ABO MODELLBR 1
 Features include: FZU-3 'CUTLESS' Supermarine 'WALRUS' 'KNOW YOUR ENGINE' FOKKER DIII C/HINE

When it's a sticking job,

stick with

Pliboond

Atways stick with Pl obond. Thal's a good rule to follow when it's a "sticking" job - whatover the materials beingused. For PLIOBOND - a new thermoplastic adhesive - bonds anything to anything. Proot of this is the lact that metal, wood, ribber, fabrics, plastics, papers, glass and ceramics have been successtully joined to themselyes and to one another with PLIOBOND. It is supplied seady to use in tubes, fins and bollies. It gives strong. fexible bonds resistant to oit, chemi-
cals and water. Bond strength improves with ago - an advantage not found in many other adhesives. Ideal for home and hobby work. it diles rapidly to form o permanent bond. How can you use the outstanding advantages of this all-purpose adhesive? Every day, new applications are being fourd for PLIOBOND. Why not lry it yourseli? Pliobond is obtainable from garages, ironmongers, hardwara stores, cycle shops eic. In cases of difficulty wite to the address below.

still lead the way!

THE PIONEERS OF RADIO CONTROLS

E. D. "BOOMERANG"

A Radio Control Unir complately wired and
ready for usa in your Model Plane or Boat. supplied with either soft or hard valves. This revolutionary set provides five different aerial tappings which enable the aerial load to be matched to the valve. A new valve is worked on the A.I. tapping for maximum sensitivity. When required I.5 M.A. current becomes unobtainable the $A, 2$ tapping will give a further period of senstivity. This procedure is used progressively through all five stages, thus lengthening the life of the valvo by five times.
Simplicity itself to Instal and most economical In use.

PRICE COMPLETE	CII	IB	a
Receiver and Escapemene.			
Hard or Sofe Valves	$\mathbf{6 6}$	8	11
As above, less Escapement	65	3	9
Transmieter and Aerial	65	11	4

E.D. Mk IV RADIO CONTROL UNIT

Tuned Reed - 3 Channels

fOR MULTIPLE REMOTE CONTROL OF MODELS

The last word for the control of all models which deniand progressive, personal and accurate following of multiple orders.
The complete receiver and battery assembly can be used for model planes of down 2066 in . wing span and boacs of 30 in . length. It is also the only type of equipment capable of operating both sails and rudder of model sailing basts.
A self-containing sransmitter housing all batteries and with 8 -ft. sectional monopole aerial is supplied with a general purpose hand-control box for three channel operation. The receiver uses standard hard valves throughout, with an average life of 3,000 hours.
Receivers are preotuned to the transmitter and once installed, there is no necessity for any further adjustment.
The recelver output will operate either escapement or clectric motors.

PRICE COMPLETE less Escapement

 RECEIVER, 3 Hard Valvas ... $614 \quad 1200<1113$

Retailers:- Write to us for full particulirs of our Aceredized De lers Scheme,

IR(DLANI

SCOT'T

THE: MOBDEL SPEVIABIST

147, DERBY STREET BOLTON, LANCS.,
 and lorward p.O. or Cheque. i WILL DO. TH Gheank C.O.D. Servico Availabla

Overseas: Llat your requifemente and forward British Postal Ordert. Insernetionsl Monav Ordar, Dellar Draff, Dollats, Commonwealth Notes (NO 65). Please allow for Postages. Ting

 E.O. Ama I rer. Mk il $46,6+10 / 1$
 E.D. 34 k Hunter at. 66.6 : $14 / 5$ $\begin{array}{ll}\text { E.D. Miles } 5 \text { e.e. } \quad 140:-30 / 6 \\ \text { Mills Popular } 75 \text { ece. } & 50-19 / 6\end{array}$ Mills Standard 75 c.c. 55:-1 1007 Mills I.3 e.e. Mk. II .1. 75:-1+4/5 Fros 50 ME. II ... 40/-1 $6 / 5$ Frog 150 ML II frog $250 \mathrm{BB} \quad 421=+8 / 9$ fros 500 Glow ... $85,-112 /-$ Fros 500 Pecrol :. $\quad 72.6+14 \%$ Elfin 149 Seandard $\quad . \quad 47 / 6+9 /-$ Elfin 149 B.R. Elin $1 . A_{\text {e.c. }}$ B.A. Elfin 249 Stinderd 1.B. Atom 1.5 c.e. isce $\quad 10+10 / 1$ Allen-Marcury 2.5 t-c. $\quad 56 /-+12 / 6$ Alian-Mercury $3,5 \mathrm{cc} . \quad 58 / 6+13 / 2$ Allbon Bambl $15 \mathrm{cs} \quad 90.1+2017$ Allbo, Dart.Sc.c. \quad 54 - $12 / 2$ Super Marlin. 76 c.i $\quad 4 / 4$; 1015 Allbon Soisfles I e.t- $\quad 54 /=12 / 2$ Allben Sibre $1.44 \mathrm{cc} \quad 55 /-1214$ Oliver Engints se available, Ald Allbon. E.D. and frog Watercooled Engined in Seoch.

* RADIO EQUIPMENT 直 * RECEIVERS $*$

E.D. Boomerint \& Eicapement Tax

 Rady Wired i08! +22 ,11 Goomerang Re. bily $\quad 05: 6+10,3$ E.C.C. 951B A. 65/- $116 / 9$ E.D. ME. IV Ax. 3 Aeed 240/- +52/-貝 TRANSMITTERS +Boomarank $\quad 116+1910$ Mk, II Oual Purpose .. Ieg:- 12315 Mk, IV Complate $\quad 156_{j-1} 133 / 9$ E.C.C. 1081 Hand $11 / 10+16-$ \% M/ Accessonies t Mk. |I| Excnpameri ... $|1 / \sim+1 /|$ Mic. I Escapmont … 46:+10/4 Fonnera Pika Sarvo Fanners Pike Control O-5 MIA Mccer E.D. Polarisad Relay E.C.C. P. 100 halay Ripman Stooring Unic 50.3+913 XFG I Valvar 15i-* 3iMy $10-\mathrm{Paga}$ Catalogue of Modaling Goods will te formarded upon racsipt of 3d. seamp
I can supply Sparas far all Allbon, Elfin, Mills, ED. and Amco Enginas Irom 5rack.
t frog Junior Kite, Scamp. Mide Shapy. Spaedy. Sporty 3/ Frog Snniop Kita. Raven. Linnet

Haron, Tomtis, Wideson... 4/6 Oars 15° Solid Glider ... 2 III K.K. Sudne Randy-made * ELECTAIC Elecserar 3-6 v.
Taycol Merina 6 .
Taycol Torpedo of v.
Tuplin 41 v. Precision

MOTOR CABIN CRUISERS

The finest Cabin Cruisers ever presented in Kit form. A JOY to build and a pleasure to sall

"SILVER DAWN"
 MOTOR CABIN CRUISER

The design is based on ocean going crulser linos and beginner or expert can take pride in the finished result. Simplieity of construction is a feature which will appeal ta 2ll. Performance and appearance is excellent and will cause commens wherever sailed. Designed for 6 or 9 volt electric motor, which will produce better than scale speed or. lor the speed enthusiast, up to a I c.c. diesel. Cabin space allows for installation of Radio Control Equlpment, batteries, otc., below dacks with locking covers to protect valuble equipment from the water.
Dimensions: 31" overall length, $9^{\prime \prime}$ beam.
Price inc. P. Tax
66-4-і

"WHITE CLOUD"
 MOTOR CABIN CRUISER

A Junior model of the Silver Down Cruiser, of basically similar design and the same simple type of construction. Although of relatively small dimensions, White Cloud is an Impressive model when complete. Designed for any standard $3-5$ volt electric motor. Cabin space allows ample room for drive gear and batteries.

$$
\text { Price Inc. P. Tax } £ 2-15-2
$$

Theseare the anly Kite ever co be put on the market complete with sil mati filtingt at lated below. All wood parti ara cur from the finate quality material and cut to simplity conss puction. Finished axcestories aupblied (these lvary aliahtly in ehe (wo kity) are of acalenire in meral and 3-Blede Propellar, Tilter Steming Gear and Rudder. Side Lighes, Mast Mead Liphts. Fapleads, Bollardi. Winch, Ventulators, Steacing Wheel and Flagitenf. Decenlod Plon, comprahensive Photo Chare and tull devailed Step-by-Step Ruilding Instructions, are also included.

Cut thit Goupon and send it with 4d, in stamm for your sopy of our NEW Broxhure. Thit saluged edision consains full imformation and ilfureratuons in colowr of all our modals.

Head OFlike and foctory
141 STRATFORD ROAD. BIRMINGHAM II
Actail Shaps: 4] Templa Row, Airmingham: $14 \mid$ Stratiord Road, Birmingham; 37 Went A.M.

Strear, Brighton.

A. A. HALES Ltd. s, sarow noone wm mourtarer, a"

Tanke for Tam Recers: Tanks for Jrunr Modali: Test Sunda; the bent in Boat Kiksthese are but a low of she many poptular lanei wa handia as wholasialart so the modal eircteft trade. We miphasise to moduliari that we ara wholesaleri anly, but ao dimeulty thould be experianced in obraining any of our adversisisd linet at your local model shop. To Model Dealeriswa offer a cemplete wholevale sarvice and waleame new sccounts both at home and abrand. Our latere price list and leañets will be ient immediately on eqQuest.

YEDMAN

Tyoical Wadgo Stunt Tank rYollo=

COLOUR CODED SERIES

STUNT: Fual preol colourad. outiats and venti take atand ard fual cubing. BLLE:
 (1) $=1$ is 3/t YELOW 121 $\left.\times 1 \frac{1}{2} x\right)^{4} / 1-$ GREEN: (2i $=2 \times 414$) TURO.IOISE 1i TEAM RACE TANKS. Exacs to spacified sirs.
 GREY: (29.7 c.c.) ${ }^{36}$: MARCON $1 / 1$ e.C.J JI-: Silfily rargin allewi tor fuel liater capacisy.

Yeoman TEST STAND

Carafully devigned to surt the requiremenes of all power modellers, this tast atend will sive you a lilatime of atervice. fie wall eairasary size of motor. upright of inverted. The esigk relessa elamps car bi mauntad ricasa clamps car be mauntad
vartigally toaccommodare radial maunted entines and a clip is provided te hold a fue tenta, Spurdily buift in cesi aluminium, the stind now has an amproved sandolast finith and is a railabla at your local modal thop.

Price
15/-

YEOMAN MITE

Length 13 in. Deam 4 in. Fer 5 mall Electric Motort THIS New All Balan Pretabricared Cabin Cruiser has bann daugned lor pase of conitruction combined with elegance of ippesaranca. All parta ar: rilady diecue and press seraight ouk of that wood theets, ready for
 All paris ready for smembly, and inclumve of propeller. prop shaft. prep tuba, pudder and tube, rudder fritcion bar, conmessing wire fram moco ta batewy, sandpaper, ese. Pawar Unit: As designed Miza san bete bu powarad wish is Electrosor Other unitbinclude Ever Readp TG IE. 1 日8 or 1BE, Frol Tornado.

12/10

If you are fering ..FLY A CSIHLATMETP MODEL

4-in. Epah Nagionals Gold Trophy Winner. An outseanding stunt design with the lines of a ream-eser. Very rugered canmerurtion. Manocaqum tuseloge. Shret balea call surficer.

SKYLON

38-inch wingspan
12/9

The last ward In madern frabefighe power depign Kis conesins plani and parte for elthar a ahort noted (Allaon.S.E.D. A6, FraE SO) or lane noted (Mille. 75. Ames. .87, E.D. Bee) veralion.

2 MORE 1955 'FIRSTS' BY KK

Ist. Cormany.Auserin Moodel Airplane Connese
[5B USAFE champlonshipi In Wieshadon.
(FF hying seale event.)
Nos in the KK Super Seale Seriats are
PIPER SUPER CRUISER (40-inch apan)
LUSCOM最E SILVAIRE (40-inch epan)

Sole distributors in U.K. for ALLBON ED.C. Engines ELMIC Timers and D,Ts. ELFIN Engines AEROKITS boat kits Also distributors for
E.D., E.C.C.. BRITFIX, and AMCO.

The number of competition wins by KEILKRAFT models of all types in the pase and present prove this to be true.

Many International and local club events have been won In C/L Stunt, Team Racing, Radlo Control, Glider, Free Flight Duration and Free Flight Seale by modellers flying standard KEILKRAFT Kif designs. YOU can win that next club event if you choose your model wiscly.

FOR MODELS THAT FLY-_BUY KEILKRAFT

JUNIOR 60
Specially detigened for radio control, Thefimou winner of numerou rade contral conteite. A ot-inch upan modal that it elesy to bulld. For unglne fram 2 to 6 cac.

RANGER
24-inch Span Class A Team Racer The to kit daeign for Clans "'s" raclang Well-hnovefarifs edor handline charac. teriukies. Pan thows foup dinforent oncine mstallagions and drawing: for makimg a neat is c.c. fuef tank.

CHIEF

The mose gracelul A.z Wit farm-the CHIEF fantura: builtain atability to ersur, trouble-frealimuching
 plugin wing panela, mutamatic Fudder. Klt containa two lar int plana.
abinch span 22-

The book for all beginners

 1956 KEILKRAFT HANDBOOKContains everything that you need to know to stars you off in this fascinating hobby. Articles on building and flying model alrcraft, control line fying, miniature diesel motor operation, ete.. plus a complete illustrated catalogue of the famous Keilkraft range of over 100 model kits and dozens of accessories.
OATAINABLE AT THENEARESTMOREL Príg Plan 3d.for SHOP, OR OIRECT FAOM KEILKRAFT. PFICE 7 . POBEIE

CONTEST WIPS

CRANWELL

＇Tims 27－inch span rubber model is the linest value in rubber kiss on the market wewh．Quite simple to construct，it has a fine semi－scale appearance with a steady periormance．［Jying in the Thameside Winter Scramble it istalled 10 minutes 45 seconds to win－undamaged despite continuous rain and a high wind．

27 inches span， 24 inches lung，powered 6 stronds $\boldsymbol{f}^{\prime \prime}$－flat．

KIT CONTAINS．－All talsa sifio amd primed there． reatyocur fins und propeller Baders，mare assemiNy
 celludond，solomerrad Modelsgam risyer，flam and inerrucrions．

76 inc．4ax．

THE FINEST SMALL SAILPLANE TODAY IS UNDOUBTEDLY THE 24＇CYGNET

The kit ineludes pre－cut fuselage sides and the completed model is very robust and full of flying－many flights of over three minutes have been reported．

4ill inc．sax．

CONTEST KITS．

BUD MORGAN

The Mcdel Kircraft Speciallste

Model Makers，let the Postman do your Shopping for you．All Orders carefully packed and despatched with the minimum of delay．Send P ．Orders，Cheques， Money Orders or Pay she Postman on Delivery with our C．O．D．Service．
SEND FOR COMPLETE PRICE LIST 4d．IN SYAMPS

NEW．THE LATEST TRI．ANG MODEL RAILWAY CATA－ LOGUE， 14 pagatincOLOUA． Send Ad．far your copy by return All TRI．ANG RAIL WAYS avalable on EASY TERMS． Sand for particulare．	
BOAT MITS	
TENDER	12－
SEA NYMPH． 18 Iangh	21， 7
TITAN TUG BOAT，lene	
20°	4］ 2
Yeron Marlin，36＂lungth	75
SPAAYMASTFR for I c．e digral	
YEOMAN MITE IJ．for lientric	12；10
NEW TORPEOO Electric monor for marina boals．	30，－
MIGMTY MOOGET Eloctine motor	15，－
BASSETTE IOWKE ELEC．	
TRIC MOTOA． $4 \frac{1}{5}$ to	
vales	

KEILMRAFT GALLEONS
NEW SENIOR SERIES， 12^{*} IONE Goiden Hind．Alomity，Revenge．Somba Maric，Mo．（i）wer and Ath Royal，all al 14］ach portaige lis extra IUNIOR SERIES．6＊lomm as sbove price 4 9．pontare 6 d ．

WIMCO HOLLOWS
davelen 1－－Canberfa $3: 6$
SOLID MODELS
AVIAN S．E．SA，Albatrom DIII， Sopwith Camal，HE．109．Sparfire Mk．V．Hurricane Tempest Mustank all at Sill sach Avianss．s售，mawker Fury，Sabre 5 witr $F 4_{4}, 2!1$ a！ 6 ＇ 5 each．
fuil range of Keal Kroft and Veron walid moder kiti Mm theck．send for ithutroted ieef th fere

ENGINES

NEW FROG a 4988
NEWIB 44 C
791
Fron 50 Mk ．II
Froll Min．II 130
Allpon Super Maelin 76
Altban Subre 1.49 e．c
CUNTAOL LINE KITS
K．K．Ranger
K．K．Champ
K．K．Champ
Sturi Quean
Mercury Wasp i
Mercury Mac Ciass Team Racer
Thund er birel Cleas＂B＂
Monarch Stunt
Veron Combateer itunt
Frog Vandiver Ml．II
Frog Miratefor t c．c．
TS
NEW．THE LATEST TRI．ANG MODEL HAILWAY CATA－ Send Ad．far your sopy by return All TRI．ANG RAILWAYS araiabl on EASY TERMS．

VOSPERS BAF C月ASH

TITAN TUG BOAT，fengeh
20°
FREE FLIGHT POWEA
NEWB Bullerina 17
NEW Chummunk
K．K．I adpbird
Junior 60 for Radio Control
Pirlata
Skylan
FROG METAL PONEER
Veron Cardinal
Mersurr TEAL
Marador
JETEX KITS
NEW＂TALORED＂GNAT 10 G
Tasfored Silhanates JAVELIM or SWIFT．complese with IETEX S0
Motor and lectessortes $7 / 7$ each． cuntest xits
No Inctelate in Pricest
Ingh Worm，64＇A！2 19
Cumers 18 be．c．Sportie is
Dab 14＇Snuglane
XC 4 Deles Gatepult Model
Cyen en 24＇5xilplano
Symib 14 terex 50 Modal
इECOND HANDEAGINES
E．D．Baby 4 e．C．，E．D．鳥 I c．C 15 Merlin 78 \＆e．Mils $75 \times \mathrm{c}$ 35 －E．D．Raecr 2.46 c．c． 50 ；E．O． 3.46 s．c．Froc 500 tom $42: 4$ ；rog 50 and ISO 15 －each；盍llbon Dare Sc．c． 10 Spicfira I ree．37．4：Alibon Invelin 37 U，E，D． 146 cre． $37: 5$ Send fors HEngine Lies．（1 pay eath for grond sacond－hand －nidimes－Dieiels only）
FROG PONEER ALL－METML CONSTMUETION
Free Flich：KiE prase © © ，1．or complate with fro\％ 150 Ditwil engine and $B \times 5$ Nylam propalier Complan fS122 or Einey Par＊ mente II deposit and batance J2！1 for nime monthy．
AHERICAN PLASTIC CAR KITS
191। Rolls hoyce and Bontley 1929 31 7is mach
1953 M．G．and Jaguar at is aich． Fors Model T 4a spacial camant GLIDER KITS
K．K．Dolphim 30
415
K．K．Topper 40
K．K．Chief 64
Varon Vorten 6
Virion Verosonis 4
Varon Cirtasonic

Varon Cirrosonic	$12 / 7$

Full ranca of X－ACTO Gutting Knivas and Toel Setr，fend for fres illutraied pricu fies
KEIL NMAFT 1\＄S6
HANDEOOK Id

Flying plus...
 variety, interest and satisfaction

In the Royal Air Force today, the adventure of flight is only one aspect of a steady, responsible career that can see a man through a long working life. Unlike most civilian jobs, it's a carcer that manages to satisfy both a young man's desire for action and accomplishment, and his later need for independence and security. And what a full life it is.

As a pilot or a navigator, you're concerned with many more things than taking an aircraft through the sound harrier. You'll be responsible
for other people, too, and even perhaps for part of our feture history.
Almost cerrainly, you'll serve abroad, enjoying all the opportunities onen to an officer in the Air force. and acting as an an:bassador for hiss country's way of life. Don't think it's an easy job. It calls for men who can think for themselves and for others. It demands brains and it demands persomality.
If you bave these qualities and can develop them further, fast, a R.A.F. career olfers the chance of a lifetime.

It brages more rewarts in ged living (an! good fellowshing that youll find anywhere ouside the service - and it bri:": them white youtre boung.
flere is a great oprortutity. If you are between the ages of 171 and 26. if you're absolutely hit, and if you've passed G.C.L., S.I.C. (or their equivalents) ask yourselfothis qquestion: "Have I got the other qualities it takes to live this חying life to the full?" If the ansuer is yes, to something about it today. Details of what to do are in the panel on the right.

 traned in iedar. lle may be asked to take other men and a machine worth halt a million, half-way across the world. He must know his joh. He will hatse the most modern machinery to help him.

AND REIAXATION The sporting life that sevolves round a R.A.F ollicers mess ofters unusual opportunities, Gliding. winter sports, ice-yachting are a few of the privileged「2"ulis 1 - combe within yolir means.

HOW TO FLY WTH THE R.A.F.

You can nou be granted a Direct Commission as pilot or naligurar for a limited peried or for service right up tu pension atje. There are jurn er detuils of these two schemes atad a full description al dife in the R.A.F. in .lir Alinistry publicatians, that are sours for the akiong. lours first step is to urife for thas, stating duse of bish and aducutional qualifantions, to the Air Ahinary (.L.M.3(1)a), Adastral : bousc, London, W.C. . They are well worth reading.

The Royal Air Force

Flying ... and a career

Mercury Fying scale models WORLD FAMOUS FOR DESIGN, QUALITY AND PERFORMANCE!

 R / C fiying. For 1.5 - $69 / 2$
2.5 c.c. diesels

ALLEN-MERCURY ENGINES

4. Every angine suaranteed - Lome lifo with sconemy
 $-$ - Aed volue for money

D.H. TIGER MOTH Among the most popular of Mercury kits. 33 in . wing span. For $0.46-3$
0.75 c.e. diesels $\mathbf{3 4 / 2}$

CHRISLEA SKYJEEP
Wing span 45 in, for $34 / 2$

MONOCOUPE
 40 in . and 64 in .

64 in . particularly recommended for R/C. For $\begin{array}{ll}1.5-2.5 \\ \text { diesels }\end{array} \quad 69 / 2$ 40 in. Model for 0.46 0.75 c.c. diesels $34 / 2$

STINSON VOYAGER
12 in. Wing span, Cabin $\mathbf{3 4 / 2}$

We also distribute :-

SOLARBO BALSA - D. ENGINES AND RCC • J.E. ENGINES E E.C. RC EQUIPMENT • DUNLDP RUDEER * BRITFIX CEMENTS • O.MY CEMENTS • MEHCURY FUELS * CELLON DOPES * SKYEEADA KITS SWANN.MORTON KNIYES - M.S. AIRWHEELS AND TANKS * KLG PLUGS © STANT PAOPS.

CONTROL LINE ACCESSORIES

 DESIGNED BY PRACTICAL CONYROL LINE FLYERS

WEDGE STUNT TANKS
A popular and long-establishod Tenk. In fow sires, smeless beine a canix for the wase and stmblar inconk for the wasp and timhar
plastic
GUEL
Imall
Med
Lar
BOTTLE
onbreakablat
luel bottle 8 ozs

SPINNERS $\begin{array}{lll}15 \mathrm{c} . \mathrm{c} \\ 30 . & 313 \\ 30.6 & 3 / 6\end{array}$

METAL ELEVATOM HORN A naw scceasory for alovators op liaes. filling : lises. filling a
iong-(tale want long-iale want. 11 d.

Aluminium body and baek-plats. Threaded nate-plece far serawing dirnct to shatro with $1 \frac{1}{2} \times 1 \frac{1}{2}$.

MADIO-CONThOLLED MOQELSFOB AMATEURS
A really cood Ave bob's warth. A complate survay of the subject oacked with interbsting technical information and circuits................ $3 /$.
"Covers the world of Aeromodelling"
vold:ntz xxi
NUMHER 242
MAHCE 1956

Special features

Regular features

JLANG.AK JOOKS 124
KNOW YOLR \&NGJNF, 124
WOHt.I NEWS 136
NEROPLANE 1Y OLTLINE
7t.1 CtTlass 141
3RMCHAMR AERONALTTICS 1d3
MODEI, NFWS 141
ENCINE ANAIYS!S-
K\&illmax
Stamiva 15
sipin "Ilishe G. 20. 141
RNDIO CONIR(1). NOTES 152
RAI GEN 154
 155AHCRAF'I JESCKIRFD-
CLI'П NFWS 158

Editor"s Posthagr

Cormespondence is tur lifeblood of any magazine. It stimulates the editorial viewpoint and is the means by which the editur gauges rearler reaction to the contents of his magazine. Fram complaining letters he knows that which is unappreciated, from enquiring leters he knows what is lacking, from appreciative letters he knows lhat current articles are well received. It is heartening, therefore, to witness the unending flow of cosrespondence that arrives at the Afromonplifer offices, and significant that your Editor's daily posthag contains a sizeable propartion of gaily coloured aimail unvelopes, with a variety of foreize stamps sulfieient to inspite the average philatelist.

Aeromodelling, like many specialised hoblaies followed by people of intelligence, has a truly international Havour. We would go so far as to say, that it promotes suore international gondwill and interchange of racial ideas thun high sounding institutions such as U.N.O., U.N.E.S.C.O., etc. Apart from regular overseas correspondents who maintain a steady stream of inveluahle local information which ultimately bears fruit in "World News", we are constantly reading fresh signatures from every fuarter of the globe. Many of these enthusiasis do not have the advantape of a fellow medeller with whem to discuss matters, and it is here that the "Aeromodeller Reader Query Service" comes into its own. This service is at the call of any reader for the price of a stamped addressed envelope, and every effort is made to belp with the knottiest of problems. We do ask that letters are kept brief and to the pesint, as our slaff cannot spend all day on one particular quers. Obvinnsly there is a limit to the amount of information we can give in at letter, and we rely on our readers' common sernse in this respect.

In this isste will be found voluminous correspondence on the vexed subject of World Championship Rule Changes as we considered it our duty to give space to the lively comment which came from the spurting side of international aeromodelling when the new rules were announced. Wie are, however, just as interested in the activities and performance of the ordinary weekend modeller as we are in the opinions of the personalities of the contest world. We wunt to hear of your successes, your fuilures, your discoveries, and your ideas. Sin keep the editorial lefter thex ratting for hy so doung you
will be shaping the future of vour favourite magazine.

The dsond wing Curlase tighter is nn lorgret $=$ novclisy and witabcliy and Restumal cebl ite umusing outhine as yct to the quest for poeced and ethciency. Al wight the Curlans in feeding ponttion. latere on frest fuelfrom in \&J. 2
 Mritizh-invented Mrifish-invented Drague" syatem

AEROMCICTEIIAR Incompurates the NOIDEL. AEPUPLANE CONSIHLCDOR and is published motathly on the 15 th of the previous month by the I'roprietora:
WOPFI. AEFONAL-TICAL PRESS L.IMITED GUHSCRIFTION RITF: 2末/6 per unmum prepaid (irchudink the speciel Cloristmat Nuniber).
Fidimeial and Adserriamment Offices:
38 CLARENDON RONJ, WATFOPD, IIERTS PELLEIPIONE: Galebmok 2351 (Monday-Fidey)

HEARD AT THE HANCAR DOORS

Britain is that set by \mathbb{K} ．Inavenport on the 1lth July，1954，with al ligure of $152.17 \mathrm{~m} . \mathrm{ph} . \mathrm{h}$ ．using al $10 \mathrm{c.c}$ ．engine，so it ts obvious we have a long way to go to catch our Russian comtemporaries．

Another Russian，Petr Velitchkovski， just exceeded the reçuisite 2% increase to push 1 －rank Bethwaite＇s（N．Z．）radio cuntrol duration record into the back－ ground，the new time for Record No． 20 being 3 lor． 6 min． 38 sces．

One further record for puhlication （in addition to that for Record Xo． 27 mentioned in our columns last moneh） is Nio．22，height－ubove－the－piont－uf－ departure for radio cantrolled models， the successful applicant being the well－ known Jean－Pierre（ioberaux of Belgium whos Hight of 1142 metres made on the 15th August， 1955 has been officially recognised．

The Shanlon＇Tpoth Hs again

Solid modellers will be interested in the Sabres of 112 squadron，based at R．A．E．Bruggen，as shown in our heading picture．Story behimi this distinctive marking is that，when the 2nd Tactical Air Force in Germany decided to adopt distinctive markings for its fighter squadrons similar to those uscd by home defence units since the carly wernies， one squadron made a special request．For truditional reasons 112 Squadron wanted to decorate its air－ craft with sharks tecth as painted on its＇＇Jomahawks and Kittyhawks in the Western Desert during the second world war，

The Air Ministry rule is thus fighter sefuadron markings should broadly comform to geometric patterns e．s．squares，triangles，rectangles etce，but gave approval in this instance with the result that 112 Squadron Sabres now have a wicked look on their faces．

Fabioura IBighaness

Whilst on the suljeet of solid nodelling it would seem that our new series on the construction of $1 / 48$ th scale biplanes has been well received by scale enthusiasts，to judge by letters that followed publication of the Curtiss SHC－W Helldiver in the February issue，These articles will be appearing bi－monthly and in the dpril issue we shall to featuring the Veircy Fantome，probnhly noe of the most attractive biplanes ever designed．We invite suggestions．for future subjects in this series and remind readers that 1 ＇48th scale drawness are available of all the aircraft which have appeared to 1／72 ind scale in nur＂Acroplanes in Outline＂und ＂Aircraft Described＂features．

Hillowiant racoords

Recent 1゙．A． 1 news gives details of new records reconnised by the International booly．One of these carries the distinction of absulute World Eecord． the Russimn Ivan Wanikov setting up a speed of $275 \mathrm{k} / \mathrm{hr}$ ．（170．8 m．p．h．）in the jet section of（＂mentrui Line Speed．The highest speed recorded in Gireat

For those British medellers who may be interested in International Record attempes，the following catequrics are entirely open，no claim having been made to date：

No． 11 Ileight－Rubber driven Helicopter
No． 12 Sped－
No． 13 Duration－P＇ower driven IIelicopter
No． 14 Distance－
No． 15 Heighs－＂，＂，
No． 16 speed－，＂
No． 21 Distance－Radion controlled acroplane
No． 25 Distance－Radin controlled（ilider
No． 26 ！ fight－ \qquad ．

sidd Allen Menorinl Finnd

A number of further donations have heen received （1）wards the above liund following publication of the list and appeal in uur January isste．At the time of going to press the position was as follows：－

M．M．A．N．funal abrornil

The following letter received fromu Ile S．M．A．E． speaks for itself，and we trust that our readers will respond gencrously in their support of this very vital appeal．
＂－Is a result of the magnificent performonere of oner team in the 1955 inorid Championships hrld at Weishaten rehich resulfed in Great Britain tcinning both the indiriduan and Irame World Championships For porker－driven models，the S．M．A．l：has the
homoner io tun these fico tiorld Championships in this rountry in 1956.
"The dute Alugust 4 h to Alugust rifh hers beon fixed on the I'.A.S. Calendur for this eqent which till be run at C'ranfield, and the Saciety is looking formard to the opportunity of acelcoming a record pmtry. for this repent and repaving ins some measure Whe fielome echich has been extowded to our tioms when they hate traselled abroad in recent vears.
"Asaced on prectous experifnce the rumming of this contest will involve the Soriety in an rapenditme in the neighburhood of Cll, (M) st hich is ronsiderably beyond the mormal resorrces of the Society and it becomes necessary to appeal to all interested in the sport and derelogmont of aeromodelling for helf in raising the requived funds. All arenters for wising money should be exploited by chubs and indituduals twithoud delay:
'Let as shuzt the rest of the world thas toe are nofr behind in organising abilily and that we can at least match their hospitality.
"Subscriptions to the contest fund showld be ndidressed to the Secretury of the S.M.A.E.. Londunderry House. 19 Park Lane. London, I3'. ${ }^{\circ}$

> A. F. Homberg

Chairman

1,ikow and Diallicen

Following the paragraph in our December 1955 issue entitked 'What did you like best' we received a number of onrds from readers, some as far clistant as the U.S.A. Dislikes include contmol line plans, this, expressed by a free-flight enthusiast; contest reports, this by a scale enthusiast. In short, many of our critics tended to allow personal tastes to bias their choice of magazine content, which is not altogether suprising.

In general, contest fans were more outspoken with their criticisms than the rest, one of their main points being a dislike of results which only give the sop three places. This we have done to economise on space on the assumption that detailed results were obtainable from the S.M.A.F. lists circulated to all clubs. We can only assume that the inevitable bottleneck of Club Secretaries who "stick" to results is sabotaging infornation, and will endevour in the coming geason to give resules down to the first 12 places. T'o give full resulte is impossible, shades of last scason's K. \& M.A.A. with 254 entries! We were nlso taken to task for giving several small photos in contest roports instend of fower pictures of a larger size, hut with more diacernable detail, which is a point worthy of consideration. Same correspondent states we give too much space to overseas modelling at the expense of coverage of Hritish modelling. Answer here is that overscas soles of "Aeromonelier" represent one-fifth of the total readership and we certainly do not devate this proportion of space to overseas coverape. In addition we are certain that the majority of our readers are keenly interested in the activities of modellers in other lands, and shall conrinue to provide topical and informative "World News".

Another popular misconception quoted on
several postcards was in the following vein: " 'Arronompitare' is n model magarine. Why do you elevote space to full size bircraft? This can be obtained from the many full size makazines." All we can say to this is "1'ity the poor solids anthusiast for whom these fentures are prepared. Isn't he entited to his pound of Hesh? And why shomlal he have to buy another magazine when it is our job to eater for his needs in a specialised form that cannot be obtained from other jounals.

Yit another criticism was the "gond old days" chestunt, is, "Jook back over the postway " Aekomoyeleers' and notice how the magazine gets less and less interesting", etc. etc. Weil we do look back through our fikes very frequently, at some things we glow with pride and at others blush with shame, but on a generul basis know that the standard of the magazine has improved iremendeusly since the "good old days", as indeed it should.

On the "likes" side of nur posteards we were complimented even by the contest boys, on the stamelard of our plans. Scale plans camed special mentfon, although ane correspondent shought our drawing of the I '. 1 "a little imaginative". He was right at that, hut even now there is a stvere shortage of information on this particular atroplanc. lirce fight scale features were appreciated by many, and our technical, as distinct from theoretical articles, carned praise.

In seneral the average reader is well satiofied with the modelling material we provide and "mixture as before" sums up his requirements.

One thing is certain, that we cannot do this without the support of our teaders. Only by their letter, complimentary and otherwise, can we accurately gauge a balanced editorial content. For this reason we are giving a free 6:- voucher to all those people who were interested enough to send in a postcard. The prize of one year's Free Subscription for the betst posteard submited goes to reader M. W. Wilson of Guildford who showed appreciation of the "other fellow's" requirementa; was the only man to point out our P.I mistake; and made serasible suggestions for future articles.

Turloulent Pricen

The Popular Flying Asanciation informs us that the price of $f 6$ per set of working drawings for the light French aircraft, the "Purbuient", is incorrect - hough we were quite in order as the lower price was that quoted a short while ago. W'e understand that later vereions, accompanied by af full translation of all instructions and remarks on the drawinge, are now priced at 9 gns.. which includes one year's annual subscription ($£ 1 \mathrm{ls} .0 \mathrm{~d}$) to the Association.

Norry! Ire wre lare:

Owing to the eecant printine dispute elhy leswa of AEMOMODELLER in mecestarlly icw dayo liee. We atk readers' Indulgance in thlo veepect and hope to roatume normal publication with sho April number

SEvER EFFORE have we reccived no much correppinderice un une wusle aubyect an on sorroppondetice un that for $\$ 957$ there will he

 firat place.

The changes are:
(i)) W'alacficld miohor wempht reduced Ironst 8 \& ts 50 granmied.
(II) J'ouer modet hadinn tor le douh led to $t(\mathrm{~m})$ yrammes (14.12 ounces) per cubic centimetre.
(C) , N1! fligling to be harnd launctued.

Extracia have beeti faken from letteri res coived in criticman of the changen. limiting thase nublimiord is combmerits fran still znosu it perwmpetities mpol compmeritors; lyuf it whould be enaplasisest that alt lettern in fivour art included.
 rish Ruy Hiriki eids has repoesented the rimatry iti I'oug und di 2 fimats as viell as berm: a prominarn Wuhrfirhid flarr flis Herwingham clubmalr jlaf find, sf the jogs

When we consider that the mastmum acores at fanfion were acluevird in the lod lowing nriler : W thot dey Xil: Power
 vecty dallama llar the incremee in thepinal activity has somo licatinus on the maties
mede mer no reason fot pasic chonges tu be midede tu Ilice Wakefieles specifisution en the mimave evideace. Inalent wir ithmit thente wit becter twanhe fut leaving the wocrificatoun olene the lant thanget to the whakefirld apresnculoon were accismpanied the the stisapperranve of many of ous top Wheleficld ficre, ama fall in entrica. It sermis itm ferulale that shas of on coundidiction.
contixi rutes the toex we seved are in the contrai rules lic uffer tan eagensisume
 mith
(A) five Nichte of 3 nins mazimum. If Ans cunderion comipieten lus fisuly threc

 rumanef sith klioh min. masimum. If cow-
 Jur icancris risige onin maximum
 coutty, ams enarib luwe rownif only to be

- muximum, - Ther kener

And/rom the 1955 whirld Pneurer Champian.

 dines indirape that a 130 maximum would haty atwried a Ay-ofl al Finthen,
"The first saume for conginant about the new relen is that they wrise passed trons beiore the upinions af the modellera lad lieen olvaine.t; this has happened lefare and I hope that mometheng defmite can be done tel prevent its renurgence in the future, it fel lhal those nioas crincemed in fi. A. 1. rule changres are those whofly in the chanspionshipa, mo would 11 ruat be puesible for a sutubtionnaise to be aernnleted by wil compelitorn at tixe 1958 contesto before any compelion at lixe?
"Any change in rimalel specification menns not only thit a great deal ol laged work expanded on develupting on model is sutate Lut ie san atoumean thut one satulile of five wi wix l., A.I moniels. which hase taken thee or tour gears ta collest tercome uselent for finture contexty. 'The fact that the models can le ised in ofen contedrt is no exmela-
 tion to the genous
to F I formulae.

The new poner muedel will twe very large with aslan and very callig trimmed illimh. thut alf the skill und exciterment of huige - fost model will he liont The wecent will be on montors apecial athotiors ocrlapp cuen fited with weart, will prove to be a dreinile. aduantage-surely atotody want this eget of Contest?
"The luck elernent wall increame. for the new machanco will attan low helabt and relatisely soond gliale will be dratikully afferted by the mials and wuwndrauthin, perhape the patition could be even wome than with vordic gluders
"If ans" chamues are defithtely decided en fecesury to pediuce the chaner of a lapge fly orth, then I shagest that the meximum lie increated to Il numuset and or the meter run rut to 12 tec., in addillan perlaben even an exera flythe mould lie adbed on give a me Hisht canters. I enclame an interestrny graph showing the number of compirtisurs who would have reschard the ty-onf hi limithen of the inakimuth foxht lime had been set at varicust tumes leas chan 180 sec . Hy extrepolatiam it is clear chat of rhe memeriom lind fieen raiked usly 15 or 20 sec . zhen a lie would have been averted.

If it is thoushits that timiefs are too unrolialise to eet lar levz than 15 aec ., then sulty trat hime aremtal irotar ruat of 60 sec . fne five linulta with a maximuly per Horkt of 15 sec. In this way one could min exictly for 12 aec and any anall deciation eouhl be corsected mest thishl, the lant flight beany thic ualy tivite tracalinx kicat care.

- MichaEL. Gister."
 an FAf pmerer whtheseait ar riedl. Jown O'lhimind hat mope purids to mfftr
"I vety dehmilely so mat like she rejuction in puthber welght and increser in puwer livatimg: stal fert that the prupusits atid decimome were matie on the bedin if the reailta of the 1955 Wurla tharngumenships. withuut due allom ance lesteng made fos she mhenomeenal sexthes (conditions The phenmatiman of alse स.iPti Rule iu more qtan welranir. und is al lonit-overdue amplificetung is sontes renuischients.
"Fiar the muteh emphasta uill be placel on the pouer plant as comitizared will ther mitedel aircraft lhas will itamediately nut FivecFlulst puwer onto the samte catestory al C'L apeen, ie. Mlufol Kingtueering pure and eimpler. nid of very limuzed appeal it acsominpletiers. The rperially re-tworked engium will loe almorp a necesuify in tho emp.e.c., and thu ill tomething quite beyond tle facilities or finame of the aterage nodeller
'Normal 'Srill-Ait' Duration will dros to approximately the $2 \cdot \mathrm{~m}$ inute math, or helow; and conteste will deteriorate to the thermal-catchinge 度mble itha! Glider events abready luse becume.
'The necranay for a coontea thier to hawe lum sete of modela (one far Sational and another for Internammal aperilication (Wemen) will hardly encournge imereat in the World Chanupuonslups
" My | Jems of suntable pulen for Inter. nakional Cond tats (orm indeed for any events) can he randenaed inio thir followng ... reamona and explanations heing in biracketg
"1. 3: 10 mak. (it hisher mak. will probobly agutavate the deradrame crun entuations.)
" 2 Five tjoghta (A larke mumber of Hivelit tenda to tecluce the luck cletinent. Fine llikhta ean be hamdled at Worth Champanemp mestimus enther liy cem. menting the comests carts in the mornang or hy extending ever two days.)
"3. Unrestncted fly-uti if mecemany. (Thaie slowuld net twe letween more than a very small number of tien if the remmimang avery anse sumber of the value of the fly -ent can be increased to labling; ie at a nuisthle time of sas and having the contest groaramme ailow fir $1 t, 1$
is. Two mudela stime ed

 reguirementi whatmocel.
'h. Vaximum apen-plua-lengeli figure to
 dvantave on visilnlity and to eaze Ir mingmirs dializultieg "I lie setuil lizure in net ertitical. hut shmelld fis in with present modelaizes.)

Slidere l|t-fif low line. 'Thes ean be teduced as teq̧uired as mnitel development proztenies.)
"B. Powte: 10 Ivec, manamum motur run. (Dito.) (Mnat ensine-tumery are niure arsurate oser slowet rans. 'I'he mangifude of lit1-ketpons ertors it not depersdene on run:
\because. Kuhber: Diarance letwern fanf and
 lesa than 31) inchea No "pratenatming" of the thar in innge ikesh montor onls, b.e., no return geare) allowed ("l'his ruke will teppaire carefinl defintimun. Iftwever, ir will be tasy to chack without removal of the moter, and will give jubtifishle advantanes motor, and will ewe jubtufiahle advantanes
to the luhture inf lightuelght estuctures. If it depresuls on the moded mad now tlie nuatior Eromplete checik is mod needcat every fontht. Fiyporssine motar wewht ma serrentase off millup weighe leada to indatlerent at natrupal ulevimn, thad paskand masas heavily landed and very framis models $]$
"1U. Hand-launcth tur Hublieer end lourer.

In rlose vanming, affer the lruders as the Trioks apad Sictiontud siveits. Dato Pisuac hal protrm hambelf a murstern of the tertical slimb Me sens

Tive fin wil! the taken our of F.A.I.
 -and were milj moing to have to trild new models or usc oup old F_{r} ? 1 . uncs for apen momps. it the moment I do mat ly liuhe-
 any open one.
"Why for reduce the molor run ict 12 secomde? Nine rimer our of ten I unly have a 12 -arcand rum. and l've never durse lonr maxce,or and increme she max in th minuter. Mowels misht clanee in tinue, hat far the preanen the old orea muld do.

- Dave llosiver."

[^0]What experiencod of all Poreer fiers in the International sphere is Prter Busterll who wank
"I ame meat sefinitely agaimet the chanser propused an I expect is cyeryone whin lax put much fime and tronthic inlu developink a deagn whirh will handte hislt prower. It is unly when climhong lase that degign nitibleme bectume differult and the bell model stands a gome rhance of kinning

Also the new formulae is an all-convidered une: ± 2 s.c.c. mundel needs the tec a mantster to aland any chame and I think hey are yurtw lusk emonigly ulorads: 'l'he alternatue is to kpend money on I Sc.c. engines which wonlt! the lizile, if anv, une for dipen competitions: alen the fact that the ratine movel tynnot le uaed in all contegr
 timereat in the loternalional clamn.
til thim rathere thon take the ahvious alep of reducing the motor run to 10 sec which would have reduered plight rimes in lelow the 3 -min. mark ayain. It's rather like woing back efo Kimdormaften aiter some sears in Girammar Sichoul

Whase om the size of the medel is indficuted by a morictles th the Korat Altillory
"Sines 105" I have bern tlving a pmer luratiun modes of 9 gn sin. in. wing arca. 17 or , werkht, and 30 n , tall area 11 in it uther wurds a dombile-sized 2.5 c.c. marhinsl'has unterate has a mukerale sigural
 is fully cowleal sinuine II lias heen powered
 and a Yulth 40 . Onts with Droling 29 does this machine perfurn. and thum unls

 tan asercone the liandivar. 'The Donling take llum motrliine inter in elimh that is hout saie and far frimn whw rven by prearn-day atandards.

I wouled, sherefors. sumgen lisat it wnuld

 a very posur rlunli.

The Piompertifion Sirempary of the .ticestion
 of serpoued) it metels wett not the of eur

 vatiofectors. luat surely the moms whwious abluthors in: 111 are . rnizure run instead of is and a min misemum insesed of 3 lizther or both these conld the used and nur present momels cosulad wtil] he up-itu-date. If il small monder that masts mondeller are tahtog up acale and apoist thems? J andy hoge hast tle \& \& AR will trudze the atrantrat prowible grotest and that the Ilrilish nltadeller wall stand will ihent in wellink the l'ower Ifailing mules at least withdrawra power , nailing gulca

A wurd al eleourastement on the I. \& 1 The shoslation of the R(C)(\%. Tule is tery cond 11

Kisnitil Witys.

firome the washy refurtitily untheten
 pone er chatiser

Is maxienum pamer will mum lie at A prenutum, the plan-bearmachenper findura will lie virtastly uspleav and aw thanufacturers will not hase la sar ritice pormer to keen the wetght thown to a seasonatsle level. I think we can expent a crop of nesu mexurs. with a corsespundims siratit on timazeial means. This mirans that the gunur mevem
 econe, and at rhe jupiars drap chit there sall be no merd for the f. \& i in of few veara.
"Whe alerants lave dasional rotitents. Iout afeer liffine is ay. the 「'al hoas miudel w ill be guike forisk) five comparisun.
"Why; whuld we ixot puller a mimple drup to 10 aec. puwer run'
T. A!, Ungnortil "

Front fanada

15:-il-hmentin for has magnt fiernt "1, non Hra
 Area ficr, llarry flrimmon is mose a teadima light in \& madian flywn and alonk etsth Canudian Iram-marmber Don hachenzar ofitirs thu comment
"1. The the grammet per s.c. nower londing wnuld probluce an chumsy and dangernus model. Whe feel that a redution of motop-run to 10 sece, would mert the came in the best porsitile way. If, however. if is ayreed that the power loading whonld le inised, then - $25_{\text {, metrise. fir., in } 25 \text { th }}$ gramoles, would be thnut the makimam gerimisable.
3. For a new Wakefillil ruluther weitht we sitll ge for tald ktaluinen, partly oll the kevunds that the smatior foxuie hould, far

 chankes, and at tha porine in the procectings
thas in unfair ta neuplr whos have models under enmertuction. as | 1 on. I and afliera have at the moment. I'ushermore, we ase cunsimed that 75^{\prime}. of the foptorer mhbier weluht iv a guod tiqure tes hiring pertizamence astels frolow 3 mmin , tor of frx spare,
" 3 . These qutteation may nat the arikinal, but wo puis them anyway If Vinkitati mestrilers ditrit know of the new rule propeasition, what chance had Cianastian mod IA modellerat X'hy did chasman Iloulbers allow disauswion of stich a sital promusal when be knew that it had not been sligcused by his anit natinnal isgeansonimn" I.tuain. If Cutads and ather fasaway muntries, nin one is more interested in Wakefields than I I was .hu. I russ cin 1 lie 1955 Cimadiun Wahefield lenall hearil
 it "Xeantupticifir" worder when the hest we wrould bave heard of the tule changenl

..

 fctiole AnontMits

Als peaction 4 da mout the came an that of erery modelley and whed aloput tha16)HR6ME and Sloc:
"Shisping some of the mote patarasyan
 uginion from the simeth (ealiformis araz.
"1. 'The prommand womld defoat the 'rashly trunepmitialthe' size g'al which was a major faction in choike of $2.5 \mathrm{c} . \mathrm{e}$. of embaty

 cempgeriman mist lee tahe ri Irom Inecemational
 35-40 67) in whith! 30.1: +5 ax excellene

SImose hals of 1'. \&.I. fiem and they mould stop conspetine in this vatre"tits at the propronsl an audopteal
"4 Slust felt that e 50^{n} increase in loasting unuld metotnptish wher is desired whinut completely rumpus: the event
"lie just romplered s was-wnuine contear fres flightr for tmo Math Is eliat would fit the 11037 cules weill will win
 fulluws:

fismig Ares	\$1/1 m. in
Tal:	$\frac{1}{201}=10$, in
Wricht	3502.

The ship is theued and wilk-iovered with ron weaberuaty of structure of a kithe cessian is
 cauld be setv large inaled umblot live 1157 propusesl.
Sit is Hlld.

- 11*)

Not aft correspomifore fial heen seticul

There in mi anobe al all shar nomse change uso necessary; amb evern thoush thear nales mas) fote necm paflicularly nitractive ith some avpecta, I'im mure thes will do note Nuvis thann harm.
' 1 exn't find much to criticiar with the Wahefirkl sule. althoush tuote than ever all modelx* nerformance will depended an what lian the lowat rubler.

I'he pmoser lading rule is ataprininge, In tuy the leats. hat in general Jun': dislike the chanse.

Ouerall, the rule chanues will tend to reduce some of the shill involucd in trimfilling gas modelv, thut av performancou were risily willing sus of fand thete was not poosd deal else that cauld have leen done - Mean Kisici

Another , ifusie im .Meihoupher, and a
 the chunges as as sholloner es hit obility

Therer eheoss for the f.all g liev mave sakun a curtrugersus and long nverdue steg (ti) reatore sanisy to free dlighor; eaqaly fle moat imprortant rule clange sance the Wikefiedd weight wiss Jnubleal 20 beark gent. If I remaribier mathly, hicre were givents of "alanity buwless then. fous. Inviane what
 not blamic the f. \mathcal{I}., luin the motor manufartureta for selling tot much ill' '1He
 if) seconds of even lexs. is mity mumal unthinkstule suati machines womlal ha little mane then alorifieal harl wherer
"There aprowa so be' a mialaken impeonaien thene the new rulea will bie hardel for begimers. Aetually the reserse shoulth prove in lae the rave. the fieavier modela will be slowet chontinge athd raster 10 Irim In whoti, shey will helnawe more like trie alestaft khan demented skyrorhete, wib, a conampent rednction in the rate of crashers.

Sly only craticum iv 1 hat the new rules will foster heave canstruetishi, which is had lsanfink. and I wowhl prefer to are part of the incledse in the form of at baslous
is lur the Wakefickl. Ir has been obitwu* that socmethinge olrateic would have In he datie for provent a repethom of the ketam-man the -ofl at linthen!

Jia Fitiakton."

Italy

Ifuly's equirwatent th frice Haskell is Rowevie, Jhircha- witrave in the fram whul whenges mony the tiph in the wesmitt, thateh mot, "ppuierndis. burn under a luchw stapy re hen it
 the shatmat whil suyy:

Healucing the rulifer un Wakefield and itcreabing wrulit for l'enwer will brimg - heiter emplofiziont of the prapulsive an utem, and rervires more deatun efudty snd congtice ruming While 1 wsice with the thiwer weichit I do noat like thie fera thar ther
 bhare; 2u secunds umald be thetrep, especisily ax rat-omit waterne mete are Jon',. velialile
"I fihe the listal dounching- Sist move Attortelling, erperially nuw that ($1:$ is is \{actuanalike. If will be neicestas) to make the bext of reery mopeller resablusiom, and evearsh into furk, and peons will inimpore the standard of mudel fanss

Remembert this romed add down. Heh?
It much rull ${ }^{2}$ at at yotr
liked and no

"3 min, will only be reached with thermal aid"
tessix ahoulh the haid in a rowatery mare for the "rime enienke of the infereated nutions

> Ef vzt, Y's ae Med HI,"

 derricet yners by haly's Fitgnuio shalorme of

 duad proctue of we Eatiatdo raftien tilth his

 catid it othankral by increesigy the wiekht larse. Bring the rotal weophe to 30 l gramime and collum for an undercartiage with whoris. then sur will thive amore atifuctive mualel. I do tex like lisind lausti, xhacis st a jegart
 will he ralled 'Flying Thnow

The inctease of wiendht tot ponver mondels of cxarecrated and with tuch hravy draikiol We could orly atlan 3 min, using 25 ro 30 pec. engine rum.
"Summatg up. formule tilat wuod testrict the potential thsume time to leme than 3 min mad yet wall rethin acollietic shape at the model wemid the ge follows
W'ahe fichl
Rubher Ra wrammen
Hying wakht 3001 graminea.-
Tulve 2 man it ser
Potiar
300 mm mic. Lintine rum 15 sec . m .
400 miric.e. Tingine run 25 sec.-
Tine 2 mis. 21 sec.
-bdchamo sanara.

OHficial view -froman
 F.A.I. delemate

ALu form Secirzeriand in pertinent cobment
 Dezen in the Stenss maluathe "Merv. Hexte of cial grarroul of the siemss dera Club. Sainf comments is particulavly retwiling ar ta the ray the teifialy wernt on the watowet of the Tay than teinaly kern on the momart of ine Yutire hadrs. ound thut comstererd rmporiont
 mindflles wart romplrtaty nut falt with the rituntion Mrsiadoal "inbedartiablr Rup True" at described the chandes and then reent on as follows.
"fiou will mol believe It, buat his French proposition has, unhappily, boen uccepted by five vole (France. Italy, Belalum, Crechoslovekia and Italy, belalum, Crechoshoweria and Ausirla and Swilierlend)

Thus decusion, whach than further to he confirmed by the General Alwembly of the H.A.I, (which will take place at Vienne in Alay, 1956) moncs into force in 1457, At she niesent tume model equipped with 2 c.c. motot must weigh a mimimum of 500 srammes

Aceurding to the French propowition - model furnistied wath the natre theilor witl have to wrizh in future 1.000 g gammea. Consepuences of this new rule on the dimentions of models are casy to formee, such at we can show in the following oxample.

According to the prevent formule a model

tpecific loading of 12 pearimee to the din? With the new formuls. I model of thim twholet capacity would mave to have $83.2 \mathrm{Jin}=$ tolal mutlace to whisith the sarse
 modal would the, for example spmen 240 cm . wing claord 25 cm . span of tailplane $1 / 10 \mathrm{~cm}$.

 Tha dimanaions of such model mith the
 (Sin isy Trimalata, a Sole: It it amulity fo conater that l-Tince and Belyiunt of the
 aprocislls melect is Siwisy modeliers on eccuunt of lim vexalios railway and C'isfonas reatulutiona isimitibs to hand-
 lusidive to ting lerse dimen mis ie ia gunatole thas the nomellers of tha fie

At the proment trine wr use indth wood (lialas) for convet kericin, but of we are ${ }^{\prime}$ athath 2 welght of 1 hlogran, we moshe jue as well Las lect ' Sly persural mimetestion
 Ifrish thentdjers (or theor whel call them-
 selves athith have the dift

A model refuipped with mador of 1.5 s.c. with wath loadang of 12 aranimes to a dan² webld have es liste a iutal lifinat
 whit spon in $2(6) \mathrm{cm}$ ant a eluake 20 cm . to ilve wime a suan of 7 J dm , with a chord 15 uns. fot the falplame, Wright of tou gtammase suth a model would be higker then the present mudels eyuspol with a ? Pre moter
"Noturally is ia phatatile for bubld maller mandele, lise will \& dredet wing loadity. A suthel relatimg to the stimensiarin allave for t smatur of if ce. would have to be equipped with a 21 e.c. motor. but it wempla wirath lie 1 kitumitan and that would correspond tu a wins foadity of 20 geammen *arrespost lus wimbladity of 20 geammen
 loustong to obtain good peffortionce. Ithat in why we do not undersand this new proposation for latertiatiunal compertitoms.
"A: reanis for than mudification of sulen if was put out that the presetit-dey modela
 nighes.

Nommatisy

These viewpoints, und those of many other unpublished lerters, indicate a pencrat desire that the proponed rulen nhould be reviced in two waym. (A) That the Wiaketield motor welatht whauls be 60 grammes (B) That the mintor run far power bo increaned if the double. frading takes pftect, or reduceal if Ionesing is lefe of ziof timic.e. wlith greater sumpurt for the lister.
of the suygesalons mude liy corres. pondeants, the fallowing puints can be esiracted in order of the e-o-lncisential uopport received for each. Were the mater pus to open voie, wu have lifile cloutir thas the arder of the first fous wugerstions would raminin unchanged. (a) Make Wakeflelsl motor weith to graninies.
(b) Heduce Power Kun to 10 eceondu.
c) Meduce Power Run to 12 eeconde.
(d) Hisise Mumimuns to 3 ; 10
(e) Increaxt Hower Hun to 25 sec. with 100 mmice.
(/) Incricase Power Londing to 290 sme.c.
(e) Increave Power Louding to 300 18 mc c.
Adrels itt rules as proponed
(i) Make Wakelield Motaf 50% Winespan.
(j) New tize aperificelion (epan plus leng(h).
(k) Raise Wakefleld woight to 300 erymmes
(I) Ralas Wakefold welght to 280 Enmme

Know Your Engine

PART I OF A NEW FEATURE THAT
WILL EXPLAIN THE WHY'S AND

WHEREFORE'S OF YOUR MODEL ENGINE

in mertion refiemifatmiaii
fonerifurd in rfile mem batintr

I'Bs dLTIMATE performance of a minature two-stroke engine is poverned lirakely by its porting - the dispositiam and timing of thuse passages which permit transfer of the fuel mixture from tanke to crankcase, thence to the top of the cylinder and. after firing. out through the exhaust. Usually the "liming" employed has to be a compromise It can only be absolutely right for one particular speed. which means that it is less efficient at others. 'limed correctly for maximum apeed, the ungine may lse difficult to start because the porting is ton "open" for low sureed rumning. Timed for easy starting. the same portisg prankement may "strangle" she gas flow at a fairly early period on the speed curve, so the engine will not run very fast.

Manufacturing technique alan entery the picture, und physical design limitations What may approximate to "ideal" timing for a particular desigu may be costly $t 0$ make and is ruled our in favour of a less eflicient compromise so that the selling price of the engine can be held to a reasonahle levol. Or perhaps the "ideal" leaves the cylinder too weak so that it ean distort, or even break. Let's start from the beginning and see what all this adde up to.

Prior to alrout 1948 almost all production engines in this country were of the side port type- the classic three port systeni where all the ports ore formed in the cylinder walls, opened and closed directly by movement of the piston-Fig. 1. The intake tube supplying the fuel mixture via the needle valve and sjray har assembly (standard "cartmarettion" on model engines) is therefore attached to the cylinder, either centrally or to one side. "Side" port clocs not necessarily mean that the intake tuhe is attached in the side of the cylinder, although this is the more usual artangernent, for reasony which we will explain in a minute.

Simplifying the engine io just a cellinder, piston, watt and con rod and ittiake tube, as in figg. 2, the "timump" of the engine cun be expressed in terms of crankshaft rotmion (which is more usual) or verfical puston inove. ment (which is a more correct peonctric diagram). Bither are quite casy to understund, and both are called timing diagrams.

Approaching the sop of its stroke the piston must uncover the intake opening or port so that the lowering of pressure proluced in the crankease can driw in the fuel mixture, i.e., the intake port is so positioned that it is uncovered so many degrees of rotation, or it specific fraction of the stroku, before top desal centre. In the case of the side port engine this timing must be symmetrical; i.s. the same opening belore and afier top dead centre. It cennot be unything clac. Alsn the actual "open" time is governed by the depth of the port opening in the cylinder uncovered. A typical design salue is 10 dearees eithers side of top dead centre (I'D.C.). If excessively decp, i.e., opening too carly, this muy cause too much blowback through the intike, interfering with carlurettion.

Some time stound 'T' D.C. of course, the mixture inclucted from the previous strnke is fired (whether by ypark, glow plug elernent or self-ignition is immaterial) and the push for the down suroke is provided by the rapidly expanding gasea. Before the piston reaches botioni dead centre (13.I).C.) it must open an exhaust port for these burning pases to cscape and a Iransfer port in transfer the fresh inducted mixture from underneath the piston (where it is bemp pughed down und compressed into the crankeaso) into the upper cylinder.
"The exhaust port opens first-a "standard" value being ulsout 115 degrees (crankshaft rotation) past

'F. II.C. -and again it is obvious shatt the "timing" will be symmertical, the exhaust staying open until the piston reaches a corresponding posint on the next up-stroke (irt this case 130 degrecs exhaust opening). The transfier porl opens some 15 dekrees after the exhatust and therefure for a perind of some 100 degrees abous bouno dead centre both exhanast and transfer are open. Gases are trec to flaw both out and in off the top of the eylinder. "'o prevent the fresh gases towing straight in and out agan is Jurgely a matier of internal design arramgement. Wiath exhaust and transfer ports atametrically opposed, for example (known ss cross scovenging) a bafle or deflector firted to the top of the piston (in practice a shaped piston (op) will direct the incoming gases up and out of the way of the expanding, outgoing gases Fig. 3. A ecrain outHow of the incoming gases is not untesirable as this permotes proper "seavenging" so that the remaining mixture trapped in the top nif the cylinder as the up stroke closes both ports is all fresh fucl-air inixture.

As beforse, timing is controlled by the aleph of the poris. Extending the exhoust port (upuards) gives an corlice oponing, hut means that the burns gases are free to escape whilst still highly compressed, hence some of the nower aviulable to push the piston dosson is wested. 'I'he slesigner aims to delay the exhaust openimg until most of the useful power in the expanding gatses has been extricted, lut, particularly with high sperd engsnes, is forced to compronise, t.e.. between early opening in order to qet the necessary tinue for transfer and tomximum utilisation of gas pressure. If the transfer is opened tow sorm affer the exhatust there is a donger that the burnt pases on the eylinder, still under pressure esen if they are now excaping through the exhaust, will tend to bhew down through the transfer, retarding the transfer of the frest churpe and producing very powir scavenging.

Sume of the limitations imposed by timing can be uffeet by increasine the rablh of the ports, i.p., increasinge their serual area. It does not necessanly follow, however, that this will automaticalls mprove the efficiency lixeessively large port widths may aiso weaken the cylinder unduly. Wits, the side post engine; in fact, due (i) 11 s inherent limitations at high speed, optimum port width is about twiec part depth for engentes of equal bore athl stroke and a similar effective area of other bore' stoke rathes.

Although a Hexible enowgh arrangement for low and moderate speeds, the chief lemitation imposed by the shide port arfangememt is that it camon indues enough futl for high speed running. In other words, the intake port cannot be opeted carly enouph without mon having an excessive opening etme efter 'I'.D.C. in cause blowback through the intake. Some ather intake timing system is therelore martably preferred for high speed engines and since boss madern engines are high wpeed wpes the sideport engine is now a comparative ratity,

The advanstige of a high operating speed is primurily shat the efficiency of a two-stroke engine tends to increase with speed and if a torque output cin be maineained then the corresponding power output (heing the product of corque and speed) will be that much greater. 'I'hus the early pre-war types of engines which, perhaps, developed comparable low speed torque had a maximum speed of 5-5,(00) p.p.s. could only develop a muximum power output of about ene-quarter to one-third of its modern counterpart peaking ut some 14,0 (N) r.p.tm.

Ifotars Ealze fisilurdion

The twn standnrd methods of providing asymmenric induction timing are the crankshaft rotary and crankcase dise type valves in which upening and clasing points are independent of piston position and only related to it for

the purpose of timing. The principles are surficiently well known wowd only bred description - Prg. + .

Winh the ctankshaft rotary valve the purt is a round or square hole eut in rle erankshatt itself, opening illos n hole drilled aloung the length of the shaft (und thus conmecting directly with the erankedel. "Ihis pors is timed by its aprearance and dixappearamee past the intake tube let into the crankishate bearing. " l his tube ar carburettur is namally raked furwards, but not invariably so, ulthough if a vertical eulse is comployed the end is nearly ulwuys cus with ant anmele lo produce a forwardfacing enery:

The amonats of forced draught proxluced by a formardfacing entry is quite small, as ulate are any miprovethents in induction resulting. It can le shown, however, that wish a vertical squaredwotf tube, holding al piece of that material abose the end of the tule to defleet arr down into ir cate result in improved imbluction, susome degree of forward entry would appear worthwhile. Aost designern adoper is forward rake of mbout $20 \mathrm{~J}-25$ degerces for the intake tube and then ungling the top so that the actual eniry is at uhout 45 degrees. A definate lomard-ficing entry, e.g., the open end of the tuhe facing directly into the ainitreum, tends to tmake needle walse setting extremely critical and hus litte to recommend it.

The choice of circular or squase peort entry in the crankshaft is arhierary, especially as the end of the intake lube is almost invariably circular. Since a square port gives maximum area for a given widh is is often fireferred from the desigut prinn of view, when it ean also be clamend that the type of part entry presduces is more etlicient in acceleranag the gat mixume into the hollow portion of the crankshaft foig 5. About the only objection which cant he raised is that the form of stress ruiser produced by "stepping" or notching the shats weakens it more than id circular drilled hole. But as
gencrnus crankshaft diameters are common with this type of engine, overall strength is seldom a problem.

Induction port timing is now limited he the sire of the "hite" the designer is prepared to take out of the crankshaft; alsn, in snme extent, by the size of the induction tuhe. Average figures for high-speed engines are about 150 degrees tolal opening, positioned 116 degrees before and 34 degrees after tup dead eentre. l'hese figures measured all Frog 2.49.

Rotary dise type of induction is virtually unlimited as regards timing ot the expenac of being a more critical proposition inechanically. It is quite ohvious that for increase the operning it is only necessary to increase the length of the slat in the rotor dise, without any resulting weakening of stressed purts. In such cases extremes of timing may be encountered, such as the intake ejpening as much as 1.30 degrecs before top dead centre, or wath the piston only 17% of its stroke up from the brottom dead centre and clusing 52 degrees after 'l', 1).(. 'Jhese figures meadured off IE.D. 2.46 Racer dirsel. Mure syenificam from the detelopment point of view is that port timing is readily modified during lestink simply ly working will the restor dise with "cut and If 2 " methorls and whoth having to alter any major feature of the enkite. Another advantage is the shorter gas passape with this form of inducrion.

On the dehit side is the fact that the rotor dise must provile a pood deal between the crankease and the backblate (whoh generally means hand lappine the two surficen) ; mounting is a major problem since it has to be driven at very high speed; and wear is inevitable. In the matin, therefore, production-minded designers are more favourably inclined towards the crankshaft romary valie.

*Whafter" Valvan

An atractive alternative which has beell expluited on model engines designs quite recontly is the reed valve, which appears to have achieved for isself other designatinns of "Fluter", "Jeather" or "Clack" valve Fig. 6. This acts in essentially the same manner as the rotary dise valve, but without rotating parts; the opening and closing actonn being provided hy a flap of spring material (or a sprong-louded daphragin)-t'ig. 7. T'iming is controlled automatically by the differential pressure hetween cramkcase and induction tube, tending to pull the hap open for mixture to be inducted all the the there is suction in the crankcase and closed when crankease pressure in higher than intake tube pressure. If spring inertioy is discounted this must provide ideal inducton timing-a value open for insluction for the whole perisas there is suction in the crankcase and closing immediately: the piston sfarts its downoard travel amel begins to build
up blawback. In practice, with the ripht choice of spring material, this ideal timing does in fact appear to the approached closely.

Limitations are the fatigue life of the spring material under operation stresses and the inertia of the system. 'The conventional reed valve consints of a tlap of beryllium copper or phosphor-bronze of about $.002-.004 \mathrm{in}$. thack (depending on size). Jow grently thos is stressed eny only be guess estimated. Wut both beryllium copper and phosphor bronze are materials with continually diminishing strength subject to fatigue cycles and so eventually musa fall under any vibratory loak, however light. Since however, this should be measurable in millions and millions of cycles of resersal there is no reason why valve life should not be quite long cnough for all practical purpusen, with the correct initial choice of materials

If the inertia of the value is too great it will probably he reluctant to open at high speeds (the predominant pressure in a crankease being pmative), or it may tend to "Alout" in a partly-open position with an considerableamount of blowhack on each revolution. It is still gressible, fowever, that an engine could comenime to run, and run quite well, under such conditions Iargely, however, read valve design is af present gowerned by "cut-and-try" methods-both the rype employitig a clumped reed unit and that employing u spring-loaded diaphragm. 'The later wrold apprat tu he far less susceptible to fatigue effects since the spring is only lightly stressed. hut its inerua is hieher. Ceriainly the reed valve is a feature which cannot be discounted in future engine atesigns

Pushing up the engine speeds beyond the limits reached by side part layouls also hus the ellece of makme the other norty inore critical. The faster the speed the less time thate is for the mixture to transfer from crankcase to cylinder and for scavenging to be completed. The appairent sulution is an increase in port areas all round to maintain a similar volume-time or How rate figure. Hence the appearance of the so-called 360 degree porting where the ports are cut all the way round the cylinder wall, with only relatively narrow columns of material hetween to maintain the strength and rigidity of the eytinder.

Here no must pay tributa to the orisinal Ardon engine which appeared on the -imerican narket in 1946 The use of a steel eylinter with almost 360 degree exhaust porting cut in the walls (the top of the cyimder being carried by only three small columms of metal remaining) and similar 360 degrec hy-pass transfer formed by cuttinis out passuges in the hore at the lower end ot the cylinder, set a new standard which has been copied, modified and impraved upon thronghour the world, but more particnarly in this counery, bepinsting with the first of the modern diesels, the fillin 1.8 .
(to he rontinara)

A $30 \frac{1}{2}$ INCH SPAN ACCURATE SCALE CONTROLLINE STUNT MODEL OF A WORLD WAR I FIGHTER

FOR 2.5-3.5 c.c.

FORKER D. 1%.

 By Frank W. BeattyRakie, inomeen, is the model builder who hasn't built a World War I scale model; these veteran aircraft have nlwayg fascinated auromodellers. More often than not, however, their performance does not match their pleasing uppcarance as the shert noses and long tails typical of mose W'orld War I aircraft, make them very diffienlt to balance for control-lise. Such a type is the Fokker I) 111 a real challenge to the designer.

At the outset. it was decided that thas model's overall weight must be light enough so that sufficient baliast could he used in the nose without taxing the model's llying ability, and particularly that the 1ail end of the model be light as possible to minimize the amount of ballast required. The end product became an 18 ounce model which requires about $2 \frac{1}{2}$ ounces of bollast. Using an American K \& 1319 with an 8×4 prop. she tlies fairly fast with no perceptible pitching or yawing, and is capable of the leas strenuous stunts. Alternative diesele range from the 2.5 E.D. Macer, Elfins, A.M. 25 ctc , to the latest D:C Manxman.

Build the tailplane, elevators and rudder from lightweight 1 in. sheet balsa. Sand to shape, gouge out the elevators and cement the horn in place. Dope silk around the 3^{3} in. rubing, run the 有 s.w.gwire axle through and crimp the end tubes to retain it in place.

Make up the fuselage sides, using the plywood side rails, tail gussets and in, square balsa strips. Cement bulkheads F. 3 and F.S berween the two sides. When dry ndel the motor mounts and the crosspieces aft of station 4. Bend up the 16 s.w.g. wire landing pear struts and sew them to the bulkheads. Bend and solder the $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Wire spreader bar in place at the axles. After the bellcrank plate. pushrod guide and tailplane assembly are cemented in place, the entire bellerank assembly can be inatalled. The fuel tank should be installed just aft of F. 3 bulkhead beneath the motor mounts. Formers

4, 5n and 7 , the gun trough and plywood cabin struts and lower wing joiner can now he added.

Apply the various sheet coverings to the top, sides and bottom of the fuselage. Add the hollow cowling block with nose formers and fair in the landing gear.

Sew the 10 s.w.g. wire tailskid in plywond bulkhead Nin. 10 and cement the bulkhead in place. lnaert the upright skid strut into the drilled hole in the tailplane. Bind and solder the skid assembly.

Install the rudder. The entire assembly can be silk (or tissue) covered, finished with dape and set aside tutil final assembly.

As the wing pancla are of simple conventional cunstruction little need be said of them. Huild up the frames, cover with silk and finish with dope.

When the interplane struts have been made and painted, we can assemble the model. Slide the lower wing panels over the joiner and cement the ends against the fuselage side rails. Cement the interplane struts into the lower wing strut sockets. Before they aet, cement the top wing into place. Double check for alignment before allowing the assembly to dry.
The rigging is bent, so that $n t$ in. length of each end may be cemented into $\frac{1}{1}$ in. aluminium tubing, using the cut and try method. Remember that if the scale drag wires are installed, the cowling may not tisen be made removable. This will make the engine harder to remove for maintenance. That is a choice to make, appearance or aceessibility.
"Ihe addition of the gun and whecls will complete the model. 'The model must balance on or forward of the C.C. shown on the drawings and the more forward of this pooint the better the plane will fly. Install lead ballast in the cowling above the motor mounts as needed.

Full aso copies of the \downarrow scatereppoduction oppotite ars avalable prics 4.9d. pore freefrom AEROMODELLER PLANS SERVICE

An early Power Modeller

SAmiff. Pierpont lasodey, like many of the early pionecrs, used nero-models as a basis for his experinents, and was, in fact, the first power modeder to make a light of any consequence, this in 1896 when he proved with a successful tlight of two-thirds of a mile that man-carrying Hight in a heavier-than-air machine was a distinct possibility.

The true measure of his genius can only be assessed when it is realised that not only did he produce designs and constructional details for the aircraft, but developerd what was then a completely new concept in regard to the theory of flight.

The story behind this remarkable achievement is best described in the words of Langley himself, written in an article in the Sitrand Magazine of 1897, but before passing on to the account by langley, let us briefly sketch the historical background of this remarkable man. Born in Boston, L'S.A. in 1834, he was formerly a civil engineer, abandoning this carece for astrononiy, becoming a I'rofessor of Astronomy at Western Lniversity, Pennsylvania in 1897. Twenty yoars lafer be was chosen Secretary of the Simithsonian Institute in Washingtos, and aeromodellers fortunate enough to visit that city should note that one of his modela can be seen at the Institute, this particular version powered with a 1 h.p. pretrol engine.

In determining the basic principles of flight Langley set up a "whirling table" with a revolving arm 10 (x) feet long, driven by a steam engibe. After ihree years of experiments he established, amongst ather things, that at liat plate weighing 200 lbs. could be sustained in the air for the expenditure of only 1 h.p.

Next cance the problem of design, and the professor wrote as follows:-
"At lirst it seems as though Nature must know best, and that since her Hying models, birds, ure exclusively ermploying wings, this is the thingy for us, but perhaps this is not the case. If we lade imitated the horse or ox, and made the machine which draws our trains walk on legs, we should

Highr. Pro.
framor luangley at that age of 63 when hr wrate the artirle we quate belas. floffort ef pager is as Sriens: Mfuswnim montet of his thas
" ievenlcente"

undoubtedly never have done so well as the locomative rolling on wheels."

There is a passing reference to Penaud, a I'renchman. who, 20 years before, had mate a "toy" consisting of a wing surface, tail surface and a propeller of cork and feathers, driven by ewisted strands of rubber. At that time, so far as the professor knuw "no machine had ever town for more than 10 seconds, unless it were l'enauds' toy".

A first moxdel fitted with propellers and a steam engine, wats designed and taboured on for many a month. The weight was ever increasing beyond the estimate until the whole weighed more than 40 pounds. "It was clear that, whatever pains it had cost, it must he abandoned . . . but having learned from it the fommable diffieulty of making such a thing light enough, another was constructed . . ."

There follows an account of successive machines powered by varinus means-compressed uir, carhonic acid gats, and steam. Each one was lighter than the last. " But though cach was an improvement on its predecessor, it seemed to become more and more douhtulu whether it could ever be made sufliciently light, and whether the desired end could he reached at all . . 'The chiof obstacle was not the engines, but the boiler' and ulse sufficient stnictural strongth in wings and frame.

"Craum Copyplehn- ram a model im the Srlegra Muncearl Soulh Kenaingion"

Such were the difficulties after 2 years of effort. ". . . and it seemed at this stage agnin as if it must, after all, be given up as a hopeless task, for somehow the thing had to be stronger and lighter yet . . . Everything in the work has got to be se light as to be on the edge of breaking down and disaster and when the breaktown comes, all we can do is to find what is the weukest part und make that part stronger, and in this way work went on, week by week and month thy month, ennstantly alitering the form of construction so as to strengthen the weukest parts, until, to abridee a story which extended over years, it was finally brought nearly to the shape it is now. .

The time had come for a trial theht.
"It became clear withaus much thought that, since the mochine was at first unprovided with any means to save it from breakage on sariking against the ground, it would be well, in the initial stage of the experiment, nut to have it light on the ground at all, but on the water".
"... A great many places were examined along the shores of the Potomac, and on its lighla bluffs."

None were suitable, partly for their puldicity, also since the machine must "begin to fly in the face of the wind ... it was necessary to send it from something that could be turned in any direction".

Accordingly a scow was chusen and a platiform, 20 feet ubove the water, was built upon it. A suitable gite was found 30 miles down river from Washington and the boat anchored there in November 1893.

Then followed a succession of abortive visits to the site, ench one requiring in trip of 60 miles.

Always the wind was too strong. Even the lightest brece was enough $\mathbf{t o}$ upset a launch, the machine being "the most unmanageable and helpless of creatures untul in its propes elemente". We must remember too the tedious complication of raising steam on each occasion to supply the motive power.
"During most of the year of 1894 there was the same record of ciefeat . . Finally in October "94, on entirely new launching apparatus was completed"

This ledd the medel firmly and was capable of launching in a moderate hreeze. Fresh problems then amse.
"I'his new launching-piece did its work in this respect elfectively, and subsequent disaster was, at any rate, not due to it. But a new series of failures took place, which could not be attributed to any defect of the launching apparatus, but to a cause which was at first obscure, for sometimes the 'aerodrome', when successfully launched, would dash down forward and down into the water, and sometimes (under apparentiy identical conditions) woukd sweep almost vertically upward in the air and fall back, thus behaving in elltirely oppositc wnys, ulthough the circurnstances of thight seemed to be the same."

The cause was eventually traced to fiexing of the wings during flight. The professor continues:-
"1las the reader enough of this tale of disaster? If so, he may well be spared the account of what went on in the same way. Launch after launch was
suceessively made. Wings were finally, and after infinite patience and labour, made as once light and strong enough to do the work." Another year had passed.
"And now it the long strugsle the way had been foukht up to the face of the final difficulty.
"It is enough to lork up at the gulls or buazards, soaring overhead, and to watch the incessant rocking and balancing which accompanies their gliding motion, to apprehend that they find something more than mere strength of wing necessary, and that the machine would have need of something more than mechanical power, though what this something was, was not clear."

A stelly of the hawk in flight "suggests an acrobat on a tight-rope, only that the hird vises its widely sutstretched wings in place of the pole . . .T'here is sonnething then, which is difficult even for the bird in this net of bolancing."

After many experiments the final model was evolved and, for thase days, was of remarkably advanced deaign.

Our illustration shows dibedral and camber and also the "rudder for horizontal and vertical steering". The wing span was 12 to 13 fees and the overall Iength was 16 feet. Whight was under 30 pounds. Boiler and engine made up one suarter of the total weight and developed 1 to $1 \frac{1}{2}$ horse power. Duration under power was two minutes.

At last, after 8 years of trying, the gallant professor's labours were to be rewarded.
"On the eth of \$1ay 1896 I had journeyed, perhaps for the twentieth sime, to the distant river station, and recommenced the weary routine of amother launch with very moderate expectation indeed, and when on that, to me, memurable afternoon the siknal was given and the "acrodrome' sprang inte the air, I watched it frotn the shore, with hardly a hope that the long series of accidents had conve to a close. And yet it had, and for the first time the 'zerodrome' swent contiluuusly through the air like a living thing, and as second afier second passed on the face of the stop-watch. until a minute had gone by, and is still flew on, and as I heard the cheering of the few spectutors if fele that something had been accomplished at last, for never in any part of the world or in any period, had eny macline of man's construction sustained itself in the air before for even half of this brief time. Still the 'aerodrome' went on in a rixing course until, at the end of a minute and a half (for which time only it was provided with fued and water), it had accomplished a little uver half a mile, and now it settled rather than fell into the river with a gentle descent. It was immediately taken out and hown ygain with equal success, nor was there anything to indicate that it might nut have flown indefinitely except for the limit put upon it . . 'It was like a miracle", said one who saw it."

It is intcresting to note that Alexander Graham Bell, inventor of the telephone, was an enthusiastic witness on this occasion.

F'inally, we come to professor Langley's con-clusions:- Continued on Page 160

Top: Encadrille des Cedres, Flers. Pere Amiard's 1956 aeromodelling students, with the Father himself in centre. Coleoptere above has Aero 250 (see text). Right: S. Onomura won a Right: S. Onomura won ${ }^{n}$
beauty event with Enya 63 . powered Helldiver at Matuya, Japan. Below: O. Ginstroms's and Niemela's indoor models at Helsinki. Leftr: Dr. Sultan's latest canard has a Webra diesel and a nice line in
banana fasclages

NEw In lymouth in North Island New Zealand, was the scene of the New Year Niationals and first brief report tells us that they had fine weather witl tur one windy day. The International teanns are selected at the N.7. Vitts, atid for 1956 the Wakuheld representatives will be A. 1.enng, B. Rosots, R. W'ong and A. Meduley, while for $A / 2$ Cilider the four are \mathbf{E}, Turrill, 1). Howlett, 1). Watson and I' W'heeler. Hope they aend their memels over to Sucden and lraly; they deserve a breath in the results wfier all thetir baljant cifors in pase events. Champion of Champions it the Cats was Laduric Ackrovd, with John Shepparal clase behwal, and the Auckland Cluh took the homoners as ©lul (hampions. Nore details later When the surface mails reach us, atnd, we loupe, news of tho Australian Nats as well.

A mice letise from sounk Nossum 1) kkato of "Iut-Avis, Israel, tells houw pleased he is with his $\boldsymbol{A} . l^{\prime}$.s. Y-lbar whicls he tilled with an (1. I) 1.46 diesel and thew to win the ammail Joratil tero Club contast. He's mut the only unc to appreciate the nitecties of ilns simple contest devign by F'ony Ilronks, for we know of a lew others that lase had similar success in Club events.
"The anmual lndiour kally of Finland is held os New Yrae's blay al the Ilelsinki Eixhblution Bfull, whech is ramely empoty excenpt fore this pariculur alay, when presumatily the popxalace is recovering fromet the aclivitess of the ese betore. "Ihc hall is 156 ft . high and the classes are dur Misrofilm. Sicale or Kia models. Scandmavian classificatoon for inshoor designs ia $13-1$ (just as wo have A-1 und i-2 giders, or C-1 ruhber and ID-I power models) and the winner of JB -1 Mlicrofilan typers was S. Niemela with a 7 m .40 .6 sec . flighe. Afer the contest he established a new finnish record with 9 m .10 sec . Scale was won by R. Hywarinen al $1 \mathrm{~m}, 56 \mathrm{sec}$., which is no mean effort for at tissuc-covered indoor job, and is the Kit section "I'. Leins topped the Juniors with 1 m . 1 sec . and 1 l . Jiljame was leading Eikniar with 1 m .17 stc . If only someone would find a suitable hall in Joundon we might be able to orijoy similar conaterias in lingland!

The Coleoprere is a flying machine of the future that is arousing more than ordinary interest in Framee and Ameriga among the full-size fraternity. Using jets on the real thing, the Colcoptere could mako a vertical lake off, clange attitude into level 1ight at supersonic speeds and back duwn akuin for a landing. 'Ihis has
lyen demnnstrated with wind tunnel models and some idea of what the circular wing looks like can be gained from the pictures opposite. Milan Maringer of Yugoslavia built this one for control-lune fun, with an dero 250 diesel. Nilan was in the Yugoslav A 2 team that wert in Dentrark in 1954, and is a stublent at Belgrade L'niversty. He fitted a normal uic to the Coleviptore fror bakeoff and found a tendency for the strunge craft to roll in. At the moment the engine is under repuir, but anti-taryue trim has been incorporated and we hope to hear of success soon. This could be a lime application for a contra-pron unit ulmost in thying ducred fat without wings in fact!

Interest in the A-1 glider class is shewn in Czechoglovakia by puhbeation of three pypies design frown Polnnt. Holdond and Great tritam, includeng, we note with pleasure, our own A.I'S. Jinhdfy W'angs design. We alse note a repert on the 1955 U.S.S.R. Nationals, the first we have hard of, and cerminly one which called for travelling aver wast distances, Fior example, the a/2 Glider winmer (all mokels were flown to dis F'.A.I. classex) was ''. Celootajey sith a ental of $10: \$ 7$ and he came from Kirgiz. If you care ta lowk that up in the uthas, vou'll find it on the borders of Afghamistan and Chona (Yak hatr tow-lime ? ?). Wakefled was worn with a 15 -minute moximum total by \mathcal{N}. Kolpulone and another Joweow local boy, V. Subleitin, was first in Power with 13:22. Other eampetitors eamo from all parts of the U.S.S.JR.. rungung frum Azerbividatan on the S'ersian border of the Caspian Sea, to Uabek on the shoses of Aral Sow, and the Likrame.

In France and the U.S.A. the passage of adminisurastion in the lubby is nor quite as smonth as it mighe be. Waurice boyet threw open a couple of pages to air argunem! an 『renc's matrers in his Tfodede Reduat d.Avion, quating critical foregen press reports un that World ($\because 1$. Championshin meering in Puris last vearincluding our now words at the head of the lisi. Italian and lielgian comment was apparently less polite, and the French methed of publishing both the official vier and that of heen indwidualisi Jacques Morisset will doubrless satisfy honour all round. It weems that everyone is for modelling: but the methods of approach vary in temperamem. The Americun situation is different in that the A.M..A. is still lacking an Executive Directer th situation that has persisteal for ahout in yoar, and the A. M.A. elecrion for a new president has stirred up a bige query as to who actually decided that ine C..S. Nationals should he held at Wallas this year! In an advert, in Fhypuper, canvassing for Presidential votes for Frank Bushes, we see the disaribution of A.M.A. membershin over the U.S. A Among others, the State of New York has 1,011 members, Dissouri only 50 , Caljforma 155 , und Wyoming 10 . Alowing for terrain, it sould seem that free-linace Hiers must nutnumber the A. 11 A members by to wate margin.

A fine opporfthaty to exchange correipondence with one livevire Americin clube is offered by the 48 menthens of Capital Acermerts, Bux 783. Austin, 'Jexats. Kight of them Hy $\mathfrak{l}^{\circ} ; \mathrm{f}^{\prime}$, the rest are keen combat and stumt wenso why not write :Had get in tuuch with acromodelling over there?

Hmmpardan Hrdirargiters at
right art baned on tihatirn Srtintrhen'a aridele purb. liahed in July, 14.ji. innrue. Che out far riehi fahoier abor m) hallia trenpal of 7 abar miles if neconde. trime 4,220 fi. athal rearhing $92 d f$.

 hrlinapiet as dramen hrtesw

FULL-SIZE COPIES OF THIS I/G SCALE REPRODUCTION OF THE APS DRAWIR G CAN BE CBTAINED. PRICE G. 6 PCSY FREE FROM THE AEROMODELIER PLANS SERYICE

Build yourself this
unorthodox all-rounder that will take any motor from the Mills 75 to
a hot stuff Webra 2.5ce.

By S, Ldr. Laurie Ellis, A FC.

No claim is made for originality in design in "Cherpan". "The shape has been used before. A smulle'r version was built in Egypt in 1950 and its flying ability prompted thoughts for an improved version. With the 1955 British Natinnals coming up it was felt that something a bit different might be tried for the PAA load everst-however it was realised that its 654 square inches of area and 32.5 oz. unloaded weight would not put it in the winning class-still not everyone can win hur a lot of us get a kick nut of trying.
"Cherpaa" kets its name from its resemblance to the Short Sherpa. It has been flown with Mills 0.75 , Mills 1.3, Oliver Tiger Cub and Wibbra Mach 1. With the Mills 0.75 its performance is rather slow and underpowered but it does fly, however. On the other extreme, with the Webm Mach 1 it is in the "hoe" class and one will du well to goeasy on the trim. "The ideal for general all round fun is with a gond Mills 1.3 using a pusher 8×4 prop, or one can use a standard $8 x+$ put on buckwards and rotating in the opposite 10 nonmal direction. The model is casy to build and the plans are almost self-explanatory. Anyone who has huilt a power model hefore should have no difficulty. Construction time is arnumd 45 to 50 hours.

Trinmmint

'Trim in fairly calm atir for the lirst time. Ify means of vernier adjustment screws move clevons up approximately in. Nake sure that C.G, is as shown on plan. Hold model overhend and hand launch into long grass in a slightly nose down attitude. 'The model needs a reasonable push but don'e overde it. If the model shows a tendency to stall, lower the elevons a bit or if glide is too steep raise clevons. Remember that the model will turn soward the higher elevon. Keep adjusting until a long that glide is obtained.

Using a pusher prop., rotation anti-clockwise. the model will turn to the right under power.

Assuming that this type of prop is heing used, first power tlights should be tries an low power and slight lefe rudder. 'This will give a elimbing right hand power blight and left hand plide. Be very careful with rudder adjustment as the model answers it quickly.

If an ordinary prop. is used back to front and rotatud clockwise, as can be done on the Wills, then the reverse trim to the above will be required. One can go on indefinitely on various trim settings so the hest thing to do is use the above settings as a guide and go on from there. The model, with no load and high power, ducs not like straight ahead flight-it must be flown in a turn to nvoid stalling light. A load (16 ozs. PNA) cures this however.

With Otiver 'liger Cub 1.5 c.c. power the model will carry a 10 oz . load with no difticulty nt all. If unyone is contemplating the installation of K/C gear they can rest assured that it will earry the weight with ease.
of bollast, in rang win the himged coveling- C:herprad
apreing Tailhon, I'A.4. Preciainn. Theradimn or R/C:
flanat is?

AEROPLANES IN OUTLINE numberas

BYJ．R．ENOCH

CIIANCE VOIGIITT CUTLASS

Whasi the hatitir successful litl：（iossar was stall in quantity producton the（hance Vought Cu． begian design study in 1946 for a twin jet interceptor fighter fur Carrier－borne operation with the I．．S．Nats． To a barge extem she dengh was based on miornation which had beon formalated by the（ierman Arado Company towards the end of $19+5$ ，and represented an unconsentional apprach to the problems involved．

Deximnated X1：\％（I－1 Cutlass，the prototype was firse flown on 29 th september， $14+8$ ，and wishin two monelis the inmal llighn trats were successfully completed． A small production batch was ordered，the first of these preduction aircratt rakime its maten disht on 1×1 Mard，1951）．＇I＇be I＇7Li－1 entered service in December． 1951，and the arcraft were used for evalatuon，carricr trials and eraming，during which period it leceatme the first swept wing jet aircraft to operate from the deck of an Arccraft Carrier．
（ienerally similar to the prolosype，the pronluction F7L－1，fourteen of which were campleted，was powered by two Westinghouse J34－WLE－32 3，（XO）1b．thrust lurbo－jets，und wan the firn Li．S．combit nireruft to le conceived with thrust augmenting afterburners as a feature of the basic design．Finur 20 mm ．cannon situared two either side of the retracted nosewheel unit formed the anmament of the type．An increase in fin area over that of the prototype was made on theae machues．

A small number of the improsed F7C：－2，to be powered with J 34 －WE－ 42 jet uniss，was scheduled for construction，but the order was dropped in favour of the li7U－3 variant，produced as a resule of very extensive seructural and aerodynumic re－design．The F－7U－3 first How from Hersiley Field，Dallas，on 20th Dee．， 1951.

The low uspect ratios wing of symmetrical section which has 35 degrees aweepback at quarter chord，is titted with full span leading edge slase，and air brakes， mounted on extension hinges at therr leading edge， which open above，and below the wing inboard of the fins．large area single piece combined aileron and elevotors form the outer pancl trating edge．Kotown wa ailavators－these surfaces are operated by means of two completely independent hydraulic control systems， connected on sandem．＇Ihere is no direet mechanical link between the photes control colutno and ailavator surfince，thuugh stmulated feed is incorporated．＇Ihs manner of control system，pioneered by Chance Voughe for high performance military aireraft，provides the pilut with a muxtmum of safety nad effectiveness in the event of severe siructural damage being suspained in combul．

The fuselage of the Cutlass is tominated hy the very farge，backward sliding onckpit cunony wheh affored the pilot exceptionully poesd visibility，an exsential feature for carrier operations．The pilot is prosided wath un ejector seat in the air－conditioned，presisurixed cockpit．Due in delays with the Westinghouse J46
 of the type were tenporarily supplied with the 5 ，（Hx）－th． Allison J35－A2tA turton jer．As the $1+3-W \mathrm{E}-8$ axial qurluo jet，ratez at $4,8(\mathrm{~K}) \mathrm{lb}$ ．static thrust $(6,100 \mathrm{lb}$ ．with atterburner）became awailable，to wan weandardined for later production ancratt．Fin sefsicong，the power untls are removed from the rear of the fuselage rather than the underside，and to enhance atcessibility for main－ tenance，many detachable panels（over lut）mere than （on the 「Fグ：－I）are lecated to expost all the ewsental points of the many ancillary systerns．

Nain armament of the Cutloss is $4 \times 20 \mathrm{~mm}$ ．camon which are mounted in pairs in the upper lap of the air intake fairinke．Supphementang theae guns，an easaly detachable rocket pock can be litted under the centre fusclage and alro for some missions under each wing． ＇Ihis pack contains 162.75 in ．Mighty Moruse rockets ith separate repeater tubes hehind at single torward dexir whith，when onened，nperates the firmos switch． A variety of underwing stores in several various com－ hinations can be carried．Nommal loaded weight is
 weight is approximately $13,(0 \times 0) \mathrm{ft}$ ．

Maximum level speed of the Cutlass is mure than $650 \mathrm{mp.h}$. supersonic speed in a shallow dive lomg possible with no udverse effeet on handling yualites． ＇the low speed characteristics down to the stall are claimed to be particularly gond．With the afterbumers operating the rate of climb is more than 13.000 fr ．；min． to the service ceiling ut over $45,000 \mathrm{ft}$ ．

Deselopments of the F7M－3（Cutass are the li7lla．3M equipped to carry euther＂Sparrow＂or＂Sidewinder＂ guided missiles on external launchers．

An unarmed photo recommassance sersion，the IF7（ $-3 \mathrm{P}^{\prime}$ ，han a nose lenuthened by 25 in ．to curry five various camcras，aimed through ports furwarel，dawn－ wards and obliquely．Fior night operation up to $\$ 04$ flash flares are carried in the gun bay．

ARMCHAIR AERONAUTICS
 GOOD READING FOR YOUR BOOKSHELF

THE SKY MY KINGDOM by HaNisa Ristsoli, illustrated ("lhe lualley Heacl), 12s. Ged.
One can glean many more facts and figures per paragraph from this 210 page autohiography of the fabulous (icrman avintrix than from many another flying story that has come out of (icmany since the war years.

From her early experience in glider training under the skilled tutorship of Wolf Hirth, in the cable cutting demonstration before Ernst Lidet in a Dormicr 17; the firsp Hight texts of the Ne 163: pilesting the V'I "Reichenluerp" (ivided Missile; and the fascinating account of landing amone the streets of beleagured Berlin in a lieseles Storch before the lase hours of the Fuhrerbunker, one cannot help but remain absorbed in this story of a like not yet complesed.

Haman Reitsch has a rare appeciation for the joy of thight and if apparently mave in regard to less pleasant aspects of the recent war, does at least demonstrate her extraordinary abilities in airmanship in this volume.
THE AIRCRAFT OF TIIE WORLD by W. (;Rhen and (;. I'olisincier, fully illustrafed (Macdomald and (Co.), 35s.
We have been asked by one enthusiastic owner of the first edition of this title whether it would be worth his while buying the latest edition, and our immediate reply was an emphatic yes, for this is a book essential to any self-respecting Acrophile. The price is up by 10 s., there are 52 more pages, the contents are completely re-sorted into a sensible alphabetical order and the number of new additions are enough to whet any scale mondeller's appetite. The Tachikawa R-HM (Nignet Japanese Flea), Acro- Flight Streak, Fleteher Utility, Sipa Coccinclle, Antanov $A \mathbb{N}-2$ and Alaparma Maldo are but a half dozen of many types that call for enlargement from silhouctte into flying models. The astute may still find omissions; but for our money there's enough in these pages to make it a number-one reference source in the "AEROMons:a,f:R" Query department.
A PICTURE IISTORY OF FIIGHT by Joun W. R. 'T'aybor, fully' illustrated (Hulton l'ress), 25s.
The title is self-explanatory, the reputation of the Picture Pust photographic lihrary well known, and the authenticity of J. W'. R. 'Taylor's writings guaranteces that this work is worthy of our bookshelves. It is fascinating to look back on early experiments (among them the Iangley tandem wing described on page 134) and so sere how adventurous were the first of the aviators. Pegoud who dew outside lorrps in his Bleriot in 1913,

Santos Dumont, whose famous Demoiselle tlew at $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on only $25 \mathrm{~h} . \mathrm{p}$. and weighed 242 lb . ready to fly, and the fantastic flying machines created by experimenters of $1904-1908$. Six humdred and fifty excellent photos take us from King Bladud to the Viking Rocket, and provide a history of llight that all enthusiasis will nppreciate.
JOHNNY KINSMAN by John Watson (Cassel and Co.), 12s. Gr.
(iood fietien this, and precious near to truth for any of the youthful volunteer pilots who found their way inso lomber Command daring the watr. Kinsman is a Malifax pilos and we follow his fortunes from his first job through to his tour of "ops". The background is accurate and the human element most realistic for those unsetuled wartime years. Any ex-R.A.F. man will appreciate this splendid recount of Service life, und it makes a fine companion plat to lilleston 'l'revor's. Squadron Airborne (lleinemann) which dealt with Fighter Command.

BITTER MONSOON by ()s.wen Moxon (Robert

 Ilale I.td.), 15s.'This is a very personal story of a fighter pilot, Stefan James, who wrote his autohiography whilst encamped in the Imphal Valley during the Burma campaign in 1944. Oliver Moxon, the author, discovered Stefan's writings whilst sorting "with infinite sadness' through his friend's belongings "after his tired old Hurricane carried him to an early krave against the jungled side of the Nuga range'". With the permission of Stefan's parents he presents his friend's jottings "unaltered save for the merest attempt at editing".

The first part of the book deals with the life of Stefan James before he arrived in Burma. It can be said without exaggeration that his career was interesting and varned to an unusual degrece, son much so that we who have led more mundane existences cannot help but feel a touch of envy. Writen with complete realism, and without inhibition, by a man who appreciated not only Aying but the finer points of life, it is the most vivid personal stary of the war we have read.
BOAT MODELLING by Vic SMell (Model Aeronautical I'ress Ifd.), 5 s.
Vic Smeed needs no introduction to neromodellers, being "one of the fold". Itailing from a seaboard tewn, llerne Bay, it is not surprising he is un expert on bosuts. liven his acromodelling had a nautical bavour as readers will remember from his series on waterplanes.

Askistant lictitor of our companion makazine, "Molel Maker", ahd best selling designer in the model boat field, he has produced a book of infinite value to all theose who want the complete "pen" on boats of all kinds. Power boats, Hydroplanes, Yachts, etc., are all covered fully from design through (o) the various methods of constraction. For those who wish to try their hand atoat for the first time it is a "nlust", and the nautical experts will find it invaluable for reference.

MODEL NTES

readers would have thought ten years ago that it would ever be possible to have a porter model capable of tlymg inside a small hall on a line, or out of doxors in free Hight, having a wing span of only 18 in? 'I'he Veron kits are, of course, not the only ones on be I ambi-ed, other popular lines lecing the Keilkrall serics, notably the latest kits for she 1914-1918 fighters, and the sikylcada 16 in. flying scale range. Care should be taken to select a type witl ample dihedral, and in that respect Mir. Dumble has chosen an ideal subject in the Veron Bebe Jodel.
'There appears to be a swing toward flying scale and semi-scale control-line models, if the mumber of pictures submetted to the Ediror for inclusion in "Model News" is to be taken ds an example of what is going ons.

Picture :2 shows a conerol-line near-scale Gloster Javelin by A. F. Kicmp of Sutton, Surrey. Mr. K゙emp assures us that when in tlight the almost invisible

propeller gives the model a most realistic air, its black spinner resembling the glass fibre radome on the full size. Actisn shot in picture :B shaws P. Giggle's latest Wakefield on 1ts way up to a test flight. 'This Brighton flier was well in the running last yeur and secms to be getting in plenty of practice for the 1950 Eliminators. With the coming of the new rules our tame slide rule expert tells us that long fuxclages like this will be a thing of the past as he does not expect motors to drop below the 14 strand mark and with about an 18 in. motor even a 9 in. nose will be considered rather long!

Aways a tirm favourite with the thying scale fans, the Foster Wickner Wicko seen in photograph is a 48 in. version buile for the Eilfin 1.49 diesel by 13. A. Smith of Easthourne. We wonder if photugrapher J. Banks followed our advice in January "Model News" when he took this nice lows angle shot. The model is finished in yetlow and red, wur only eriticism being that, using coloured tissue, the model framework aends to stand ant sumewhat unrealistically.
A solid now, and a very nice one, built to $1 / 48$ th scale by K. J. Morgan of Emsworth. which is complete with detailed interior, and chectric light for internal illumination. The model took six weeks to construct and shows the Handley Page built Manthon (photograph 5i in latest R.A.F. markinks with alt:itver surfaces and yellow'Trainer/Communications identification bands across the wings and around the fusclage.

Astute readers who think we hatee tripped up in attributing the Marathon to Messers. Handley l'age will hee interested to know that the Marathom was acquired in 1948 by (lamelley I'age (Reading) Itct., and 30 of the 39 machines made from the design originally develeped by Miles Aireraft Itcl., are in service us navigathonal trainers and communications aircraft with the R.A.F. and known as the Marathon '111.

An exace side elevation photograph of the Hawker Hart made by lan 'l'homas, as seen in picture 6, shows the slight diversion from scale in the nose, which accommodates a P'B Amco 3.5. Built from the Aleromominer Plans Service drawing, the Hart is authentically finished in the dark blue and gold livery of the Hawker Company, with civilian registration and racing numbers as carried for the National Air Races when flown by Hawker test pilots in its single-seater form.

Mr. R. G. Grimes of Acton gets around-as anyone daring to read our contemporary magazine will have ubserved! In shis photograph (\boldsymbol{z}) showing his Mercury T'iger Moth complete with Mills . 75 finished and covered, (taken at $1 / 10$ th second with lens aperture F8 and using three .io. 1 photed floods) we see the charming blonde Miss Yoonne Reeves. Beyond that we have no more data as we are told "further information is heavily eensored"; but taking our pick of the young ladics who appear to have attended Mr. Grimes' studio, we rather like our version. -For those not quite "in the know" see l'eloruary "Model Aircraft".

AS AN OL'TSTANDING cxample of production "model engineering" and for design ingenuity, we would rate thas new dencrican "'won" very hikhly: Ifue perfonmame-wise, frankly, we feel that it leaves much to be desired.

Apart from uny comsiderations of novelly, or uppearance, a mosel vize twin muxt issevitably suffer from increased friction over a single cylinder engine of the same capacity. The fact that txin or multi-cylinder arrangenents mesn thut piston mpeed can be reduced does not appear to offer benedity in model sazes and so the only other remaining advantage is that an alecrnative firing twin wall be much beoter balancod, and should therefore produce less vihrarion-a fcuture particularly attractive for radio models.

Strangely enough, fowever, the \mathcal{K} \& $\mid 3$ Allyn "iwin" apparently ignares the fuct that although wlevmute-firing in-line cylimders mullify the nommal "uut of badance" of H single cylinder unir, a farther "fore and aff" or "rocking" vibration is wet up by virtue of the argangement of the mupulse strokes, one behand lhe other. Designed for radial mounting, the considerable overhang tends so make this "fore and aft" umbalance quite appreciable and although alferoative beam mounting is wsulable, this rנwumt mercly takes the form of an attachment anchorexl to the nommal radial mounting points. Hence, whichever way the motor is rmounted, our experience was that it blorated just un much as any normal singlecylinder engene.

Starting is anmething of an art. We are tempted to say that setsink the engine started at first was a feap, because of the pecular "feel" and lack of positive compression when flicking over; the difficulty of priming ench eylinder equally (finger choking theing guite useless) ; and ita upparent reluctance to run wt mything
other than high speed on very small props. Americans would probatbly get on much better since they are more used to loose piston fits and glow-motor techiniciue, but we framkly confes that it tuok us over half an hour to get the "iwin'" running for the first tume. Once it was going, and only then, was it apparent from the noise that we were dealing with a 2.5 c.e. enkine. Physiently, it looks a much vinuller unit.

W'ith each cylinder having its own glow plug there are several ways of connecting up the battery. We found the situplest und mont sutinfactory solution to be working the plugs in series, connecting one lead of a 4 vole battery, (through long leads in drop the voltage) to one plag and the wther to the wher plug. (istling ench cylinder reully wet wht fuel and lieking over fast then

Engine Analysis
 THREE INTERESTING 2.5 c.c <K\&B Allyn "SKY FURY",

usually produced rexults, but not with the consistency we hate come to expect with modern engines. In fact, to sate time and temper, electric staring was used for moat of the nubwergent text runs.

No spexifie performance measurements were taken, except that with a 6×4 lirog nylon prop. r.p.m. with Mcrury Nio. 7 fuel, r.f.m. инs aboue $15,(0)$)-a figuro one would momally expect to be exceeded by a geod 1.5 c.c. diesel. It did not appear to be very happy on larger propellers, nor was the prop. drives and shaft screw adecuate to cope with langer sizes wathout sliphung Some inconsistent running was araced to the cylinder heads wroking loose which, after ligheening down whilst atill hor, guve no further trouble. "the needle The needle valse control was reasonably fiexible, but appeared best left slightly on the rich side (and pructically wide open fur starting).

On the "enkmeering" tide, the deaign is full of interest. 'The sketch shows the method of couphong up the main units. 'The front crankshaft is virtually nothing more than " propeller ahaft, driven by an extension of the man crankshaft front crankpin engaging in a slot.

The main crankshuft issell is doubled ended, relntively short in length and carried in a split man bearmg. This arrangernent of splitting up the crankshaft obviates the difficultics associnted with producong aplit con-rod big end bearungs in model sizes.

The fromt eylinder unit is of comentional singlecylander form, in light alloy die caving with shrunk-in liner and screwed in head. 'T'he second cylinder is a simular unit, but faced off square at each (crankease) end. These units bole sogetier, wandwiching the main beamen unit (incorporating the choke tube and spray har ansembly) hetween them, plus the addrion of a oumventional crankcuse backplate on the rear eylinder unit. All parts were extremely well made, the pistons being exceptionally well tinished (although not particularly

Number 19

GLOW PLUG ENGINES

This japanese engune is quile smull and light for a 2.5 c.c. displacement and is characterised by first class desigst and werkmanthp throughout. It is pretty far to say, in fact, that it is better than the nverske Americun glow motor as regards crankshaft bearing fit and good compression.

A particularly clever cylinder design feature is incorporatel. 'The eylinder is of steel (unhardened) with ewo diametricntly opposed by-puss ports mitled in the sides. These purss ure carricd up through over half the thickness of the mounting flange, thus bringing the top of the by-pass ports very nearly level with the botom of the exhaust ports.

The crankenae casting is a most intricate piece of work, and extremely well made. 'The only machise finishing required on it is facing for the back cover and drilling for the crankshaft bearing, which is briss. 'I'he big end bearing is also bushed with brass. 'The piston is of carst iron and is a lovely fit in the cylinder. Cylinder head is light alloy, lapped to lit the tuph of the eyyinder (no gasket) snd held down with four screws. I'wo of these acrews extend into the crankcase casting to hold down the cylinder. All serew sizes ajpenr is A-7 IB A for the cylinder screws and 1 IS A for the propeller shaft.
well matching the cylimeter bores) and utilomag a cuptive gudgeon pin frstening enclosed completely within the piston. Allyn long reach pluge were fitted as atandard but performance appeared similar un Kil..(: plugs.

Summing up: A motor for the collector and conmisseur whe hus a liking for noisy exhaust notes 1

SPECIFICATION

```
Bore:.485 in
Slrinke.4t15 in
Llispleremrn: -.456 ac. (.150 cu. 18.).
Bure serighp: 11 OR.
Irice: 5 11.95 (%.S.A. onlyl myumaient
    <4/1(0,1)
.1&amulucturcri. K& & N||ym Cia..
    $7.32 Duarte St., IAss Arageler 58,
    1:NA
```

'The crankshaft is ground with quite a Jrastic cut-ous for the port und solid from the port forwards--posaibly weak here on account of the stresy raser probluced. The propeller buckplate is mot knurled or roukhened.
'I'he crankease hackplate has been a litile akimped a regards material size, the lugs being just that listle hit soos samall to be safe (one was actuatly crucked).
()ne really and proint ahuut the design is the position of the needle valie-far too close in the propeller dise and bringing the hand in line with the exhauss when adjustments are made. The needle inself was finely made.

Starting characteristics are not all that brillians. The engine whs tulth huppier runaing it ajeeds of 11,000 r.p.in. and above than at lower speeds. It was run up, to 16,(MO) r.p.m. with propeller losds, but electric starting was largely empleyed, not an much from the sufety point of view as to ensure positive resulis

The Japanese glow plug wия particularly interesting as having a henvy element which needed a full 2 volts to give a reasonable glow-appreciably less glow on identical volage of a KI.G plug, for compurimon. Performance was identical on the orignal Jup. and KI. (; plugr.

Fuel used for all tests was a heavily-doped methanolcastor oil mixture a $75: 25 \mathrm{mixture}$ of the latter wish nitromethane added to a 22 per cent. (tntal) equivalent. The noutor wlas ran well, without developing the same puwer, on a straight methanol-castor mixture. Summing up: a neat "Nip"; fine for sports Hying or "open" contert work.

PROPELI.EA-K.	ST DATA	25\% catar. $75^{\circ}{ }^{\circ}$ meshunul jwite 35% Nitrumethane
9×0 Stant		
9×4 'limile	9.161	
8 x 4 Sialtt	\$1.601	
G $2+$ Siant	15.5181	
7×4 kiout	13.619	

Jrauing ahure is of Japrenose Vamilya is

OVERALL IMARHSBION of this engine are generally excellent-superb worknanship, neat design featuref, wonderfully easy starting characteristics and a renlly pleasant engine to handle in every woy. Iheing a klow plug engine, however, maximusy performance dues not compore with the best of the diesels of similar capacity in terns of brake horge power although its bare weight of 4 \& nunces gives it n hish power/weight rating.
'The crunkcase and cylnder jacket, incurporating an integral backplate, is one exceptionally neat casting. cored for the tapering eransfer nassage and requirisig enly the minimunt of finishing ogerations. 'I'his casting is very light and incomorates diamerrically opposed cxhaust and transfer for cross scavenging.
'The hardened stecl cylinder liner is a very tight fit in the crankcose untit and ia held alown by the cast light alloy head ground with a definite waist. (. 002 in . down on diameter) and appears to have been ground between centres. The top of the piston incorporaten a shaped

The Italian Super Tigre G20

(lappato)

baftle or deflector, the cylunder head being similarly shaped to receive the baffle at T.D.C.

The lower transfer port in contmolled by the priston wall, a corresponding port opening leeing dralled in the piston itself (a feature selduts found on present day engines). The upper transfer port in the cylinder is not fully oprened by the piston, but all ports are quito deep and of kencrous area.
' The connecting rod appears to be a standard forging, machined at both ends (although there is no apparent reamon for this) and also slotted in improve lubrication at both the big and little ends.

The crankshaft is very nocely made and is carried on two ball races. The fronr of the crankcase and the bearmg unli is beoled in place with frour acrews, the tear bull race being recessed into buth mating units mad thus serves as a means of alignment as well as taking considerwhe laad off the fixing acrews-a neat dewign feature this. The shaft is drilled to well beyond the rotary port opening and the crank pin is also drilled out to quite a thin wall.

The intake sube, cast integral with the fromt unit, in vertical and laid nut to take twin spray hars if required. Bosses are formed for the wecomd spray bar geantion and drilling centres marked. A detachable venturi is locked in place by the sprav har. Jresumably different venturis are avalable for slighty anmended running characteristics. The one fitted gave exceptionally casy starting thet a rather eritical needle valve udjustment for ennsiatent rumning at the upper end of the speed range.

Starting was easy to the point of being ridiculous After finger chorking, and attachmp the ghow plug lead, just turning the propeller over almost invariably produced instant startink-a sharp thick was unnecesarys. Runming was not all that conswtent down at the lower end of the speed range, but above about 11,000 r.p.m. the Super Tigee was very happy, upars from hems cratical on maxture adjustment. 'The lealian glow plus has a slight lak which could not be cured and burnt out at an carly stage of teating. It wax subserguently replaced by a long reach K.L.G. plug, which seemed to sutt the engine very well, (un fact this plug is a reccommended replacement.) Mercury No. 7 fucl wan uned throughout. Any propeller of finer pitch than 6 inches necessitated the use of packing washers, which was a hitle unnoying, and the matching propeller hul hole for the shaft is $9 / 32$ inch.

We had the impression that this engine could sive rather more than the measured torque and r.p.m. figures-at the 1955 Speed Championships all the Italian team 'Tigres were turning 6×9 props. at 15,000 r.p.m. -but we could not attain that figure on standard fuel.

SPECIFICATION

florc: 59 in. (measurest fi5mm 'Juexcul
 quored).

PROPFI.I.EK-1R.Y.A. TEST DATA

Jivipeller 				r. pl_{121}
	γ	1	(Nixlun)	-13N1
	x	5	t'irami)	3,80K
	\pm	5	(Sitast)	in, 3/m
	x	\$	(Brant)	11.4141
	\%	4	(Sientul)	15,1141
	1	4	(stant)	13,8441
	x	6	(Trucut)	12,9tM
	I	4	(stant)	13.230

When tuktup apare after the tests it wan discovered that the head was fited with two paskets and leaving one of these off would be a quick way of raising the compression ratoo alightly (poscibly a deliberate featuref), and this could give the extra revs. needed for speed.

Apart from the general neatness and excellent workmanship, another feature was the excellent comprossion, hot or cold. Fuel consumption was not measured, but appeared to be relnitvely high. Also a considerable quantity of fuel leaks out past the front ball race. Our only criticism, however, would be directed at the large overhang from the beum mounsing lugs. Mounting holes, incidentally, recjuire openme out slightly to tako 6 UA screws. Summing up: A fine product, little upprecinted ouraide of tenly, hue worthy of any protential Champion's cullection.

Also acteral flighes of over 15 min ．have been matde and one flight of 23 min ．by＇lony Cooke＇s model．
＇I＇lse technically－minded will appreciate that the wing area is if sup．ft．，to which showid be added another 2013 sy．in．of tailplane，and yet the total weight is only 15－16 \％7．Wing rection is 1sacsan 64009，hat designer Waddrons emplays the best effoctive wing chord of 9 in． to make full une of the light loasling．＇Thus the aspect fation is monderate，and the increased airfond ellictency produces a commendable rate of sink．
＇I＇o make the model non－cratical on towhook position－ ing and casy to launch lor the beginner，there is adequate forward keel arell，and we have seen fim demmonirate a＂orve－handed launch＂in quite a strong wind by Hying the mondat an though is were a kite．

With so much in recommend it，＂Pelican＂is bound to be a most popular desthn among the contest－minded． and the full－size drawing will be found to be complete in itself withose need for extra inseruction．

Jimpasses on one covering note in that one should not uthempt to attach the tissue in the underaide of the wink nos with paste．＇1＇hick dupe or tissue cement is tar hettes，and helps it retans a smooth undercamber throughour the span．One should also remember that

FULL－SIZE COPIES OF THE $1 ; 6$ TH SCALE REPFC

4atari＂ifta rasy to tusempainglo． hanifal teilh ihin Joreatifally atabion design＂save the f＂firn男

If you have never placed high in a contest you will stand a chance now by building this simple high－ferfcrmance design with a contest pedigree

———by JIM WALDRON

Witen a degign enters its sixth contest season and still continues to will maior events，it can be acknowledged as top of its class．Such is the qualiticatson of this 6 －ft．span lightweight sulphane wheh has so of en broughe the manes of the Henley（＂lab fliers into the leading places at sational and club hala contesty．

The prototype was first flown in 1949 and since then has been highly develuped by designer Jim Wuldron through tue less than ten versions， Seven of these were huile by clubmates und construction was simplified wo that it can now bo oflered as a contest waner sumble for even the raw novice．In fact，it has heen a＂first＂glider for several members of the Henley（lub，notably that of 1 ）uve I＇anter，winner of the＇Iherston Ciup at the British Nationals 1955．In open glider contests its adsantage wher $1 / 2$ ghliders is apparent，bent the least virsue being its larger saze which ensbles it tos aray in sight longer，while it is not of giome proportions and hreaky down into convenient components for easy tranmpurt．

For those not lamiliar with the trail of success，here is its recurd：－

1st	THURSTON CLP				1955
3 rd					1955
1×1	NOR＇IIERN HEIG	I＇Ts	Gila		1954
2nd	TIltRSTCON CUl				1954
teh	rll．ClH：${ }^{\text {ctur }}$				1954
2nd	C\｜（ ）${ }^{\text {c }}$				1953
1：1	HAd．＇TON CUP				1952
，	IHENI，\％（ 1.11 ）ER	©L＇			1952
1st	HENLEY Gl．IDER	CLP			195.3
1 nt	IHENL，FY GI．IDER	CLP			1954
1se	HENLEY GLIDER	Cじ	\ldots		1955

much of the succers of the Jengey liem has depented on their excellent system of mondel storage on wing beards as detailed in our Sepember issue, and for almohute consistency, thene boards are recommended both for builting a model and keeging it in trat form throughous its life.
Best flymg trion is attained by balancing the wings laterally woh Plavtame or lead at the light bip. Warps should not the tolerated and the hand glide angle is attained by adjusting talptane incidence and rudder setteng only without alterng the C.C. position. The mondel should circle with a fuirly wide radius and no undulatorn or stall be indicated in any conditoms. For windy weather slight positive tail packing (one lisyer of Bristol board) provides just enough in maintain the satme glide angle. In very strong winds the underiving braces of twine hetween wing and towhook should be fitted tor releeve strain on the centre dowels.
simple-handed tosw lumeh in ensy, evern in in fan calm. Holding the model mone hand, at arm's length, and the winch in the other. run fonward and release the model while allowing the bue for pay out, using a Jinger on the side of the winch druth as a "brake". Cireatest care is requared in paying out the line evenly, whhout jerking is while rumning forward, but with a little practice this is

Twea-pices wisuma cishalmipmatesurel joinera, anifi-warp triscfarf amed -hratad bont fusumagar stanka dha hintual mackio. mes'n presjecta Patehral prode yfur in a coriteme \% Imfan trlih many hatra liyinf is is

casily mastcred; in a light breeze it is hardly necessary to run!

Note.-For tentiene do noe u4e the 14.15 lin. line used for $1: 2$ ghders. We line with $20-22 \mathrm{lt}$. breaking strains-remember, you have an extra $200-250 \mathrm{sq}$. in. of wing area on this model.

A 1owlane extension with $3 ; 32 \mathrm{in}$. ply fro attached will be rexfuired for the auto-rudder operation always ensure that the auto-rudder has only two positions.

UUCTION BELOW ARE AVAILABLE FROM AEROMODELLER PLANS SERVICE, PRICE 6'6d. POST FREE.

Radio Control Notes

HOWARD BOYS Describes

The McQUE CRYSTAL

TRANSMITTER

Fok oldeative; the crystal controlled superhet receiver previously described, a crystal controlled transmitter is essential. Here is Mr. Me Que's own transmittes, of which three or four have already been built. The circuit is shown in Fig. 1. and it uses only two valves. One operates as a eritet crystal escillator, the other being the power amplifier. Both valves are of the same type, 3D6, and are obtainable on the "surplus" market at 2 s . Gd. to 3s. 6d. ench. They can ulso bo obtained brand new from radio retalors at about 15 s . each, so they ure not out of date. Those two valves can be run with their heaters in scries from a six-volt
supply, which is lo le preferred as it provides a aufety hias for the I.A., in the event of the oscillator slage failing. "they can also be run with the heaters in parallel as shown in Fig. 2, or from a 3-volt cycle battory by using them in parallel, connecting to pins 1 arid 8 , and P in 7 disconnected. Another point of rumning them on six volts is that an accumulator can be used for this, und alao to drive a motor-kenerator to provide the 11 .'T. instead of using dry hateries. There is at the time of writing a most suitable amall mig on the surplus market ut 159. of thereatoouta. It is only 41 in . long by $2 \frac{1}{i n}$. cliameter and is rated for 12 volts input and 360 volts output. With six volts input it geven an output of 130 volts att $25 \mathrm{~m} . \mathrm{n}$, which suits thes transmitter very well. 'IThe crystal used has already heen mentioned, and is for onethird of the radus freguency. The anode circuit of the first valve is tuned to the radio frequency, and the second vale is a straightforward radiofrequency amplifier. A highilow power switch to meorporated to allow tuning of the receiver at short range. There is a socket for a meter for setting un and checking the cransmitter. Across this socket is a potentioneter of 50 ohms or more to suit the meter which can be the one used for checking the receiver, with a full sale defliction of 5 milliamps. The potentiometer is adjusted so that the meter reads $30 \mathrm{~m} . \mathrm{a}^{\text {. at }}$ full scale. "The bepinner hunding this transmitter would need help over this. A friend with 430 or $50 \mathrm{ma.a}$. meter, who knows how to use it, is required.

A photograph shows the front viow of the transmatter with two porcelan insulators and spring clips to hald the aerial on one side, and a toffee in containing the motor generator on the other side. 'The box is made of plywond, but it has a metal bottom for earthing. Any transmitter in a wooden box necels a sheet of metal underneath for earthing. 'l'his is far better

than a peg in the ground, because $1 t$ has much the same effect whether the trunsmitter is on grilss or tarmac. The chassis is motunted vertically in the box, to that the valves stack out rowards the frone. Helow them can be seen the H^{\prime} A conl, and to one side of the top valse is the crystal The wires from underneath the chassis are brourth throught the valse nockel hulding the esystal.

The view on "h: hack of the chasas shows a tag board bolted on toi holding resistors, and the $1,000 \mathrm{pf}$ condensern bolted dewn for rigidity. Sonic large resisturs are shown, but al ay are nos necensary. 'they wero used because they wert handy. The Pid cuil runing condenser can be seen with its adiusting screw through the side where if can be wof at through the side of the box.

The components are Ci $1,000 \mathrm{pl}, \mathrm{C} 2100 \mathrm{pf}, \mathrm{C} 3$ $1,000 \mathrm{pf}, \mathrm{C}+1,000 \mathrm{pf}, \mathrm{C} 520 \mathrm{pl}, \mathrm{C} 6500 \mathrm{pf}, \mathrm{C} 7.01 \mathrm{mfd}$, C8 50 pf. CY $3-8$ pf pre-net, (1020 pf variable, Cll 1,000 pf, C12 1,000 pf, C13 1,000 pl. R1 100k ohms, R2 27k ohms, R3 470 ohms, R4 47 k ohms, R5 3.3k ohms. 1.1. two coils of 16 turns cach, closely interwound, 26 or 2 N guage 1).S.C. wire un I in. Aladdin former with duse iron core. L2, 9 turns 20 or 22 gatuge bare or enamelled wire, spaced the wire thickness, on in. Aladdin dust eron-cored former. L,3, 7 tums, 18 kauge bare wire, spaced ware thickness, on 1 in . dun. former 1 i in. long. wound al lop end of former. 1.4, two turny 18 gauge insulated with sleeving, round the former between J. 3 nand chassis. R.F.C.1, $8-9$ fret, 28 pauge enmmelled close wound on in dowel. R.F.C 2. 8-9ff. 32-36 gauge close wound on in. dowel.

When buile, the transmitter has to be runcel in the following way. Switch on with the power awitch on the "low" position. With the key switch made, and a meter in ita socket adjuat the core of 1.1 for minimum current. It will be found that screwing one way the current rises quickly, and screwing the other way the current rase alowly. Adjure the core half a turn up the slow side. Adjunt the core of 1.2 for a dip in the current. 'This wilt not be very noticeable. 'The PiA tow has to le neutralised. Insere nometer reading 0-2 m.a (if not nvaitable use $0.5 \mathrm{~m} . \mathrm{t}$.) in the grid lead of $\mathbf{V} 2$ at the point shown by the arrow head in fips. 1 With the switch still in the low prower posision, rotate the I!! A tuning condenser (! 10 throuph its full range, progressively adjusting the neutralising conJenser CO until the Pi Λ tuning has no effect on the grid cursent. (L2 should lie adjusted for maxımum grid current.) Remove meter from grid lend and reconnect lead. Switch to full power and adjuse the $\mathrm{P}^{2} / \mathrm{A}$ tuning for greatest current dip. With the aerial attached, adjust the position of coil I. 4 sn that the current dip is approximately 5 millismps. It should be noted that the P/A tuning condenser C10 should be
(Continued overleaf)

RADIO CONTROL NOTES Cont.

adjuxteal for minimum anode current on cach ste ion alluw for daflerent "eurths" wuch as grass, custerete etc. 'I The transmutter is now fit for service.

Fig. 4 shows the smoothing circuit and filtering when the mutur generator is uard. R.F.C. (a) and R.F.C. (b) cuch consists of $\$$ to 9 feel of $1+$ or 16 gauge enamelled wire close wound on 1 in . diameter dowel. R.F.C. (c) and R.F.C: (d) each consists of 8 to 9 feet of 32 to 3 A gauge ermanclled wire clase wound on jin . dowel. A.I.C. is a normal nmoxthing choke that only needs to carry 30 millimps. Nost of these chorkes ure made to carry mere current, hut this is wll to the good. The 4 mifd. condensers can be clectrolytic for small wize, hut the larger paper type are sufer because, if the six volts were connected wrong way round, the electrolytic type wauld be destroyed.

Fig. 5 shows the circuit of McQue's proportional mark space producer. It is the usual electronic type with a potensiometer to conitrol the pulse specol. With thas circuis the pulse xpeed does not vary much, so long as the 0.1 mfd. and 77 k are matched ' 1 his controller can be buile in an "oxe" tin and run from ant ex-gov. combuned $11 . I^{\prime}$ and I..'I'. battery. Although Ist valiea are shown there is no reason why other simular valvew such us 3 Sis, Sis, etc., should not be used providang tooth valves in the cireuit are identical. I'l and le ate used to net the limits of the mark space and fige. St show: the set up used. Firstly, itljust D'3 in give full acale detiection with relay contacts shorted. Theri turn mais mank space' conerol fully clockwine and adjuss lp2 for so ${ }^{4}$ "average de tlectom. Ninu turn main mark;space control fully anticlockwise and adjust P 1 far 20° as average deflectan and repeat process until ins further adjustment is reppured. Lames should then be 8020 and 20) : 80.

Hard v. Noft Balum

'The writer feels pleased with lass seasons' llying: only two radin failures being experienced. lior some unk nown reasen, the receiver. using a hurd salve, loat its sembivity, after a previous tlight when ewreything was perfect. (In one occasion the flight had been one of the best ever, and the model had juse been left parked oll the aerodrome for about an hour, und the next llyght, down it chme through tailure to answer the signal, sall within a few seconds of take-off. I'or the last contest nad all subsequent lying, the difil sreciver has heen used as it has a much bettes recoral of reliabulaty. With hard valwe receivers the senstivity adjustment alsas seems very delicate. With the XIF $; 1$, this adju-lment is al bit fiditheng sulace il mealls varying the tuning coil and condenser. but there is a grealler margin of cerom.

The final adjustment can be done with two small pieces of msulated wire 1 wisted tosether.
It is the idjustment shat makes it impessible to put a thoroughly sarisfactory receiver on the markes for use of the mexdeller withour rabla knowledge. For the man "hos hnowy how whandie the XIf(i) value, it is at work while emonderation. Of course, it neesls a relay that will operate reliahly on 1 milliamp, und relay manufacturers have not been very koud at producing suidalae types. In face most relays have lieen pretey pmor. 'The writers. relays are made from parts of a type designed by 'lommy Ives. As marketed, these relays were a bit too flimsy for reloulality, but seiftened up, wht plastic wood, they hase heen very pood, and chite satisfactory on an anode current charge of 1 milliamp.

Ah. Thotcoit the Rosal dir force is the youngese of the threc Armed Forces of the Crown, it has adopted from the Roval Navy and the Army various customs, Iraditions and practices which are hedd in as high regard, and with equal pride, as those of its sister Services!
'1he wits of the day went so far as to call the new Service the "Royal April Fools" because it was born on the 1 st April. 1918, from a meresing of the Roval Naval Air Service and the Ressal Flying Corps.

From the first, the Royal Air Force met with much opposition, but its ultmate success was due to the drive and zenacity of the Marshal of the Royal Air Force "The Viscount 'I'renchard, who can eruly be called ""llue Arehitect" of the Siervece. "I"hough "Isesm", an he is affecrionately called throughout the $\mathbb{R} . A . \mathbb{F}^{\circ}$., is now 83 years of age and has, sally, become blind, it was fo who created the Service, and waned it, and he can be justly proud of his labours for his "child" has proved itsilf more than a humdredfold.

If was matural, from the start, that the siervice should want its own distenctise uniform. Having Ixeen born during the 1914-18 War, those on detive Sorvice continued to wear the unifanms of their respective Sionvices; Oflicers in the Royal Naval Air Service wrore their Naval uniform with gold rank stripes, whilst these in the Roval llying ('orps, continted to wear the double-hreasted jacket (more often known as "the maternity jacket") which Nitior (later lieutemant (ioneroll Sir) lirederick Sykes land designed when the Corps was formed, or their Regimental tunies.

To understand how the familiar R.A.F". "blue" came to be adoped, we must cast our minds back to the 'I'zarist regime in Russia. After the C'rimean War, British cloth manufacturers received orders (1) make liveries for the retainers of Russian noblemen. 'Ihis practice continued and thrived until just before the October Revolution, when a large urder was placed by the 'I'sar for blue cloth for his Army. When the Revelation took place our manufacturers were left with vast guantities of this material on their hamds, and it was suggested it might be suitable for the new Rowal Air Force. This move, it can be stated, saved many of these mandeacturers from financial ruin and, ar the same time, saved their employees frum the horrors of unemplosmant.

In spite of much criticisn and joking, the hluc uniform was adopted.

Next month we will examine the "heachache" of Rank Titlos.

Aeromodelling Step-by-Step

A FIXED undercarriage on a power model needs to be carefully fitted. If it tears loome it is generally un ankward joh to replace, since it is normally mounted on the ply front former, or firewall as it is sometimes known, before this part in permanently cemented 10 the fuselage. On the other hand, elaborate mounting methods may add unnecessary weight.

Mont power model undercarringes are of the cantilever type, made from sprimg sted wire. 'I'hat in to say, they are unbraced and bent from a single piece of wien. Steel wire in quate heavy and aso it in ugan possible to add an unnecessary weight penalty by choosing an excessive wire diameter, with an eye on increased Helffress and rugidity. Wire of 16 a.w.g. size in yulec suitable for small power models up to about $8-10$ ounces total weight. Above that, 14 5.w.g. wire comes into general use for modela up to about 20 vuncey, and 12 s.u.g. wire for the larger jobs. 12 s.w.g. wire is roughty $3 / 32 \mathrm{in}$. in dimmeter. Sometimen 10 s.w.g. wire (anprox. in. diameter) is used on really heavy models but often a hraced undercarriage is a better solution on such emes, using a smaller wire siace. The maist thing is to use good spring quality sted wire. not wire which is so soft that it bends readily.

For mone models up, to international closs size, the mimple form of undercarrage shown in 1 is satisfactory. 'Ihis involves the minimum of thends. The nimpleat and lightest melhod of uttachong it to the firewall is by thread hinding. "The holes to take the binding should be carefully positioned in a line at right angles fo the wire nad apaced apart slightly less than tho wire diameter to give a firm anchorage when the binding is applied. It is neater to cement the firewall in place with the undercarringe on the rear surface, altheugh this means trimuning the front of the fusclage to clear the wire. Additional wtrength is then given by hinding around the fromt of the assembled fuselage with gauec bandage soraked in cement or the "setting" resins used in gluss plastic minulding. Such an assembly is alwaya stronger used with leatm mounts, 2. 'T'he heams help lock the fircwall in place, and additional hinding can be unitted.

Alternative to thread binding the undercarriage in place, J-bolts can the used it or einplate straps faytened with 8 I3.A. of th B.A. acrews, according to the size of the unit-1. Both of these metherls, and particularly the latter, are beat awited to the larger, heavier moxidels.

A tinplate strap is useful in fixing a single leg under-tarrage"-3. 'This can be combined with thread binding or J-bolts in anchor the leg itself. However, it is necessury to make sure thas the top of the leg emenot move aideway, cither by rurning down the end of the wire, or with additional hinding.

A method of undercarriage tixing much fuvoured in Americn, but acldom seen over here, is to samelwich the wire between three thin ply formers- (i). The middle piece is made exactly the same thickness of the wire and cut out tol tuke the whape of the top) of the lege. When cementext up, the wire is trapped in the completed ussembly quite securcly. Use a slow-drying cerment for this job and clamp, the assembly unnil dry. A small woodscrew in each corner, or a gauze binding, is a precaution apainst the gluc joints opening up.

The main secret with cantilever undercartiages is to keep the bends as simple as possible. The thicker the wire the more important this becomes. Ultimate shape will depend to a certain extent on the fuselake section-z-and must alsn be proportioned to kise a reasonatble acidth of undercarriage uttached to the firewall.

AIRCRAFT DESCRIBED Vickers Armstrong Itd. SUPERMARINE WALRUS

When it firstappeared in June 1933 the W'alrus was known as the seaguld Mark V, and was produced by Vickers-Annstrong Letd., at their Supermarine Works, Southmpton.
'The first of the seagulls fiew in 1922, it had at wooden hull and was powered by the famous 450 h.p. Napies Lion arranged as a tractor. The Seagull IIt followed in 1924 with 4 more prowerful lion engine, and gave good service in Australin, among its achievements being the photographic survey of the © ;rent Barrier Reef and ()ueensland constline
When the Seagull V appeared, it differed from precrous types in having a pusher. radial ungine, on single-bay wings, and a metal hull stressed for catapult launching. An alternative motor for this design was the Rolls Kestrel, but this engine was never fited.

The amphibian wax supplied to Australia an the Seagull and in August 1935 the first batch of 24 were delivered to the R.A.F. (F.A.A.) and production continued until the ineroxluction of its tractor successor, the Otter.
That the Walrus continues to be of service to the Royal Navy and R.A.F., if only for ground instructional training, is a tribute to the hardy alrframe. It was constructed almost entirely of metal -atainless ascel and duralimum; the hull was flush-riveted and the fubric-covered wings had spars of stainkess steel. The Walrus was the first military aircraft with retractable undercarriage to be adented by the R.A.F., and the first amphihian ever to be catapulted with full military load. Each of these capabilities was to be fully taxed during the war years, and inany are the нnecderes that can be related of the famous "Shagbat", which was its familiar nickname.

It wus said that if any wartime aircraft spoter failed to recognise a Walrus he should be despatched to the coal mines as a "Bevin Boy". For such was the noise from its 18 open exhausts and the wind in its wires that by sound alone the Walrus was

 corndon whit omoher imnignim mad right: rencolled pulut colming

distinguishable from all wher types, whilst the time it toxk to travel from puint A to point 13 on the horizon enabled one to thumb through a consplete volume of silhouctes for reference.
ifecause of its ability to travel slowly, it was a finc spotting platform for Naval Gunnery, and in particular displayed this virtue during tho bome bardenemt of (Gemse in Iecbruary 1941. A Walrus circled the town at the modest altitude of 600 ft . whilst the Navy did their worst, and then returned safely to its ship unscathed. It alsu served as a dive bumber, though which was the more effective, the bromb explosion or the noise of the diving airframe, will never le knewn. Another escapade was the occasion of the seige of Tobruk, when a Walrus alighted at night in the harhour under full fire from the enemy and delivered urgent supplies. But perhaps the most famous of all its activities were those in the Air-Sea Rescue service, particularly along the South Comast during 1941-43.

Wost operational stations near the cuast had a Flight of mixed Walri, Spitires A.S.R. 11c, and occasionally turret-less Dectiants, and the Squadron supplying most of theree Flights was No. 276 with code leiters A(Q, as depicted on the drawing opposite.

So busy were the pilats of 276 S Suadron, that the ground crewa hurdly had time to mop out the gallons of sce water taken aboard during rescue! Sometimes there were tox many aircrew for the Walrus to tuke off ugain-on one oxcasion the complete nine man crew of a 13.17 were picked up and taxied back to Plymouth Harbour-and on a good many accasions the Walrus was atracked in its massion of merey by enemy fighters.

Which size to build？

OUTCOME OF A GROUP DISCUSSION ON POSSIBLE APPROACHES FOR＇57

Whaca is mpist，a 1．5， 2.5 or cven point－five？＇lhat why the question under discussion by a group of Bast Anglian modellers，including Nationals winner K ． Kowsell and Mick King，amonk ather Anglin，L，aindon and Thameside clubsters．Outcome of their thenuhats－ whould the F．A．I．Rule change go through for＇S7， provided an interesting list of engines and a graph whith might help the undecided．

The list shows all engines that have figures issued on the eddy－current dymamumeter tes1s，and are placed in order of h．h．p．output per c．e．As the power loading is constant this guves a ration of nower available to the weight of model required．There are one or two obviaus types missing from the list mentubly the Oliser＇Tiger（which can clear 14,000 r．p．m．on an 8×4－ED．）to show up some semarkuble falacies．

The top three engines are all under 1.5 c．c．und the obvious question is why have 2.5° a excercised such supenority in F．A．I．contesta？Well，have they？Consider the following resulis；Barry Wheeler ist in the 1952 finals with a 1.49 ，George Fuller＇s scrond in 1953 with 4 1．8，Jahn Gorham＇s fourth in 1954 and even more recent，Ken Lloyd＇s win in the firat 1956 British Eilimin－ atore with a 1.49 ．

One puint of note from the tuble is that peak b．h．p．ia reached at high revs，mainly in the $13 / 14,000$ range． These speeds are rarely reached in the arr today，and a swing to slightly larger diameter props with less pitch． is a possibility．

The reason that these are not uased today is the difti－ culty of handling the high gyroscopic and torque effects． With the larger mudels，this effect will be minmised and it is suggested，that if not already used，the following sizes be tried out as a very rough muide．

$$
\begin{aligned}
& 1 \text { c.c: } \quad 1 \times 3 \text { ur } 9 \times 2 \\
& 1.5 \mathrm{ccc} 7 \times 3 \text { ur } 8 \times 2 \\
& 2.5 \text { c.c.: } \times 31 \text { or } 9 \times 24
\end{aligned}
$$

The graph gives all the required informatinn＂for the new rules，and shows how a standard design will be affected．

From it you will see that the Eliminutor，at present 1.49 powered，will now have a 85 diesel if used at the tame weight．Increase the weikht io It nunces and you can use a 1 c．c．Taifun I Iolaby which geses ． 1 b．h．p． compared in an Elfin H．R．I． 4 I＇s． 158 b．h．p．

F．A．J．Clane Erdinct

Angin		Mncer	Afors． bhy	A！	Fris	Typir FE	$1)$
F．lfin Ift 1.49	1．41	，1015	． 158	at	13．630	11.700	714
＂T゙eifun Itahivy	ch	.1612	.1	， 1	13，400	1 \＄．100）	6 \％ 3
Wehre Kecord	1．4t	109	．135	er	13，000	13.0041	7 ± 4
Welara Mach 1	2.47	．088	.2175	at	10．700）	13，250	Hx
Frum ISH 2， 17	2.49	，1083	． 206	alf	13．761	12，（1010）	8×4
Oliver＂Vumer Cub	1.47	．142	.12	的	12，5091	12．10ヶI	\％$\times 3$
E．I），Facer	2．t\％	，11541	．196	$\underline{1}$	14，6511	$11 . \mathrm{mm}$	R r 4
＇Teifun＇Turnaso	2.47	－11） 8	142	畋	14，0n！	12，1000	7×0
Jamuar	2.48	． 077	． 188	ar	12.7311	13.750	$7 \times+$
K E H liurp 15	2.11	．07\％	．186	部	13.7511	12．761	17．1
Frout 1511	1．4\％	0）${ }^{5}$	． 111	dt	10.804	11．691）	7×4
Allbun Merlin．	.78	． 075	． 097	at	$13.4 \mathrm{kk}]$	12． 14，$^{\text {a }}$	687
Sirbara Piccalo	.78	．1）35	．15\％	11	12，801	12，250	6.4
Nllen Micrcuty 25	2．4	． 1172	．181	at	12.20111	12，00M	7×6
Allimon Salure．	1.45	．1172	．114	it	13.3100	13.700	f）$\times 4$
II．D．Ilotnet	1．45	．0h1	． 1411	31	11，260）	10.450	Nx 2
Allbota limat	． 5	． 063	， 134	at	12，351	11．800	014
E．I．Haty	－47	OR1	．029	12	$12.8(x)$	111.810	$t \times 3$
Frog St	－499	.061	．031	－t	12．86\％）	11，000	6×4

How would a mondel like thes perform？With a loadeng of 4.8 nunces per sul． ft ．and a decreuse in power of 32% the climb will obviuusly be much slower．＇The model will have u great reserve of stability，and the nowe length should be drastecally increased to obtain a balanec fore und utis．

Consideration must now be given en a first class phide，as opposed to the himh specel climb now given prefertnce when a model is designed．Even with an existing model weikhing twice as much with the same engine，the climh is bound to be much slower．P＇ylons， hatehets，high thrust lines and low C．I．A．type of byouts may no longer be required，as they are only mean of handling high power．Any simple A． 2 layout would be found to have udequate stability if powered with a I c．c． diesel，which is all you could use whthous weighing it up．

Two items that require very carcful consideration are the wing section and aspect ratio．The sections will come out of the＂thinned－down－Clark Y＇era＂und be some－ what similar to MVA 301 or NAC．A 6409 ，wll with an eye to a good plide．
Aspect ratio is a thorny problem，and there are two opimons on this．One is that they would increase 10 still further improve the glide，the other that they would come down in order to ohtain a compact model with as litule fromial area as possihle．
＇Ihree different sized models are envisaged by the East Anylians：

t c．c．

Adtrantares：Chenp，eany pu huild，rensomate wize ta handle bisach antagern．Slighlls inferior ylide，require foreign mbinas for top perfummance al prement．
Wink， 341 Fy in area ： 44 －in．pan \bar{z}－in cluand．
＇lail： 110 sq ，in．area； 22 －in．phan x 5－in，churd．
Weight： $14 \mathrm{oz} . \quad$ losiling： $4.7 \mathrm{oz} . \mathrm{se} . \mathrm{It}$ ．
1.5 c．c．size

Abliuntager（icosl size forp performance．plenty of enyine avalable Disady amtaers：Geltins a litele on the large nide
Wine 550 eq in area： 56 －in apan x－ 8 －in，chord．
Trail： 150 aq ，in，area： 25 －in．apan x th－in．chortl．
Wespht： 21 oz ．LAmjus： 5.25 oz ． 49 If．
2.5 c．c．Bize

The unfuger：Few excep in dead calmb nir
（kemains on sight lonker when teindiv．1：）
Difaderantanfs：1．arge and expersive
Wing：660 89 ，in，area；${ }^{33-1 n}$ ．apan $x^{11}-1 n$ ．chard．

Werght： 35 us．Ismalink： 5.48 az ．14． 81 ．

Ir's a Fixny thums that montellera srem more ant than mosi in leavinst their addreate Gut of correspondence-a shandiard file is hept in dVnomonerials lalay sup sice fur
 lowever. is nes 1 wist to thin uld atury turned un we achually liad a chab repart in withous knowone whet cluls of esen whech ases it same from! lly a hiv of delecrus work an the blurred pentinarls ue think we luve it Huht1-but plitame. Ielletw, don't make a habit of 16 , will you:

Datat Amplian

An tutereating item of tuebt taken from CAMBRIDGFi M,AC, New sheet th that
 heach, lise now leoon punded asol pramureal in Ar Commodore Dursme bis two veara at Walerthench. Thr actomodellins movenent, both lacal and basianm, hempfituel fromit hia keen interox. 'the cisulthiche t luhis A. G. At wes well altesuded. and twe merniro. versial tadia. one on funior recrulte below 1n years uld, sind sle cither rim proxy flying. wres res-inted

Winter aclivitien are limites in the aremo medelling wection of the CRITTAL A.S.C.. althouph a lithe flyins atill takes place. At the A.SiM, cups were awarded as follows Theam ruce: 13 Jovice. Scale, k llarriam Heat all-remonder. liz. 11 Fislwarils. Eiats. a filmo show and a tecninilion quiz endeds nombl surceapfol meethe

Guriflermat

A publuity drive with the aim of incerenng momblershap in heing uradertmiken liy GOSPOR'T D.M.F.C., and local mextellery gre atikent 10 get in tuuch with the new sectelay (addres at reml).

A new rlub in thim oree has been formed In Ameryhime for youndicers fram the mectiman ruke place at the house of one al
 ship is rewiricted. Tjuticuleios in linding flying apate are mlezaly tirmaing a thant clomest intr the cluts.

Turiln Eititurif

Mombership ri NOVACAS'TRIA M.A.S. is Ethll on the increate, and riaply now as theul 51 . A nutceestul loss culminuted in the enmenlation off a ruse club presidere, to
 - weil-lineswn tipure in full-nize, avention. and an enc-time wisner of the King's Cup.

Tenterm

sital nlutcing at lie local coumenl is sOUTH HRJS'rOI. M.A.C., wlso are enximis
at have the tonal clamp on fring in IFiato. liffed for at leat one smat Cil. sile. lifted fils al leayt one manal Cifl bile. cers daubaid fiat the future. So far. ale the reanctl showe no sugna of selenting. Chut mentiere journe ped to Isulatite fore a comnetition day on Januafy Reh, and despite high unond and smow showere, an enjoyatile time was spent

Merrilleman

Firt 105h NIGCEA of IHEATI AERGMODEIIIFRS wer a win in Clase of at the

S.M.E.E.

 251h March

Sth Aprill

ti: tencuw siculb: I'ram kubher

Jorrs Clep: Jeter

15th April

(centralised)

22nd April

+Wissen Clv: Artul Wakeficld ?
Elimumalotv A. Aed ANTRAL. TRUPHY: 2 ond Power Elinuth, J 6th Muy

Dearentraliscal

201 M Mas

FTHerstris Cup: Glider ? (Sunday)
 Sistme Cles: 2.5 c.e. Malonal bNationala Giots Thurity: Cisntrolif, Niunt | Wialer-
 21 se May
Girk Johs Simbiki Cir r: I'ower

- Blonza Aiguratt Troipuy: Rubler
Davisi 'l'mopity 'rearn Kace 'B'
 Sírrm sie Ale Tworliv: Pr. Sirale Tarion Tmursu: Kadis Contros

Clomday Istitish IADV NHLABy Cerp: l'ailless
tiluger Cus Nutant-
 . finnshis.
"Arrimasuftlier Tropfly" mill bo werell an in Efiminatar for the King of the Belkiam Cupont

Comperitors for this cient rill dence to pury their or: m experthes
It is hapond the Trials veill be helde nat luirer than IUth Yiane.

 rucent beary ormother

Heanar Kally, is wide vafiety of erale johbe have anmeared, includine twen foreddets, one ('acalung, one Rumestef, and a Ifalowito

An untercluth bloodbath lueturen STOCKTUN D, \%1F, C. and THORNAEL PATHPINDEHS mw in ixefrashe bime of 23. A5 tor the former ggaint 1\%. 2t far tbe larter. A large wood downwind mould lisve heen much more of it ruensice lind it not fiect for atern local farinet, who grovided a goksd lone faddet.

South Einstern

II luck attented BREGHTON D.A世, A.C.': Ilorall hroehers' excupaon to rlise [Harlohearh
 shider thinhe. hut beiry unshle to find the model. and purmone in ondy 1 . 25 for the escumal rutumb. Ciul fecling an the $5^{-} \lambda . I$.
 useloges for open work. which will Hmit eliminatos entrica and discourage youncer inember from bulldimu internarmunal mudela

Seale čugtrasl-liners mearimy coympletion in EASTBOTIRNE M.F.C. implude t thut -

 ztemion. The flub is lanking wril ahead ns 1 (il. demonwretion in Jume, and hope that shey have of last foumd incrmancrit club-ruant. Nes members of any twe and shatadatid are vers miluth warnted (sede. 13

Whilamal

Cold aquallv wealset loz :he wotk

 wan the uneed harducap at ! 14 nt p h , and ${ }^{\text {A }}$, Kerrifying conbat final was wat loy the hoys to shatic by willinte a pretty techbical quas with a woroe of 52% is hig fyind weale V/ 1, whe nusisespectacular model on the huilitive batard at parsornt
The 12 momh ज्ञात LONG EATON M. A.C. has risen from in in memhers, und hat an excellen: flimg field and an
 ins own insurance schemer fese lose modets. at 14 . Whe पrek! The $11 . \mathrm{S}_{\mathrm{s}}$, th has been iblugted an the clill N_{2}, and it is hoped that neveral will be geallable fors comperition fiyng in the roming acamen-

DERBY M.A.C. stasted the year ofll with thime for son moniur proke for sumbat (i, Jacknon) at the Hr-aser Rally; thia was tricily in co-aperative eiloat with planem and
 wtill in the folit The lat memler was foreced in weite in the semi-finaly - he was fying a junior's atand by model equipped with an Oliver figer fronl an earlv wrexk. Heer a fen ciretilim the druy of the mondel quarrelled with the thruse of the ensine, and out went the Tiger complete bith bearers! Indoor acaveties in I.EICESTER MA.C have included a auccesful dinner and a new leser \& 'T.I', bperd record pul up by C, lecalwell's unimated eidg! tuthe, wluch reach ed 75 with 9 deten Sil. 'I'her tumer is still trsing to gel his eyes buek into forus.
Sicueral clubi renaitis commend the elforin of HEANOR D.M.A.C. Jof their Control Ifine Rally, and the 1 teanor memberg would fike to rhank pll the clubs who braved the like to riank fil tid

Gutill Halew

A compiderahte increase of activity is remorted in CARDIEI M.A.C., an Andication of alsich gas the 20 entrics for the ilut conarol line connmald an January 15 th
 several thiver Tisers are serrling inton racere credy for a crack at the 195\% conterta,

Continurd from Page 135

＂And now，it may be asked，what has been done？ This has been donc：a thying machine，so long a type for ridicule，has really flown；it has demon－ atrated its practicability in the only satisfactory way－by actually flying，and by doing this again and again，under conditions which leave no doubt． There is no room here to enter on the consideration of the construction of larger machines，or to offer the feasons for believing that they may be buite to remain for days in the air or to travel at speeds higher than any with which we are familiar；neither is there room to enter on a consideration of their commercial value，or of those applications which will probably first come in the arts of war rather than those of peace；but we may ar least sec that these may be such as to change the whole conditions of warfure，when each of two opposing sides will have its every movement known to the other，when no lines of fortification will keep out the foe，and when the difficulties of defending against an attuck－ ing enemy in the air will be such that we may hope that this will hasten rather than retard the day when wars shall ctase．＂
＂I have thus far had only a purely scientific interest in the result of these labours．Perhaps if it could have been foreseen ar the outser how much labour there was to be，how much of life would be given to it，and how much eare．I might have hesitated to enter upon it all．And now reward must be looked for，if reward there be in the knowledge that I have done the bess I could in a difficult task with results which it may be hoped will be useful
to others．＂
＂I have brought to a close the portion of the work which setmed to be specially mine－the dem－ onstration of the practicubility of mechanical flight， and for the next stape，which is the commercial and practical development of the idea，it is probable that the wertd may look to others．The world， indeed，will be supine if it does nett realise that a new possibility has come to it，and that the great universal highway overhead is now soon to be opened．＂

Prophetic words，indeed．in the year 1897.
During the course of these experiments recounted by Langley some thirty models were buitr，and following the successful tlights he achieved Langley was persuaded by the American War Department to construct a man－carrying machine．It was here he suffered his greatest disappointment as the full size＇gerodrome＇as it was called，crashed into the Potomae during launching and the project was abnndened．Only nine days later the Wright brothers made their historic flight as Kitty Hawk in North Carolina and thus became she first men to fly in a heavier－than－air，mechanically propelled，aircraft． The failure of Langley＇s tlight was due entirely to wrong methenls of launching the sircraft fouling the launching carriage at take－off．It is interesting to note that in 1914 Gilen Curtiss，the early American aeronaut，oblained permission to take Langley＇s original machine from the Smithsonian Institute． whereupen le fitted it with Hoals and flew it successfully from Lake Keuka in New York State， thus vindic：Iting Langley＇s genius

London

A ren cluh in the wrea \leq WANSTEAD A．C．with an intiul mimbershin of 12 and every intentisem of atlilisting in the near future．It in honed phat a locel shoolroom will in future be used for rexular mesinge．

Interented paricm ate innited to trintact members of JAYES M．A．C，on Hounslow Heath on Suthles．of derg notre to the Secretery 143 Kegth R（asil，flasem），Fiwe entries sere mate in the Hiachithenth winter conrims．，with \int ．Marshall placing accond in nubbet

Aloo surcessfen in the shackheark curum． wis λ ．Syme ot NORY＇IWICK PARK M．A．C．，whese 4 in the Rill Whase wan best junior prixe．The first of the winter thikg was given on Junusy 11 h bs Nado ulm Young of Northem 1 lemshas．on the aublect of forces and air flow ronsideratiens in circlinut thisht，and lad to a great deal of discustion amons menntiots．
＇The very twellem journal of the StDCL：P A．S．lias again run to a burnzir c＇levitmea numbiar with a conmilesable arnowant of informative as well as amusins，foafter on ils 12 foolscap pased．Club ectivaty is atill furigus with the accest on wantrol line．

The credinahle porat uf lith evtrion winn rracled in the M．ACKHほATII M．F．C． Winitr（iala and this ycor＇a event ual divtingtivalued bu vatralian participation in
 The preprom cold winty weather the tising was of a particularly madi seandard．and a fly－oft wen requered in the bill wibte．

Int．J＂＇linensell，Whitefielal． $8: 30$ 2 ad J．Marshall Mayce， $7: 30$ 1rd．In．I＇artriniec．Whisteicafe，5： 28 Wimiry Cilitey Contest（bitrotries） Ist．M．King，ITLatievide， 5 ： 49

7nd．Itruwn－lidwards．Farnhormugh．

 3rd．R．Veabsies：Croydun，5：26
Riast Mliallanal

FORESTERS（NOTTINCIHAM，M．F．C． ahamboned thor uvusl annugl dinner far an infurmal hunfixht．at which eversitrody hat as slimashin＇tifne！＇The following club scramible counp sum junurs placed firse and seramb．If．Whan＇s tens rublicer mordel ancrating a montic afanc to thock 1 N, ，it in

 at the Ilcanuar Kally．

WHITEFIEI．D A．A．C．ClIMmmax ECL－ topether was mots enjelyolile，sod included －full film show be li Hinrwich Skw mentber

 over fige 1 1955 Pluge Cup requlte，aince it would thave licen theirs hat for an ertaz in mdthtime usw hatk in May Sevritheless． the slub oficta thar curmeratsidatists to Cynydan for chice agsin wronuly thiy trophs．
 SHARSTON 1）MS．allin comp．Inet wit
 Fleteher＇s $2: 12$ iwa－1hiwh1 Aks recate．Hikh thrise line jots are all the gege following the recent deromuseller Alanuaf arride，and a succeasfol noolel of thins lype buik loy a club member．

The annual（comptal lime roden will be nqued by CHESTER M．F．C．on Augus Slonday $u k$ ：isin thio ycat

The annual dinuet，prize－kiwing，and film nhow went duwn well with CHBADLE D．MEAS．memhers，liut tive remiler Buvinge
 since there wert no inher entrants！
Pen－pal mequests come from thadolf Kulata．Sadova 1．Rendomin．Ceeclosthovakia． w／ou ts lorak ing fire sonrvente about it，villinge
 l－afecky ifinitriar，and from I Wher， 70 Grecinwaxal Rusal t．ast．Nencroil，W＇velien－ thawr．Manchester，wiwe is a 1^{10} year cid fiee flitht mowet fien anstous to aer in lenich whth an American of nimblay intereats
（＇heors once mure
l＇te ©！L．LHMIN

NEW Clites

1）．R．Plate，if Intioltarat Gardens， Hfund，lissen

 Sitreel，Bumetort

SECRETARIAL CIIINGES

－1．Is Leserse 18,8 ，Dhoumatie Avenus． Nern．Ginsmer1，Ifalls：

> Intinvire Shaturact.

TVVFHOLTR BIAC．
4．Prallerd． 31 Jumhin Tereace．Nomh stuelas－Corthumberland．

1．G．Nlan． 8 Western Cullege Hnad． Monmanke Ms Momoth．Ileson．
L．EIG1I MI．N．
A．Pridder， 7 Iuch IRusd，Ieruh，Lancs

(2) JUST THE JOB!
 x-9Cto
 hobby knives \& tools

X-acto knives and tools are the best - no others are so keen or so well-balanced. All blades are surgical steel interchangeable, and lock rigidly into their appropriate handes. Blades from 2;6 for 5 . Knives from 3/ each Fool Kits 24;6 to 87/6.

Thin Swadish steel Will cut wood. soft metal. bone. ete. Backed for rigidity, angled for pertect control fit No. 5 handle. No. 34, 4 If $^{\circ} \times \mathfrak{z}^{\prime \prime}-21:-$ No. 35, 4 f" \times I" $-2 ; 6$. FAZOR SAW SET No. 53 with No. 5 handle and both saw blades-10:6

TOOL G.PKNIFE

A super-sharp. general purpose knile with a reversible blade and a spare in the handle. giving 4 razor-keen cue ring ndges. The ideal knife for model making Price l/6. Spare bades 1.- per packet of 3

Ask your stackist for foll detalls of the X-octo range, or wruce to TRIX LTD., II Old Burlington Street, London, W.I sheres an X -aclo blade for every cutting job

|N THIS modern age of supersonic speeds it is astounding to think that the Supermarine Schneider Seaplane (5.68) travelled at 340 miles per hour as far back as 1931

Then, as now, Great Britain leads the World in aircraft design, and we claim we lead in our own field of Scale Model Aircraft.
Oniy with "Avian" Kies-Quarter seale for bigzer' models-can such periect fully detailed replicas, as the $S .6 B$ illustrated. be built

FIIf HETTMIL,-IM HIST HAEE IAAMTEAR SCILE

NEWI

PRICE $2=$ FROM YOUR
DEALER OR DIRECT FROM US

NOTE THE KIT CONTENTS

PLASTIC PARTS: Pilor: Lewis Guns; Engines Cowls: Propellers and Spinners; Wheels Canopies.
PLAN: The finest obtainable In any Kit on the market. Full size and fully detailed with Building Instructions,
TRANSFERS: An ourstanding item giving authenticsquadron and National markings. Best Quality Balsa Throughout-Card Templates

AVIAN"

SOLIDS HANDBOOK

A handoboor entirely devoted to SOLID MODELS. FULL DETAILS OF AVIAN" KITS POST CARD SIZE ILLUSTRATIONS OF PROTOTYPES WITH TECHNICAL DATA AND POTTED HISTORY OF EACH MACHINE. CRAMMED WITH HINTS AND TIPS ON SOLID MODEL MAKING AND FINISHING. A MUST MOR SOLID MODELLERS.

-PRESENT RANGE-

womed war I

S.E. 5

Albatrogn D III
Sopwith Camel
511 S.11

WORLD WAR II
M, E, 109 K.
5 pitfira Mly.
Murricano Mk. Ik
Tempent ... 51
Mutan
511
HISTORICAL
5. Gb tschnaldar

Traphy) 51
Hamkar fury (Bipline) \& 5 JETS

Swlif F4

MINICSCALE

LIMITED,
CLIFTON STREET
LIVERPOOL 19

AFRICA HOUSE KINGSWAY LONDON W.C. 2.
TELEPHONE - HOLBORN 7053
TELEGRAMS • BALSAWUD LONDON

> Quality wood at competitive prices for the model trade

ARTHUR MULLETT＇S

ENGINES

tJ．B．Arom I．5 c．c． $50=+36$ Elfinl．49c．c．B．R． $11-16$－

 thilbon sabre 1．49 5s－104 h Hilban Supar Merilndy ．． Torpeda Electric 25°－
 Allban dambi Mk，ilitan Diet Mk，II $54-20,72$ $\begin{array}{ll}\text { Allban Diet Mk．II } & \$ 4-312 / 2 \\ \text { ED．Baby } 46 \text { e．c．} & 46-911\end{array}$ ED Bee 1 c．6．．．． 466 ． 1011 Milban Spifirelcic．$\quad 54-12 / 2$ Milli 1.3 c．c．$\quad 75$ ． $14 / 5$
E．D．Marner 1.44 c．c．$\quad 48.4$ ． $10 / 4$

R月DIO

TRANSMITTERS

E．L．M冎，（1）	916 19111
E．D．Mh． 11	$103-23 / 5$
E．D．Mk IV and	
Cansral Bom	154＇－： $313 / 9$
E．C．C．Ingl Mand	11－1611

ECC MM1

RECEIVERS
E．D．scomaran！i Escapament Resdy Wirad Iosi－．22！11 boomerant Ax_{x} only 054 1／／3

B Al Orepmeal orderi avir $4 \mathrm{H}_{1}$ fram ahroed uclinaupledet br Air Mail．
O Oedert davpatchod within 24 hourt．
＊AJ Eooda properiy poched and inlufed in tran
－C．O．O．It enuntpios whers Fatint Aereulatiand permit．

ED．Gomp．2e．e．$\quad 511115$ Effn 2.49 c．c．B．R．If 175 Elfin 2.49 c．c．$\quad 910,1 c_{1} 1$ ED 2.46 ， $10.16,1$

 Milas Specill 5 c．e． $140 \quad 10$, Allen Mercury 3．5 ．．80．－i．12／－
CONTROL

RiC ACCESSORIES

E．D．Mi．III trepement 19＇－4／1 E．D．Mic．I Escapamean 4－10．8 E．D．Rudder Mechanimm

Sulf－cantrint $\quad 40^{\prime}=-13$ ，
 F．P．Contrel Box tith．119 E．D．Polarised Relay w．50：－ E．D．P． 100 Delay 20.6 Barceriss，Valven，Meteri．Spares 05C
S SPECIAL ATTENTIOA PAD TO H．M．SERVICES．WRITE FQR FULCER INFORMATION．
－Lecal currency accepred：fuN offichal rates of enchanstist in ing．
－Air Perted Servica ta all poriz at con．
 ORDERS．

AS NEAR AS YOUR NEAREST PILLAR BOX
OROEA IN CONFIDENCE FRCM
BhITAIN＇S OLDEST AND OREST MMIL．ORDEA HOUSE KITS
LARGEST STOCKS OF ALE TO．DAYS BEST MAKES MERCURY

SCALE MOSELS Monotoupe 64° KEIL KRAFT Manocoupa 40 Auroncasedan 51.9 ． D．H．Tied Mash 519.119 Chriglear Mash Surinea Shyiesp Hason Vapager Monarch ClL $\quad 301-\quad 58$ Thunderbird CIL 25648

MISCELLANEOUS

X－Acto No 5 Knife \quad IJ
X－Atte 82 Tool Chast $\quad 11.4$ X．Acto Burtingron \quad ala Allben．Mersury．Froz Ftelt． Colipray Spray Gun－${ }^{6}$ D．E．EnginaStand $\quad 12: 1$ AM－Pull CiL Handle in b－ Apromberliar Anmual（Post lrad 10） Solarbo．Hardwood．Camenel． Dopes．Tinsue．Rubber，Airwhevin． ste

0	45.
eak	

InchwormA．2 I74 21／
Giest … 119
X．C．4 Delua $4 i-$ Idd． ALSO SKYIEADA．JETEX，IASCO． 46．

Abo SKTLEAOA，JETEX，JASCO，ele．

VERON

Truflire	．
Sta Fury C／L	23，6－616
Ssitfire Cil	27，4＋5／6
Cirtasonic	3－．1／4
Tiren TuE	

Special Import from U．S．A．
 Send at ance for fuld deralls by return．
Nome Orders－Pestoge and Packing charred ar coxt on orders ut to 35／－

AHOY: you AEROIubbers!

Interested in Power Boats and Sailing
Craft ?
Then this
is the
Book you
need.

A comprehensive book for the not-so-expert modeller covering cuery aspect of model boat work from construction through to sailing. The author, Vic Smied, is Assistant Editor of "Model Maker", a best selling designer in the model boat field, and thoroughly experienced in the troubles and queries that beset the average boat builuer. Power Boals, Yachis, Hydroplanes, in facs every type of boar model are dealt with in detail. The various types of hull; superstructure and fittings; painting aid finishing: power units, including stesm eng nea, diesel, petrol and gloplug, elecric motors; ras io control, stc., are but a fow of the many atems covered in step-by-step instructions. Useful appendices give lists of Clubs and Associations, yucht ratings, circular course racing, and itemised data on engines, flywheels, propellers, etc. This is the first time a really comprehensive book has been available on the Eascinating subject of model boats at a price even the younger modeller can aford. There are 96 pages of rext illustrated with 223 line drawings and 8 pages of art plates showing 50 photographs of finished models and models under conseruction.

5/- at your lacal Model Shop or Boohsallers or direct from the Publishers at 5/6

MODEL AERONAUTICAL PRESS LTD.
38, CLARENDON ROAD, WATFORD, HERTS.
Trade dismihuters: MaEuT Press Ltd.. 4, Mapton Street, EE.I.

sfisea

JASCO JUNIOR Glider-wings printed red and blue JASCO FIREFLY Glider-wings princed red only JASCO GULL Glider-wing sprinted blue
JASCO SKY QUEEN Glider-prineed fuselage and wings, red and blue
IASCO SEA HAWK Glider-printed fuselage and wings. red and bl ck
SEA SPRITE-Catapuls Glider-wings printed swo colours, printed fuselage. Carton used as novel launehing deviec
TIPSY-Junior Glider-wings and tail printed blue CONQUEROR Glider-wings and tail printed red and bluc, printed fuselage
FIRE BALL-wings and zall printed black and orange
SABRE-profile semi-finished, silk screened, silver and red
HORSA -ready to fly glider, silk sereened, silver and blue
SCOUT-ready to fly, rubber-driven model, silk sereened. red and black, plastie propelier and rubber motor supplicd
TUTOR-beginners' glider kit. cement included
TRIUMPH-rubber driven model, pares eut ready to assemble
TROJAN - control line model … 10;1
TIGER-free flighe model $12 / 10$
TRACER-stunt model
20:8

TAKE A LOOK AT OUR RANGE

[^1]

Buying and selling nacond－hend eng nes has for some
 Yasp hesim aman isatura of our sarvice co modelery 24 jod of diesel in tood candifor submicead fop auy inspuction， Engines iens through the post for which we cennoe make an offer will be returned immediately－WVe dro naed goad escine flo－motora．

Items Steskad include：
JAP TISSUE，Id．I shear．
JAP SILM，A yard．

 Personal Shopperf

No Mal Order．
HENRY J．NICHOLLS LTD． $14.7 \underset{\text { Noway }}{372}$
（Between Nag＇；Huad and Hollowby Rotid Sem，Und．）Open all day－Saet

STOCEISTS FOR
ALLBON
ALLEN－MERCURY AMCO
CELLON E．D． E．C．C． JETEX
K．K．
MERCURY Mills
SKYLEADA SOLARBO VERON，etc．
Engime a Accenorien

How－lo－do－ii
Ollarazine of Ud．δ ． Modeddon．

Read FLYING MODELS， the only American magazine devoted exclusively to model aviation！Every issue includes how－to－ build dara on new model airplanes of varlous types（with full stze plans wherever possible） ．．．worth－while lints ．．．photographs ．．．how－ to－do－it Information ．．．and features for sport a－plenty！

Now published every month．
Annua sto scription（12 copies）\＆｜ 96 Including Postoge

Mall your order and remittance to－day to： ATLAS PUBLISHING \＆DISTRIBUTING CO．，LTD． （Dapt．A）．
It Bride Lane，Fleet Sereet，London，E．C．4．

IRADII A ELIEOTIRONIC IPIR円IDCTS

G．Honnest－Radlich．W．S．Warna．

（Near Twickenham Rugby Ground）
SPECIALISTS IN TUNED REED RADIO CONYAOL A complate stock of all R．C．equipmane and aupiliary componane． Complate equipmant as wall ay a comprehanzive range of componanta with cieceis diagrams for the home comirimction of tuned read －dupmens．
All E．D．eduertised radia，anginen and components are avalablol Iram srach．
Call and rea us wish your R．C．problems．You will obeain practica！ advise from she experci who usin．C．models with infernetional usesest． Mail ardare prompily entecuted．Price llen by eaturn of pone．

BUY

 MASTER DETECTIVE
Ther Shilling Monohty
 Wcrgerzine Controiniorg

IN THIE Crime Ciospos

The February issue will be on sale everywhere from today

MAKE SURE OF YOUR COPY BY ORDERING IT NOM

WATEILNI．IIDETHEANENEIEN

$1 / \mathrm{C}$ Brimih Shaet	－	．．．	－	\ldots		7d．
$1 / 72$ German	－	\sim				6 d．
$1 / 72$ UsA．	\ldots	＊	\square	．．．	－+	td．
Flying Scale－Brisish		$\underline{ }$	＋		＋＊	8 Ad
Flping Scale－U．S． A ．			－	．－．	\cdots	8 d ．
Flying Sesia－German	－	－	い。	．．．	＊＊	9 d．
Flying Scale Rustian		\cdots	．．．		n＊	dd．
Checkars．1＇． 4 coloups					a	7d．
3＇${ }^{4}$（ritish．Roundelal942	anw					1.6
i－Alahabeta． 7 coloura．	－	－		\ldots		3 d
the Alohadats．Peolour		\cdots	\because			$6{ }^{\text {d }}$
1．Alphabes． 7 coloura．			，．			4 d
F Letreat，atc．	－．		，		asch	

Enpoph．Wholtrate and hepail Encuittes invited

Victoriz House，Lexden，Colchester and at 6 Station Yerd，Twichenham，Middlavax

Modellers can be assured of personal service coupled with expert knouledge of aeromodeling requircments at any of the following shops.
W'e invite bona-fide acromodelling traders to take advantage of this feature, in which space is available at moderate cost.

AUSTRALIA
Tel, Aleformina Cens, 418 GEORGE MASON
M.A.1.A.E.

- PRINCES WALK MELBOURNE, C. 1

Austrollo's Main Diseributar far
"Aeramadeller," "Madel Moker" and ehear Plans Service

BIRMINGHAM
Iel
The MODEL MECCA
204206 WIIION GOAD. BIARINGHAM \& All leading Madel Alrcraft Kits and Accepthoties.
Frinag. Trik, Graharnforlsh Alolways 5 \& Sa sures Dust the soer. White, ohane a) call.

BOLTON

fel. 1001

ROLAND SCOTT

The Medel Specialat
147 DERBY STREET
The abwious shap for oll Model Alecraft Acquirements

ANTERGURY

MEERS (Enginecring) LTD.
THE MODEL SHOP
TO SUN STAEET, CANTERBURY
(Under the Shadow of the Cathedral.) The Nartess stosk of Aeromodelling Eguipment in East Kent. Yout witit weicomed. By-recurn Aaszal Servie.

DONCASTER

Tel: 2524
B. CUTTRISS \& SONS
4) CLEVELAND STHEET

Call and sere our 5hop

GLASGOW

CALEDONIA

 MODEL CO.Moded and Preciston Enginees: E PITT STAEET, C. 2
Our works at your service for engine reparfa. rehorris and rebutidi. Everything for boginemes and ombusidut.

GUJLDFORD culforod 2274
PASCALLS MODEL SHOP
los WOODBRIDGE MOAD. GUILDFOAD

The shot devated entirely ta scate midelt of alf kinds. Kits -Materials-Nectelocies.

HARROW

MACDONALDS

2l日 SOUTH HARROW MARKET
SOUTH MARROW. MIDDX. (Oppante Solth Mariew Statian) Slackista for: Mertury, KK... Yeron Jeten, Skyleader. Ariom, ED and Allben Engines. Solarbo. Tissucs. Dodes.

HDNG, KCINTG Entahlishat

EASTERN MODEL AIRPLANE CO. 22 NATMAN ROAD KOWLOON
Full line of MrCoy. K\& B O.K. Matory in siock. All moded nupbliers Authorised distributs for Webre diesels and Morklin trame, HO pouge

HONG KONG

37062
RADAR COMPANY
*O.D SHANTUNG STHEET, MONGKOK, KOWIOON'
"Everything for Madellirs." Eagiones. deroplanes. Je!ersoulfies, cars, bods, H.O. geute traing and radio sonzrai uritn (LEENT: for Solarbo, E.C.C., Buithe.

LIVERPOOL

LUCAS'S (Hobbies) LTD.
7 TARLETON STREET. LIVERPOOL, 1 .

Merseyulda's Premier Storkists for all Aecomodelling Requiferments

LONDON

Cutiver 18/4

RIPMAX LIMITED

19 Pagkwhy. CAMDEN TOWN. N.W.I
"The Radia Cantral Speciolitr"
All kequirements stocked PLUS Pertanal Mail Order Service

LONDON

Fel.: Hap 3482

MODEL AIRCRAPT

 SUPPLIES LTD.III NEW KENT ROAD, S.E.I
The aident eatablished dircraff shap in London
Servics worh sotiofoctron from
Harry York

ONDON

Tele Mar. 910

J. \& D. CLAYTON

3 Dominion Parade.
Stakion Mosd, Harrow, Middx.
Model Autereft 5abplies - Kell Kraft, Yeron Snyleedo, Mercury, Jeter, Avian, Aateman Engumi, Fupls, Car Kiti, laor Kilis, elk

LONDON

SUPACOILS

21 MARKHOUSE ROAD.
WALTHAMSTOW, E,I7
Ieading Atrncies.
Aadis Control'Specisilists
MANCHESTER

THE MODEL SEOP

13 BOOTLE STREET OFF DEANSGATE MANCHESTER 2
The Model Aircroft Specialists. Moil orders by seturn. Anis bree over \&i

MANCHESTER Tel BLA 6159
MODEL SUPPLY STORES
I) GRILENHOSE STREE I. MANCHESTEG 2 Mancheater's Main "Micca" for every malle of KIT, ENCINE \& ACCESSORIES. Solatbe, Brsa, ete.

Northarn SKYLEADA Foctory

MODELLER

Abstract

GIG EIFFLAENDER REBORING SERVICE FIELD BANK, CHESTER ROAD, MACCLESFIELD REBORES: BEES (Series I only) and P. B. ELFINS, 12/9; alf HALF c.c.s, 18/9. ALL OTHERS $16 / 9$ except those under . 46 c.c., $20 / 9 \mathrm{c}$, w.o. ret. reg'd. post free. C.O.D. $1 / 3$ extrz. SPARES stocked and fitted. Enquiries, S.A.E. please. Service is prompt, with 30 days guarantee, except welding which is carried out at the owners' risk. We do not bore ringed motors.

TIBUCUT
 PRECISION AIRSCREWS

Elmer

26/5 each TRADE ENQUIRIES WELCOMED

THE ONLY VARIABLE PITCH, CONSTANT
SPEED PROPELLER ON THE WORLD MARKETS.
Send S.A.E. for lllustrated leoflet
E. AYLWIN KELSEY \& PARTNERS

Woodlands, Stroud. Glos.

IBINIDELES
 FOTIS
 1EITOMOHELIEIS

Keep your "AEROMODELLERS" neat and tidy and handy for reference purposes in one of the well known EASIBIND binders. These patent binders are quarterbound in maroon and are supplicd complete with wire retainers and locating rods, to enable any number of copies from one to a dozen to be held securely in place, whilst firmly fixed copies can be instantly detached. The name AEROMODELLER is embossed in gilt on the spine. Price including postago (You do NOT have to send us your copies!)

For the benefit of readers who desire co continue with conventional binding, we can still arrange this work for them. Coples should be sent tous, when they will be bound complere with Index. Delivery approx. $3 / 4$ weeks.

$$
\text { Price, ineluding pastage } \quad 12 / 6
$$

AEROMODELLER (Binding Dept.)
38 CLARENDON RD.. WATFORD

GHEFFIERD soetued soca

SHEFFIELD ELECTRICAL \& MODEL. ENGINFBRS

24 MOORFIELDS. SHEFFIELD ।

RISING PRICES:

Not if you send your requirements to us
Secondhand engines bought, sold and exchanged

THE MODEL SHOP, RYE, SUSSEX

CRAMER'S
WATFORD AEROMODELLER PLANS SERVICE
The Hobby Horen of Weal Hert ITha Hifh Streat. Watford Near Waiford High Sireat Siatwon [Bekeriao), full looks of al then's naw-ipecial iepomodelling eacrion on fir ie tlocr. Fishing. Trulna, Boata, Genne
※00ㄹu凡阴
量安wer Kifn
HEACURY TLAL J7＇FF for a 75 eagads
18）－
Mercuay ThUnderbiao Clas B Team Racer
MERCURY WASP iA Stune iy soan．
258 2
MERCURY WASP iA Stune 1s span
14）－
D．C．GALLERINA 30－fiF for 0.75 onginas
D．C．CHIPMUNK 20 CIL for 0.75 entin
D．C．CHIPMUNK 20 C／L for 0.75 engina
FROG TYRO $17^{\circ} \mathrm{C} / L$ for 0.5 engine：
ENGINES：
Allban Sabra 144 ，camplete with prop
4， 9

Frog 2．49 日．B．．．． 793 1．B．Alom 0.5
59.1

Pledse add posiage for prompt Mail Order Survice

JONES BROS of CHISWICK

56 TURNMAM GREEN TE月RACE CMISWICK，W． 4 phone：CHI（I min．from Turaham Grean Station）Eas． 1811

Revised Prices other Models as follows：－－Including P．T． 1．49ce Seandard 55／6 I．49cc Ball Race 89／IO 2．49ce Sandard 65／11
I．Bcc Ball Race 91／10
Marine Modela available agalnat orders $25 /=$ extre
AEROL ENGINEERING ： LIVERPOOL I3

Dhatiburers

Home Trade
E．KEIL \＆CO．LTD． Wickford，Essex

Export：

LANG OVERSEAS LTD．
33 George Street，Llverpool， 3

GANMAC

 All Metal＇PIONEER＇＊Eneruded section．mate nsyium sllop strips wish
＊Assembled－without solder－ pressed Aluminiam ribs， －Mosmo Clipent bulkhasds，etc
t All garti gracisian formod
＊Complete with sereamlined rubber wheals．plaseic maulded cowling and cabon parte．
Ready formad angine mounting and undercarruage．
Tough masue covering．
Datailad full－scale drawangi and
building instruesions．
38＊span，suatible for the＂Frog＂
150 Difes

5916

FROG＇I50’ I． 49 c．c．DIESEL

For frea－llight controlaling and radioncontrolled modela．The＂ISO is rakotiniad un Clats＂A＂motor which atever lat you down！Speri－ ficarian：Copucity i 49
c．c．：Werghs 1125 cz at Sneed ranze：2，000 ta $15.000 \mathrm{r} . \mathrm{p}$ in

OPEN THURS， 7 p．m．
SATS．I p．m．

GAMAGES，HOLBORN，LONDON．E，C．I
HOL B4e4

BURLEIGH of Edgware Road LTD
303 Edgware Road，London，W．2．

complor today！
SEND YOUR NAME
AND ADDRESS TO－
DAY WITH 6d．INE STAMPS FOR OUR E

DH $3 / 2346$

Britfix Colour Dapes - clean and bright. somooth asd evasy fo work with. (Quick drying, they provide the perfect linish which all good craftsmen expect. Available in a wide ranges of colours. Yos. jar sel., 2-0\% jar $1 / 6, \frac{2}{4} \mathrm{pt}$. tin $2 / 10, \alpha-1 \mathrm{t}$. tin $5 /-$ Also in a new handy can $1 /$.

and ... BRITFIIR COLOUR DOPES

HUMBROL

extremely durable 4 hour drying. TINLETS: \%-uz sd. 2\%002. 1/6.

Alas in the Hritin Range:-Clat Whore. Sandine Sizaler Hamena Gil. (iltuer Dopes. Sulvent Remwer. Cellulose Thinners, Pluslic Wimb, A dhe ive Parte. Trander Varntoh Fuel Proofer, Diesel Fuel.
Britfix
Cement-afine all-purpose adluesise. Transparent water amel heat proot. Combines rapid dry ingwithutmontenacity Kor. tule Gd., l-0\%. 10d. $2 \% \mathrm{cz} .1 / 6$

THE HUMBER OIL COMPANY LTD • MARFLEET • HULL

[^2]
ALL AT LESS THAN 5/- EACH!

 A terrific selection of inexpensive AFIKRAFY kits for the young modeller

is' HIG.IS

(1) Na labre

13' Attarker 17 Grummse Panther
13) Hunter

23 Pikie 49

14) Achillen 4/) 15 EIf $3 / 9$
$53[3] 5]$ build one of thew hits in lew than one hour! KITS

16 Sedian 39 10 Sportiter 3.9

GLIDERS

124" Spooh 1:\% I2 Vega 1620 Polarís 3-24 Comet 42

GALLEONS

Kits feature-Ready shaped Hulls. Plastic Anthorb and Crows' Nests. Hull Siden, Sails. Flags, Deeks printed it full colour on sultable A 9 Material. Regeing ate $\geqslant 9$ each

Buy KEILKRAFT at your nearest model shop Monuloctured by
E. KEIL \& CO LTD., WICKFORD
phone. WICKFORD 2316
ESSEX

[^0]: alrcatly hatponad!

[^1]: Iransfers inctuded in the lase five kats.

[^2]:

