in S.E.A 1).O.G., the Area news-sheet, his reaignation from the post as from the A.G.M., due to lark of support. 'I'his isn't the only case of this type and certainly Area P.R.O.s plough a pretty hard furrow. If cluhs want a news-sheer, surely ir isn't 100 much to ask that thev occasionally send in a spot of news for it? There is certainly too much "Let Jack do it" in this direction.
I'hree tough and misogynistic EASTBOLRNE M.F.C. members buve been discovered taking dancing leasona; mercly, so the story gocs. to make their controllining more graceful and entertaining in the future. Hrrmyh? Plana for a coach for the Nationals are already in hand.

SOUTHERN CROSS A.C. report steadily increasing membership following the recent publicity drive; the number of membera has, in fact, almost doubled compared with twelve months ano. Subscription for members in the 16.20 ape group have been dropped from 15 s , to 10 s . per snnum. 1954 champion was K. H. C. Smith, with F. C' Smith in second place. Λ stage-by-stage construction, finish, and flying competition for juniors is in hand through the winter, and should keep enthusiasm high.

North Wemterin

Also "chocker" is the N.W. Area P.R.O., who has also resigned. di the Area A.G.MI. the treasurer also resigned and everyone put forward for either job found an excuse to evade it. 'The Area Chairman then made few points on the subject and John O'Donnell offered to take the treasurer's post. D. F'letcher of "limperley M.A.C. took over the unenviable task of P.R.O. 'The over the unenviable task of P.R.O. The retiring of. W. kises the impression that his poor- - they're willing enough to bencfit from the result of committee work, but loth to accept the smallest share of responsibility or loss of a few minutes spare time. The A.G.M. later repaired to the "twan with Two Necks" for a nice line in hotpot and an enjoyable film show given by Eliot Horwich. Particularly well received were Horwich. Parricularly well received were
ahota in which the film speed was juggled, and sequences showing old so-and-no piling up his power jobl Incidentally, the funniest films we've seen were shots of 11.L.C/L joha, run in reverse

A home win by SHARSTON D.M.S. gainst CIIEADLE kicked of the club' indoor team-racing aeason. Beat time was 40 laps in 1:03 by A. Sedubeer. Most interesting model in the winter building interesting model in the winter buiding (Mille .75) by G Crichton.

Masochism is the only word we can think of for the one hour scramble organised by Whitefield M.A.C. Mud, water, and barbed wire all came into it, leasing the entrants strictly on their knees. R. Howarth and G. Smith gegregated just over 10 min . to win.

An open night to ahow parents and relstives something of the club's activitien is being arranked by WAVERTREE M.F.C.a very good acherne. The open nikht will include an exhibition of models and a short film ahow. Several renplanes are being buile (this type now auits the local flying feld 1), but A2 still remains favourite. A one-design contegt has been decided upon, using Rubberduh (full size in Chrintmas AERO. Monerdub (full size in Chrintmas AEROMODELLER). A. Carter has acquired a To
Indeor flying in BLACKPOOL, and FYLDE M.A.S. Isn'r quite up to Cardington standard, but in the space available (20 ft . wide and 20 ft . high) some incresting (lights are being made. Top time so far is M. Thomas' $2: 50$ with a 24 in. model which is at dinadvantage in the confined space. A. Bailey holds the "up to 18 in." class record with $1: 49$, and "up to 12 in." holder is Cliff Dnvey with a torrid $2: 24$. Junior P. Moss is showing that juniors can do it too.

Sinifflimeri

New club is the DE HAVILLAND S.S.C.M.E. formed to cater for all branches of model enginecring. At present about 75 per cent. of the thirty members are aireraft fans, which probably suits the chairman, who is our old friend Rip. Clubroom facilitites are in the offing, and the apprentices comprising this club ate raxin to get af contesta.
Scheme for a glider league on an interclub basis is drcamed up by WHITCHURCH D. M.C. Now just over a year old, the club is firmly entablislaed abal energetically pursuing all branches, including R/C (umbetter touch woodl). Clubs in the neighbourhool are invited to contsct I'. Dunlop, 46 Fairfield Estate, Whitchurch, Ilants, to see if the glider learue idea can be adonted. A New Year exhibition ly FARNBOROUGH M.A.C. has the boys all worried-they're trying to work out ways of manoeuvring feather mattresses under their modela to ktep enoush intact for a good how!
The last round of the BOURNEMOUTH M.A.S. verius WEST HANTS A.A. challenge match was flown off in conditions even rougher than those which originally caused the postponement. With a tic on the two previnus rounds, competition was sharp,
and the contest was decidedly up and down. B.M.A.S. took 1, 2, 6, 7, 8, and 12 th ageanst W.II.A.A.'s 3, 4, 9, 10, and 13th, giving clear win for Bournemouth.

North Einstern

A winter programme of talks and practica nights is in hand at SEAHAM D.M.C.'s clubroom at Rock House, Seaham Harbour each Friday. Visitors and new members are extended a cordial inviration. The club's facilities include a meeting room, store room, workshop (for engine tuning, etc.), a concrose C/L, and T/R pitch and an excellent fying field. A window display is hoped to fying field. A window digplay is hoped to progranme is planned. I'wo IT/R events (at ('roft and Sherburn) were entered last ycar. and cold logic, heated argument, mockery or sarcasm, fail to stop the team from sayins that they'd have won both if they hadn't pranked in the first lap of each!
Worrying the NOVOCASTRIA M.A.S. is the guery "Did Silvio's Wakefield tly?" teese of a worry is the club position. since finsnces are sound and mempership on the fins nces are anund and memhership on the upgrade. The "Novocastrie News is one of the wittiest club mars. we receive-we certainly don't pull any punchea.

Midland

Consolation for an ignominiou* defeat by Northampton M.A.C. has been sought by WELLINGBOROUGH M.A.C. member in hard work, re-decoraring the newlyacquired clubroom. Building henches are heing erected for mambers ${ }^{4}$ use. C. Longataff. 16 Link Road. Rushton, Northance will give you all the gen. if you'd like to be in,

Camalion

Building, with C/L top of the list, ia rampant in FULHAM M.A.C. 1954 wes rat her disappointing from the flying point of view, but better things are hoped for in 1955. Two Aeromonelerer receivera have been installed in Wetemastrrs for use as flomting rest beds: boats can certainly provide good R/C training.
The use of water piatols in T/R circles has been banned in SIDCUP A.S.-it has none too far. Hear, hear. The 51 club members age busy building for the coming mempers ayc busy ouildi
Bed and aspirin followed the S.M.A.F:. dinner for a dozen BUSHY PARK M.F.C. members who went along to help Sid Allen and George Redlich home with the pols!

Sratland

List of events for the big P.A.A. mecting north of the border on September 10 and 11, has now reached sixteen. These will the, roughly, open power, rubber and glider, 1. and $2 t$ Hanload, rubber Paaload, F / F scale. T/R A and H, stunt, combal A and B, all classes of speed, R / C, al! clasecs concours, and Jetex. Phewl
'1'He Aeromodeller 1 ccic. Puaload class proved popular in the ANGUS D.A.L., and will be repeated thi year. Montrose collected the Strathmore 7'rophy am leading club and W, Guild, of Dundec, was individual champion. thus being the first to win the new Anirus Cup

At ARBROATII public outcry what rained over the encine noise of C/L hijers: all is smoothed over now, provisled smaller and Inss disruptive motors are used. Λ recent film show was well supnorted.

Vrultans and Paaseboys are favoured in the CARNOUSTIE club, who share a flying ground with scale fans DUNDEE M.A.C. lieartcry (and hope?) is "Has anyone ever heard ot a C/L, type mophyxiated by engine fumes after lengthy indoror gessions?" Well, fumes after iengthy andwor iessions? well, We know other clubs suffering from that KIRRIEMLIR. F'F enthuniagta are more numerous in MONTROSE A.C. and itching to get at the "big show over on the Wicat side" in September. 'Theas boyn are recoknisable, apparently. by the slide rules in their anorrans!

Correspondent is sought by 28 -year-old acale fiend Bob Fvars of the U.S.A. Who is utrictly scale only. Goen to a meet, flies atite by himalf, and apends the reat of the time 'pickin' my nose and throwing rock at the U-control boys and damnis 1 'm lonesome!" Well, now there'll be lote who'd like to write, but let's have your address, Bob-we think ir mighe be Minneapolis From Canade comes F/F man Peter Mitchell, 293 Glen Road. Toronto. Ontario, who would like a 16 -year-old of similar intereats to mrite.

Lataly-what, you've guessed it? A green Mapma, Dar powered, found on Hounslow Heath. November 14. Owner collect from B. Kenchington, 47 Glouceater Road, Kew Surrey. What about charging a charity fec for this Arromodellem recovery service?

Cheers.

I'he CLUHMAN.

NEW CLUBS

FREEMASONS' ARMS A.C. (WORCEsTEH) B. Cooke, 172 London Road, Worceater. DE HAVILLAND S.S.C.M.E.
C. H. Foot, 55 Avon Road Wext, Christchurch, Hants.

SECRETARIAL CHANGES

ALLERTON M.A.C.
R. J. I'earson, 4 Stamfordham Place Liverpool. 19.
BRADFORI MA.C.
J. S. İckeraley, 65 Culverley Moor

Avenue, Thombury, Mradford.
BRISTOL AND WEST MA.C
D. C. L. Francis, 7 Fremantle Square, Cotham, Iristol, 6.
FUIMAM M.A.C.
H. Yound, 843 Dillie Road, Fulhem.

SOUTH BRIS"IOL M.A.C.
Sullivan, 30 Devon Road, Whitchall, Bristol, 5.
OLDHAM D.MAAC
R. Johnson, 3 No. 4 Court, off Hobaon Street, Oldham, Loncs.
SIDCUP A.S.
A. A. Houlding, 87 Longlands Road, Sidcup. Kient.
FARNBOROUGII M.A.C.

1. Webnter, 4 Ama Square, Crosa Strect, Femborough, Hanta.

ROLAND SCOTT

 THE MODEL

 THE MODEL SPECIALIST SPECIALIST

 PHONE 7097

 PHONE 7097

 147 DERBY STREET

 147 DERBY STREET BOLTON, LANCS

 BOLTON, LANCS}

DO YOU KNOW

That i carry she Largest Stocks of Engine Spares in the country and can supply Spares for All Allbon, Elfin. Mills, E.D. and Amco Engines per return
My new lo-pare Caralogue is now ready and will be forwarded upon receipe of a 3d. stamp.
Jap Silk is still available, panels coneaining Itsq.yd. ... 4/-

SECOND HAND ENGINES

 All Guaranteod for 10 days Money back if not entirely satisfied E.D. 46 c.c. E.D. Bee I ce Anderen Spifire 10 40/ Anderson Spiffire. 10 c.c. ... 240/E.D. 3.46 c.e. 45/ E.D. Comp. Special 2 c.c. ... 37/4 Elfin 249 ceE.D. Harnas I. 46 c.c

Ameo 3.5 c.c. P.B.
D.C. 350 D

Mk.i ... $47 / 4$ Dare.5 c.c. Mk. 1 ... Many others. Send for Lise.
Frog Junior Series:-Minnow Scamp. Midze, Skippy. Pup. Speedy, Sporty $3 / 4$ each. frog Senior Serien:-Raven, Linnet. Redwing Heron. Tomelt, Widgeon, e/ll atach. ALL K.K. 3/6 KITS.
ALL SKYLEADA 16 KITS K.K. and VERON SOLID KITS "Magpie" Glider 24^{4} SOLID KITS. "Magpie" Glider 24" "Goblin" Rubber 24" "Dart" 15" Throw Glider
0.5 M/A Meser ... 12/6 - Assorted Pike. Tranifers
\# \quad OME TO OROER $* * *$ and formard pour requiremants will do the rest or Chequewill do the rest. C.O.D. Service OVERSEAS:-List ments and lorward your requireOnts and Corward British Postal Orders, International Monay Order. Dollar Draft. Dollars. Notes necepred from all Commonwealth Counrries. C.O.D. Servite available to most Countries. Allow sufficient excess for Postarea, ete.
FPOPULARACCESSORIES Drome Airwheeli $2^{\circ} \ldots$... $8 / 2$ 21" 9/11 3!" E.D. Clorkwork Tim Celspray Airspray K.L.G. Glowplug
15 c.c. TR Tanks 30 e.c. TR Tanks Acromodeiler Annual Dunlop 6010 Rubber $\quad 12 / 6 \mathrm{l}$ Brixfix Cement Bd. IOd., 1/6 Britfix Fuel Proofer Elfin Jet Assemblies E.D. 246 : 346 Jet Assembliei" Xacto 62 Knife Ses, 2 knives
and 12 blades
Burlington Hobby Chest, The
Finest. Completo DC Fuel Cutor DC Test Siand
Bonda Glas a Kit
Elmer VP Prod, 9° E.C.C. P-IOO Rélay Fretsaw Bladei Fretsaw Blades
Valye Spout Fuel Cal Elacerotor Type 240°
E.o. Boomerangincluding \star P. \boldsymbol{T}, Escapoment ready-
wires \cdots.... $1096+17,2$ E.D. Boomerang Rxanly $\mathrm{sig}_{i}-+161-$ E.D. Mk. IVRed … 240:- :45/E.C.C. $\mathrm{SSIA}_{\mathrm{Rx}}$ … $60 j-111 / 4$ E.D. Mk. H1 Escapemene $18: 6+3 / 3$ E.D. Mk. I Escapement $41 / 6+9 / 6$ E. Polarised Relay 30:- F.C.C. 202 Escapomene 14/-+ 24
H.D. Mk. III E.D. Mk. II
D. Mk.IV and Control Box 1061 H... ... 160:-+301E.C. 10 I Hand Sky Shooter 48° Junior 60° (67/- 12/6 Marlin Lsunch $\quad \cdots 598-13 / 3$ Spramaser launch 305 5/7 Police Launch Monoroupe L7A Aeronsa Sedan Sea Scout, 24 Launch 30,-+ 5/Sea Rover, 30 launch 45i-+ 7/6
Commander. Mercu-y Macador Fonners Pike Servo Fenners Pike Consral Box Woods'de Rudder Mas Woadride Pathfinder $36 / 9$ -

WOOELLEA

WORLD W RR $\underset{\substack{\text { Izax } \\ \text { scaid }}}{ }$ SOLIDS

These new additions co the famous Bucoman Range include haped Juselage, flying surfaces, and spinner, a moulded cockpit, mesal airscrew and plastic wheels, wich aceurate plan and transfers. Orher kies avalable in thisseries are:

North American
Curtiss
MUSTANG $\quad 2 / 9$
KITTYHAWK including tax

MODERN JETS

Accurate plans and pre-shaped parts make these the fincat solid kiss on the markes. There aro nine types available at present, and modellers should watch our adverts for new additions.

Hawker Hunter, 1/72nd Scale ...
2/9
Supermarine Swift, 1/72nd Scale $2 / 9$
Saunders Roe AI, 1/72nd Scale 3/3
Gloster Meteor, 1/72nd Scale ... 4'-
Gloster Javetin, 1/72nd Scale ... 3/9
Canberra, 1/72nd Scale 5/6
Avro 707B, 1/72nd Scale 2/9
D.H. Vampire, I/72nd Scale ... 2/9
D.H. Comet, I/444th Scale

All Prices include P.Ton
From Your Local Model Shop

BATEMAN SOLID KITS

Sole Trade Distributors Phone: Bowen Park 5979

BUD MORGAN

The Model Aircraft Specialists

SENDAd. in tramps for MY COMPLETE PRICELIST, KEIL, VERON E.D. X.ACTO MERCURY, FROG, SKYLEADA. SKYCRAFT AYION SKYLEADA JETEX ALLBON ELFIN O'MY DOPES and CEMENT, SOLARBO BALSA WOOD, etc., ote.

NEW FIRST JET-POWERED MODEL SPACE SHIP with its own launehing ramin, ascends over aunehing ramn. ascends over PAICE COMPLETE 47:6d. NEW READY TO USE Swedt line nleccric-powered WIMCO POLICE LAUNCH, PRICE COMPLETE 45 /.
NEW IETEX TAILORED KITS IOR the JEYEX 50 motor.SKYRAY Length 12° Span 94^{-}: SKY ROCKET. Length ilio: SUPER SABRE, Length 10^{-}, all at lojod. each.

JETEX MOTOMS

50 outfie 1219 d .50 b , with augmentor rube $12 / 9 \mathrm{~d}$. Jermaster 100 28:Full range of JETEX MOTORS. FUEL, WICKS, GAUZES, ERC, in FUEL, NEW JETEX ILLUSTRATED
scoek. NEW LIST FREE

ENGINES

FROG 500 Glow plug
AMCO PB 35 win balrace 91.
AMCO B. 35 (113
AMCO B.B. 3.5 C.C
Allen-Mercury 25
Allbon Merlin Be.c 86,6
Allbon Bambi . 15 c.c. $\quad 10311$
Allbon Dart Mk. II . 5 c.c $84 / 2$
Allbon Spitfire | c.c. Allbon Javelin 1.5 c.e.
Frog 150 I.s c.c.
E.D. Baby the.c.
E.D. Bce। car.
E.D. Hornet l. 16 c.c.
E.D. Aacer 2.46 c.c.

Millı 75 c.e.
AEROMODELLER ANNUAL price 10/-, postafe sd. AIRCRAFT OF THE 1914191日 WAR 42/-. EAGLE BALSA BOOK 6/=.

SKYLEADA SILHOUJETTES al as 2 6d., postage ód.

FULL RANGE OF FROG KITS IN STOCK. JUNIOR SERIES 3,6d. SENIOR SERIES Alld. All listed in my NEW price list, to

RADIO CONTROL

EQUIPMENT
AMCO AVIONIC REMOTE CON. TROL TRANSMITTER 133/Id., RECEIVER 71:- For immediate deliyery.
Fenners-Pike Servo-Unit ... 68/6 Pulse Bor 696
E.C.C. Telecommander 1061

Transmitter, prica
95IA Receiver, price
202 Escapement, price $\quad 17 / 10$
E.D. Boomerang complete E. Mk, III completo

ED. Mk. II J-value unit All the above E.D sold separately. send for price lise.

GLIDERS
Marauder A2, 64* ... 16:11
Vortex 66° …...
$\begin{array}{llll}\text { Koil Topper } 40^{\circ} & \cdots & \cdots 1 & 2117 \\ 9,11\end{array}$
Keil Dolphin 30^{*}... 18.
Sozrer Minor $48^{\circ} \cdots \cdots$.... 9i5

Soarer Maior 60"
THE AEROMODELLER, " \times-ACTO
$13 / 5$

THE AEROMODELLER. X-ACTO BURLINGTON HOBEY CHEST. A fine kit in a magnificent moulded cabines, containing threc knives. and 23 curting qools, spokeshave, plane stripper and steel rula.

Price 84 -. Other tool chests Irom $\mathbf{3 0}$-. SEND for FREE X-ACTO

ILLUSTRATED LEAFLET
CONTROL LINE KITS
Frog Vandiver I.Sc.e. ... 14, 6
froz Mirage 5 c.c...
Mercuis Texan Class A - \quad 1016
KK Champ 18015 F K.K. Ranger up co 2.5 e.e. Skyleada Hornce 25 c.e.
Skyleada Auster I c.c.
Voron Panther 3.5 c.e.
Beebug I c.c.
Minibuster team racer
Provost Tramer
819
Phancom Mite l c.s. \quad 21/7
USEFUL ACCESSORIES Allbon UNIVERSAL TEST STAND 12,6d. CELSPRAY for a perfece finigh : Gd., YEOMAN STUNT finish 1 6d.. YEOMAN STUNT TANKS from 3/6d. 15 YEOMAN BONDAGLASS at new reduced price. DROME AIRWHEELS, $\mathbf{2}^{2}$ dile.
 lobd. SWANN.MORTON CRAFT TOOLS $26 d .$, wish 3 blades. SWANN-MORTON HANDITOOL

FULL RANGE OF VERON and KEIL SOLIDS in stock, send for FREE KEIL AND VERON PRICE LISTS.
with 4 blades 5 F .

A SELECTION OF SOLID MODEL AIRCRAFT KITS FOR THE WINTER EVENINGS SKYCRAFT 112° Scale.
Gloster Gladiator 3/3d., J.U. 88 519 d . Sopwish Pup 2/11d." Typhoon 3'6d.. D.H, Tiger Marh 2/8d., H.P. Victor BI $(1,144)$ 4ild. SPITFIRE. Hurricane, Moss. 109 2/IId. each. Tompest, J.U.87b. 1 od. each Mosquito 4/lld.g Beaufighter 5/9d.

SOLID SHIP KITS
Sca-roing trawler 5:90., Batte class dastrayer 4'Bd. Didn rlass cruiser 7/6d.

AVIAN \& SCALE SORIDS
Supermarine S6B, ALBATROSS DIII, S.E. SA SOPWITH CAMEL all at 5/7d, each. SPITFIRE. TEMpest, mustang. hurricane at 5/7d. each
Super Sabra F10C and SWIFT F4 at 6/2d, each.

You may not be able to Guy SOLARBO in Omsk. Tomsk or Turkestan

SOLARBO LTD. Commerce Way, Lancing, Sussex. Tel. Lancing 2090. 2099 Britain's Largest Balsa Importers

FLY WITH JRScC

Few other kits are as casy to build, or as casy to fly as the Jasco Range. All parts are pre-cut to accurate shape, and items such as wing ribs are ready to glue in position. Watch out for our new
 span SABRE: 11 in . span GULL WING: 81 in . span SEA SPRITE: All are attractively printed in two colours and wonderful value for money. Do not forger cither the old Jasco favourites SCOUT, JUNIOR and CONQUEROR, every one is a winner! Announcing. New and more comprehensive TUTOR
 30 in . glider kit now 7/-

"Ealta fllaria" Galloon

First of the "BLUE PETER" ship series containing detailed step by step building plans. Sails, flags, etc., silk screened on linen.
and plastic fittings. $\quad \mathbf{2 4 : 6} \begin{gathered}\text { incluoing } \\ \text { p. TAX }\end{gathered}$ and plastic fittings.

From your L.ocal Model Shop or Mail Order House
southport - england

For 1.5 to 2.5 cc Engines
Suitable for Beginner or Expert, this elegant design will go through the book with case 20/9

Junior Aircraft Sapply Co., Ltd.

For 5 to 1.5 cc Engines An unbreakable Beginners' control liner, with profile fuselage and solid balsa flying surfaces
... 10/=

At Last!

CRYSTALS

Thase are low temperazure co-sficient cur crystals. 26.96 and 27.28 between 26.96 and 27.28 Me/s, operasing on the third overtone modo. They are mounted between landed stainless steel olectrodes in a eype F mount, with two octal eype valve ping. Heighr less pins, 1.15^{\prime}, Width $0 . \mathrm{B}^{-}$, Depth 0.4". Price, including sockee and information leallet containing circuit 2 gns.

An Apology to Overseas Customers

In spice of our best efforts with an application for a Purchasa Tax Certificata, that would enable us co supply our overgeas friends at the right prices, we hewe been turned down. Apparantly Officialdom daes not wish to encourage the export sale of model goods! For this reeson we reterfully omphasise that all prices to overseas buyers musc include cex for the time being. As before we continue to offer modallers everywhere our unrivelid 48 HOUR SERVICE.

TO OROER BY POST: Cash with order or C.O.D. Add postaga: under $10 /-$ I/-: up to $25 /$ - add $1 / 4$; up 10 40/- add $1 / 1$; over $40 /$ Free. New 28-pare Catalogue 6d.

Send 6d. for Our New 28 page CATALOGUE

E.D. AADIO CONTROL

ED Boomerang Receiver Outfic (inc. cscaperment)
$t \mathcal{U}$ Hoomaran: Rectiver only
(Hard or solt valve in above to choice)

ED Mk IV Transmiteer, Control

E Box and Aerial "*. ... ${ }^{\circ}$ E D Escapement, cempact or elilis ED Escapement (clockwork) \cdots e... elifi6 | ED Escapement (clockwork) | \ldots | $8 / 17 / 6$ |
| :--- | :--- | :--- |
| ED Polarised Ralay | $\ldots 1 / 0$ | \ldots |
| 10 | | | $\begin{array}{llll}\text { ED Polarised Rolay } & \ldots & \ldots & \leq 1 / 10 /- \\ \text { ED Relay (istanderd) } & \cdots & \cdots & \text { [1/2/6 }\end{array}$ ED 3-Reed Unit (High or Low Resistance)

E.D. Mk, IV Contral Bon Q/l2/3
E.D. Rudder Mechanism ... E2/17/-
E.D. Threo Read Booklet ... $/ 9$
. E5/91-

2118/-
66/6/3

4910/-

16
E.C.C. AADIOCONTROL "Telecommander" Equipment
1061 Hand Transmirser; Tozally enclosed in bakelice caso wish alu. pandi. We. 3 lb. 951A Receiver: Hard valve, duscprog plastic case. $4 \mathrm{~m} / \mathrm{a}$ currane. Wc 21 oz . 63/19/4 -C.C. 95 R RECEIVER Complete with P,100 polarited rolay, reinforced coil formiari, hard valva, simpin plugand socket. Wris: Wish vilve for building Transmitter Unit: With valve for building
as required, comp. with case $. . . ~ M / i: / 4$ Incernational Transmister: Madern cesa fold-down serial. carryine handle. Bulle-in milliammotar. keying lesd warning light, complece with valves. ©lilis * Every batcery used in R/Cin stock.

SILVER WING Superb Solids

SWIFT, SKYNIGHT, METEOR, MIG-I5, SKY ROCKET, SABRE, GLOSTER JAVELIN, HUNTER, SCORPION, YAK-25, ATTACKER, THUNDERJET.
A range of 12 authentic $1 / 72$ scale Jet Fighters complete with cockpit covers. Easily the finest value for money in the trade. Send for Illustrated Lists.

All one Price 2/6 including P.T.
ALWAYS INSIST ON

TITANINE

Dopes, coloured lacquers, fuel proofer, cement, etc. . . .

IIAIANA MIDEVIN IIMMITEI

 RICHARDSON STREET, HALIFAX, YORKS.

For Immodiato IDolivery

Binnacle, Wrights, Modeleraft and Handicraft Marquetry and Boat Kits. All Skyleada kits including Silhoujette kits, Skycraft, Silver Cloud and Avian Solids. Skycraft 50 ft , to Iin . Boat Kits, full hull. Electric Motors, Steam Engines, Meccano type Building Sets, Fretwork Outfits. Masterpiece Oil Painting Sers by numbers, Chemistry Sers, Chad Valley Electric Train Sets. Christmas Gift Wrapping Papers. The famous PVC Cement. Harbutr's Plasticine Passe Partout. All Model Aircraft, Ship, Yacht and Galleon Accessories from stock.
ATLANTIC MODELS
335 BRADFORD STREET, BIRMINGHAM 5.

Better than ever, this year's Aeromodeller Annual sports a full-colour Rupert Moore dust jacket-reproduced inside as frontispiece, plus a colour chart of latest camsuflage colours-and provides a well-balanced mixture of topics to suit all types of aeromodeller. There is George Cull on Cockpit Detail, Parnell Schoenky on Helicopters. Just Van Hattum on Nordic Gliders, G. Honnest-Redlich on Actuators, Ron Moulton on Timers, plus articles on R/C Design, Power Props, Delta Jets, Fuels and Formulae, Weight Data, Inexpensive Modelling Dodges, Rubber Motor Calculations, Dethermalisers, Contest Results. International Mectings, Records, Engine Analysis and so on . . . Plus, of course, a fine variety of plans of outstanding models of the year throughout the world ineluding combat-conerol line Spitfire and Me 109, scale B.A. Swallow, Iron Curtain A/2 winner, Polish R/C, Jap Stick waterplanes. Jetex and Dart Helicopters, Contest and Sports Power models . . . something for everyone.

> THE ANNUAL THAT IS READ BY AEROMODELLERS ALL OVER THE WORLD!

mOdel aeronautical press lid., 38 Clarendon Rd., whtrord
John \& Wm. Ragg, hth. zwosk sur.

Adhere to Joy-plane

If you insist on JOY.PLANE adhere to your request-you get the best that there is.
LATEST NEW
DISCOVERY BRAND
LUMINOUS PAINT
(IMPROVED QUALITY) brighter light and longer life

Cartons $2 / 6$ and $4 / 6$, contalning Base Coas and Luminous Top Coar. The neweit noveley in flight. A plane can be alive with light when Alown in the dari, Ideal for parsy novaltias, atc. Leaflet and parsiculars free from:

TURNBRIDGE LTD.

Lendon, S.W.IT

joy-plane DURABLE LASTING FINISHES

Other high quadixy loy. Plane products Pre ss follows: Callulose DopesMart and Glossy, Rubber Lubricant, Plastic Wood, Gold Dope, Silver Dope, Bunana Oil. No. 1 Thick. No. 2 Thin, High Gloss Waterproof Finish, Grain Filler, Flamboyant Finigh—she new coloured matal theen finith now colourad matal shaen finith Which it more durabla than dopa-

Zeterans of tlee Air!

SOPWITH CAMEL - The first in a a New Series of SOLID KITS

SCALE-1/49th. PLAN-Authentic and Comprehensive. MACHINE GUNS-Die cast in Metal. WHEELS-Plartic, WINGS ANO TAILPLANE. ETC.-Accurately diecut in Balsa. BODY-Partially ahapod in Balsa

AVAILABLE NOW -
 PRICE 3/6

Also available in this series: FOKKERD.T: SPADS.X.XIII-C: ALBATROSS D. b $_{\text {; }}$ S.E.Sa: BRISTOL F 2B. (GRISFIT).

NOTE-THE BALSA WOOD IN THE ABOVE KITS IS:E.L.S. SUPER QUALITY
Prices of the above ta be announced. Trade supplied.
E. Law \& Son (Timber) Ltd. ${ }^{272.274}$ High Street Sutton, Surrey

Marine Models avallable against orders 25/- extra
Any difficulty in supply write to the manufacturers-
AEROL ENGINEERING : LIVERPOOL 13
————

Distributors
Home Trade :
E. KEIL \& CO. LTD. Wickford, Essex

Export:
LANG OVERSEAS LTD.
33 George Street, Liverpool, 3

AUSTRALIA
leli: Melbourne Cont 918

GEORGE MASON

 M.A.I.A.E.4. PRINCES WALK, MELBOURNEC.I
Australia's Main Distribertar for "Aeromodeller." "Model Maker" and their Plons Service

BIRMINGHAM
Tel
The MODEL MECCE 204 -206 WITTON ROAD, BIRMINGHAM 6 All leading Model Aircrafe Kits and Accessories.
Trlang, Trin, Gpohom-Farish Raihwoys. 5 \& Sa Buses poss the door. Write. "phone or call.

GLASGOW Tel:; Gentral 5630

CALEDONIA

 MODEL CO.Model and Precisian Engineers 5, PITT STREET, C. 2
Our works at your service for engine reparif and rebwilds
Everything for beganner and enthwsiast
HARROW Tol. Phome usp
THE MODEL STADIUM
3. village way east. RAYNERS LANE, HARR'OW, MIDDLESEX
The only hire purchase ipecializt offering no deposit tefms to establithed customers

HONG KONG Tel:: 57662

RADAR COMPANY
ALL MODEL AIRCRAFT SUPPLIES American, British and lopanese model aeroplanes. engines. jelex-oulfits, race Eors, AGENTS: for Solabo. E.C.C. "Briffix." Tenahodo Trains, jodan. 4O-D SHAN TUNG STREET, MOPGKOK, KOWLOON

lIVERPOOI

Tet:
Central 1309
Liverpool Model Shop LTD.
10 Moorfialds, Livarpool 2
100 yards Exchange Stavion: S mins Pior Head
Kirs by K.K., Veron, Skyleada. Jesex lasco, Skycrafe. Bateman, Avian, E.D Allbon Engines, Good stocks Balso, Tissue. Dopes. Spotes ele.

Tel. HOD 3482

MODEL AIRCRAET SUPPLIES LTD
171, NEW KENT ROAD, S.E.I The oldest established aircroft shop The oldest estobished
Service with satisfation from Harry York

LONDON

Ted.: MMerst 2928

ROBSON'S

IAgiISI, MORNING LANE, HACKNEY, E. 9
Agents for Keil Kraft. Veron, fros, Jeten. ecc. Also Accessofles. Engines and Mal Order Service

Modellers can be assured of personal service coupled with expert knowledge of aeromodelling requirements at any of the following shops.

ONDON

Tel. $:$
Southgate Hobbyshop 1 BROADWAY. WINCHMORE HILL ROAD. N.I4. Adj.: Southgate Tube.

Pal 4239

Medel aircrafi and raifwor apecialiats Keilhraft. Mercury, Diesels, fuels, and all occessories. Tris Irain super service.

LONDON

SUPACOILS

21 MARKHOUSE ROAD WALTHAMSTOW, 1.17

Leoding Agencian.
Aldio Control Specialirts.

MAIDSTONE SHAWS If Middle Row. Maidstone, Kant. Stockirts for Keil Kioft. Mercury. Frop, etc.A Marine Kits and Accessombt K-Acto. Mobbies. Engine and Radio

MANCHESTER
Tel.: BLA 6159

MODEL SUPPLY STORES

17, BRAZENNOSE STREET, MANCHESTER 2 Manchester's Mann "Mecta" f", every make of KIT. ENCINE \& ACCESSORIE Solarto BAISA Cte

Northern SKYLEADA Factory

MANCHESTER

Northerm Model Fircraft Co. 25 Lowar Mosley Sereat (Nr. Central Setion,) Manchesear 2.
Trems for Kell Kroft، Veron, Frog, fecen, etc. also engines and accessories.

MANCHESTER

THE MODEL SHOP
13, BDOTLE STREET. OFF DEANSGATE, MANCHESTER 2
The Model Aurcrofe Speciolists. Mall orders by return. Post free over 10/-

STOCKPORT

ockport 5478
H. H. \& J. GREEN 166 Northente Road,
Edgeley, Stockport, Choshira.
Complere range for every Aerornodeller. Keil Kraft, Frog. Mercury. Veron, Sky leodo. Jetex, Allbon, Elfin, Amco, Mills, E.D., and Oliver Tiger

- CDAsGEFIEE ADEERTMEEMENTN

PRESS DATE for isnue, March, 1955, January, 14, 1955. ADVERTISEMENT RATES:
Private Minimum 18 wordi 61., and Ad. per word for each eubsequent word.
Trada Minlmum 18 words 12s., and Ed, per word for ash subsequent word.
Box numbera ara parmisalble-ca count as 6 words when conting the advartiament.
COPY and Box No. replies should be sent to the Classified Advartisement Department. the "Aeramodellier," 38 Clarandon Road, Watford, Herta.

POR SALE

Unum BB Amco 64 . Hornet unrun since makers overhaul 35/-, buth with props. R. D. Shaw, 166 Cheaham Hoad, Bury, Lanca.
Besi offer over f.10-2.46, Dars, Bee (rebored). 32 Aehomodellers, Books, Lavochkin, Monocoupt, Stunter, Jetex 50, Ameriean reel, Wheels, Winga, Propellers, Ilalas, Acceasoriea. Hox No. 451.
Unured Dennymite single-cylinder petrol engine, complete. mounted on engine bearers, fitted with propeller, $\{1 / 10 / 0$. Steel, 88 Twyford Avenue, London, W. 3.
American kite, engince. aupplica. Jap coloured silk, 9/- yard. Glowplugs 5/- each. Plana 4/- each. "Slowpoke" frecflight, cabin, gad. "Shiek" team rucer. Hansens glider. International freeflight. "Half-A Delta" or "The Twelve', control line stunt. British P.O. accepted made out to Joyce Schafer, Schafer'a Market, Rushville, Illinoim, U.S.A.
A.P.S. Electra complete with F.D. 3.46, E.C.C. equipment, tranamitres. dl batts, and mulii pange meter. $\mathrm{L}, 10$ or offera. Morley, 17 Wamil Way, Mildenhall, Sutfolk.
Volumes 3 to 7 Aircraft of the Fighting Powers, new condition. Best offer secures. Blackall, 78 Oakwood Crescent, Greenford, Middlesex.
New Anderaon Royal Spitfire, Glowplug. $.065 \mathrm{cu}, \mathrm{in} .$, I c.c. engine with panners, etc., in original box $50 /-$. New Atwood outboard unit, water-cooled-a marvel, 105/-. Box No. 452.

TRADE

All American magazines aupplied. One year Model Aivplane News 35/Popular Science 28/6. Popular Mechamics 32/-. Free booklet listing others from Willen, Ltd. (Dept 1), 101 Fleet Street, London. E.C.4.

DUPLICATING

Speedy Duplicating-50 Foolicap 7/-. McLachlan, 67 Station Road, Harrow, Middlesex. Horrow 2762.

EXCHANGE

Eta 19 perfect (one hour's ruming) for [BB Amco, timilar condition W. Long, 35 Henry Street, Crewe. WANTED
"Amomodrtlek AnNuAL" 1949-1952, in firat-cioge condition. State pricea required. Sannicolo-via Malpighi 7-Milano (Italy).

18 WII IN

Miniature relay 4.000 ohms. Single pole changeover coneaces. Weighe $2 t$ oz. O.A. Size It in, x I in, x If in. Has adjustable armature tension apring. Will oparaee on lass chan I m./amp. This ralay has been used with graat sucess in my own boak (Wavamaster) and is now incorporated in our l-valve recciver. Price of relay $18 / \mathrm{h}$, Pose i / m.
 93 NORTH ROAD, BRIGHTON, SUSSEX Tel. Brighton 25806

Elmer

25/6 EACH TRADE ENQUIRIES WELCOMED

THE ONLY VARIABLE PITCH, CONSTANT SPEED PROPELLER ON THE WORLD MARKETS.
Send S.A.E. for Illustrated leaflet
E. AYLWIN KELSEY \& PARTNERS Woodlands, Stroud. Glos.

SUTEQN Peln: Vigulant 8291

Surrey's Hobby Cenero
E.L.S. MODEL SUPPLIES 272. HIGH STREET. SUTTON, SURREY Stackisis of all oeramodelling actessonies Also railways, ships, cars, cre., by erturn postal service

GIG EIFFLAENDER REBORING SERVICE FIELD BANK, CHESTER ROAD, MACCLESFIELD, Your engine raturned in 3 to 5 days with parfect compresilon, afarting and parformance. 10 day' guarantoe. We fit epares and crankcasea ex itoch. Pleasesend your engina to us for fitting. Out-of-production cieses welded at low chargas (owner'a risk). Don't put up wieh a "stupld" ongine, fot ut put it righel Do you rasilse that 9 out of 10 discarded anginel will perform an now with no more than a rebore with new piatoma? Costine: Bees and Elfins 12!9; others $16 / 9$; except half-c.c. which are 1日/9, and under . $\mathbf{4 6}$ c.c. 2019 . C.W.O., return registered poit free. C.O.D. envice 1/3 extra.

hinders

FOIE AEHOMODELLEL

We are pleased to announce that we have concluded arrangements for the supply of the famous EASIBIND Binders to our readers. These patent binders are quarter-bound in maroon and are supplied complete with wire retainers and locating rods, to enable any number of copies from one to a dozen to be held securely in place, whilst firmly fixed copies can be instantly decached. The name AEROMODELLER is embossed in gilt on the spine. Price, including postage
(You do NOT hove to send us your copies!)

HOUNH DOLEHES

For the benefit of readers who desire to continue with the conventional binding, we can still arrange this work for them. Copies should be sent to us, when they will be bound complete with Index. Delivery approx. 3/4 weeks.

AEROMODELLER (Binding Dept.) 3BCLARENDON RD., WATFORD

Send now for free folders and the name of your nearest Myford stockist.
NOTHING SELLS LIKE AN AEROMODELLER CLASSIFIED

The Shop with the Stock

FROG JUNIOR SERIES. Sami-scale, Rubber-powared. Cul-our Bala oarti: SCAMP, MINNOW. SKIPPY, PUP. SPEEDY, MIDGE all $3 / 6$ each.
FROG JUNIOR FIGHTERS. Rubbar-powered, Scale. JAVELIN. SABRE, DELTA, alf 3/9 wach.
KEIL-MRAFT, Jesax 50 powered
ATTACKER. AVRO 707A. FIAT G.80. HUNTER, MIG.IS
JAVELIN, PANTHER, SABRE, SKYRAY, SWIFT, VENOM,
all 36 each.
Please add poseaze for prompt Majl Order Service

TOMES BROS OI CMISNGER

56 TURNHAM GREEN TERRACE, W. 4 Phane CHI 0858 (I min. Irom Turnham Gresn Stacion) Est. I9II

TRUCUT

AIRSCREWS

 $3^{\circ} 3,4,5,6-12^{\circ} \quad 4-12^{\circ} \quad 4-12^{\circ} \quad 4-12^{\circ} \quad 4-8^{\circ} \quad 68^{\circ} 6^{\prime \prime}$ PITCH each inc. P.T.

OBTAIN FROM YOUR MODEL SHOP!

PROGRESS AERO WORKS, CHESTER ROAD, MACCLESFIELD

THIS IS

LONDON

. a street enshrouded with dusk and fog, with lamps muffled and doorways dim, the tap of high heels and the swish of tafetta, the greeting from the basement hollow, hushed and urgent. . .

This is London

. . : the club at the foot of the grimy stairs, hot and bright, stiffing and deafening, peopled by the holloweyed men and painted sumen who come to life when the night is deep...

This is London
. . . there are streets in London which present a specracle of vice surpassing that of Paris and Marseilles, clubs that would be banned in the Americas and half the cities of Europe.

This is London

. . . seat of government and monument to England's glory or city of sin and degradation?

Do you really know?
MASTER DE'IEC'I'IVE Mapazine presents in its next issue, among eight other true crime cases, a portrait of London at night.

You can't afford to miss:-

MASTER DETECTIVE No. 2

On Sale Everywhere from January 20th

PRICE I/-
Order Your Copy TODAY!

THE

RADIO CONTROL
SPECIALISTS

The "Perfect Palr"
IDEAL for All Radio Installations combining Maximum Range with Minimum Price. Receiver ECC 951 B Transmitter ECC $106{ }^{1}$

Suirable escapemeni
Suirable escapemeni
E.D. ME.II Standard 1111
39 PARKWAY, CAMDEN TOWN, LONDON, N.W.I
Trans-
mitter

SK YCRAFT solid MOIDEIS

39/45 RANGE
1/72nd SCALE
Spitfire 2/II, Hurricane 2/II, Megs. IO9F 2/II, F.W.190A3 3/3. Mustang 3/3, Tempest $\vee 3 / 6$, Typhoon $3 / 6$, J.U. B7B 3/9, Masquito V 4/il, Beaufightar 5/0, 1.U.8e 5/9. D.M.T. Morh 2/6, Sopwith Pup 2/11, Glostar Gladiator $3 / 3$.

```
JET RANGE
```

Hunter 2/9, Avro 707 2/9, Swift 2/9, Vampira 2/9, 5abra 2/9, Mis. 15 2/9, Comet (1/144) 41, D.H.J10 4/1, Meteor N.F.ll 4/I, Javelin 4/6. Viecor B.I $(1 / 144)$ d/I.
Contents: All parts precuc from SOLARBO Balan Cockpit Covers. Double-sided wheels, Props, Spinners. Fully decailed plans. FROM YOUR LOCAL MODEL SHOP Dealers from your wholasaler
EAST ANGLIAN MODEL SUPPLIES UPPER ORWELL STREET, IPSWICH

STRIP! STRIP! STRIP! STRIP!

THE NEW
BALSA STRIP CUTTER

Pose 6d, exera. SPARE BLADES 1/-per daz.
Soon pays for itsalf because is cues all sizes of strip, including those special non-standard sizes. Your strip will be of a more uniform hardness.

E. II. PRODUCTS

 BLADE

Also a DE-LUXE MODEL with PLANER at 7/II, past 6d, extra.
Leigh Common, Wincanton, Someret

Condifions of Sale

Thit Pariodical is sold subject to the following condicions:-That it shall not, without the written consent of the publighers, be lane, resold, hired-auz or otharwise diaposed of by way of Trade excape at the full retail price of $1 / 6$ and that it shall not be lent, resold. hiredeut, or otherwine diapored of in a mutilated condition or in any unauthorieed cover be way of Trade; or affined to or as part al any publication of advertising lizerary or pictorial macker whessoever.

THE "AEROMODELLER"
38 CLARENDON ROAD, WATFORD, HERTS.

[^5]
Give the New Year a FLYING start

with a super

CEII RAFT

They're unbeatable for

SOUTHERNER MITE
A graceful streamlined cabin model with
performance in the contest class. Suitable for Eifin. S, E.D. .46, Dare.S. Froe 50.

12'3
$60^{\circ} \operatorname{span}$ SOUTHERNER-price 468.

design and performance

model!

RANGER
24 span Class A team racerfor motors up to $2.5 \mathrm{c}, \mathrm{c}$. A ruged model with mona. coque zonstruction

$$
12^{\prime 3}
$$

$\underset{\text { Biplane }}{\text { SCOUT }}$
A fascinating little contral-line sport plane for motors fram lc.c. to 3.5c.e. Kit cor,taine many ready shaped parts 20 wingspan.

Sole dissributors in U.K. for ALLBON © D.C. ENGINES E.C.C. RC EQUIPMENT ELMIC TIMERS \& DTS. ELFIN ENGINES
manufactured by
E. KEIL \& CO. LTD., WICKFORD, ESSEX WHOLESALE ONLY-Please contact nearest model shop or order from a mail order house

[^0]: AEROMODELLII:R Incorgunates the MODEL AEROPLANF ('ONS'IRTC'TOR and is pulblished monthly on the 15 th of the previous month by the Proprictors:
 MODEL AERONAUHCAL DRESS LIMITNU SUHSCRIIYION RATIE: 21/- fer annukn prepaid (including the special Christm: Number).
 Editorial and Advertisement Offices:
 38 CLARFNDON ROAD, WA'TFORD, IHERTS
 TFTEIHONE: WATHORD 5445 (Mondas-liriday)

[^1]: Mast outstanding aircraft of the "year 1953 was undoubtedly W. E. W. l'etter's Midge, by lolland Niretaft Led. Received with great acclaim hy the meronautical press at home and abroad, its diminutive span and amazing performance have given it extra upecial appeal fur all ateromodellers. Who will undouhtedly appreciate the accurate detail plans by John Enoch on page 79.

[^2]: Expanding lap hariag grab
 screors for aljustmenc

[^3]: ECYPT: S.A.C. Pavne rith R.A.F. ai Konforeat nnd hin $30-\mathrm{in}$. mate N.A. Savage. Huile from on American kit, de flipa at 65 mıp.h. on tues Elfin 1.49's. UOLLANII: The "Imptin" R/Cidenign by E. Kreulen of Romerdam has man three comesta and has a locally-nade TVphoon 2.5 Racer diesel, nun dasign radio, aboui 60.ff. spari. \$PAIVi Spnorinas adiruire Jose Corgacenn's \$50 mepifi fert at the Sipaninh. Yationate. CZECHE

 9.000 r.p.m. with 10 -in. prop. Model il 40 -in. wpart, wrighs 3 hh.

[^4]: British prasies at top arm, teft: Dirk Qarromman (Ruckell). Carl Hermos (Jarkson), Clif Monrplaisir (O'Dunnall), Jerry koll (Dubery) andrizhbifrank Parmirnter (ITpion), Jor Eigin(Mudion), Fran Hager (Hunhell) and Bill Dean (Garhaui).

[^5]:

