AESO

$A L L B O B$ Solves ALL Your Problems?

By offering a complete service for the power flier. Our extensive range of engines is backed by a comprehensive spares and accessories service, all of which are available at your local model shop. Any modeller or retailer who has the slightest difficulty in obraining our products should contact the manufaccurers immediately.

wagiv (Yin mall divili

Port it to Arthur Mullett
KITS \& ENGINES

0.75 c.c. diesif with iruly wonder fui performane:.
Amaring value
$40 /-+7 / 6$
SPORTS CABIN MODELS
Marcury Magna, 30°... $11 /-1 / 10$
Veran Caralinal … 14/6+2/5
K.K. Southerner Mite $10 / 6+1 / 9$

POWER DURATION
Mercury Inr. Mallard \quad I $5 /-2 / 6$ slicher Mise 9/6+1/7

FLYING SCALE MODELS
Mercury Tiger Morh $28 / 6+4 / 9$
Stinson $\quad 28 / 6+4 / 9$
Monocoup: 10 22/9-3110
K.K. Super Cruiser ... 18/6+ $7 / 1$
K.K. Cessna 170 ... $1816+3 / 1$
K.K. Luscombe
18)

ALLEN MERCURY 25

A mort remarkable power unit thot is as right for the baginner os for the wepert. Performance is in the excellacr class. $51 /-\frac{1}{+} 9 / 6$ CONTROL LINE
Mercury
Texan. $13 / 4+2 / 2$
Mas
... \qquad
Now Jnp. Monitor $151-2 / 6$ Nab. Il Team Racer $\quad \cdots \quad 19 / 3+3 / 3$ Varon
Minibuster Midges Mustang
$15 /-+2 / 6$ Spitfire
Sea Fury
Wyvern
K.K. Ranger $22 / 6+3 / 9$ Ransor FIF WITH RADIO-CONTROL Mercury Aeroncz \ldots. $37 /=+9 / 6$ Mercury Monocoupe $6457 /+9 / 6$ Mereury Macador ... $21 / 5+3 / 7$ Kk Junior 60°
$215+37$
$3916+67$

IT'S SO EASY TO ORDER FROM ARTHUR MULLETT

If you do mat enjoy tha faellities of 2 cogd model shap in your own digtrict. particulariy if you live ovorseas, then order what you want from Britain's foremostmaileordar houta for modellers-Arthur Mulfett. Carriage and packing charged at cost; full afficial exchange rates allowed on foreign currency; toods insured in transistordersfrom abroad over 10 - acknowledged by aip:mall lecter VAST STOCKS TO CHOOSE FROM. PERSONAL SERVICE FOR ALL CUSTOMERS AT HOME AND ABROAD.

KIT SELECTION
MERCURY - SKYIEADA - VERON - K.K. - FROG, ETC.

STADRE EDEDN

AM-PULL C/L Handle $\quad \mathbf{5 / 6}+1 / \mathrm{d}$ ELMERAvtomaticPitch Variable Proe
$22 / 2+3 / 8$ eElspray GUN CELSPRAY GUN
MERCURY FUEL FILTER $2 / 6$
$2 / 6$ MERCURY FUEL-GILTER 2/6 $\begin{array}{ll}\text { MERCUAY CUT-OUT } & 1 / 1 / \\ \text { O.C. Engine Test Suands } & 0 / 0+0 j 0\end{array}$ FUELS BY ALLBON, AMCD. GRITFIX, MERCURY, R.M. AND SHELL
BRITFIX, CELLON, TITANINE DOPES
MARQUETAY SETS BY ALAN WRIGHT, HOMECRAFT, BINNACLE, etc. (S.A.E. for lists.) SOLE, EIC. (SAAE. for ists.)
X-ACTOKNIVES,BLADES, TOOLS
 pOWWER BOATS
OROME AIRWHEELS

per or.9/1i:34", 2hoz., perpr. 11/8.
NEW 20 PAGE CATALOGUE NOW READY Send 66. intampifor est list. No. 80. Increased from 12 so 20 pages and bang up-to-dace. A veritable gold-mine of informacion for modellers of every kind.

This month's "Aeromodeller" is your shop window from cover to cover.
We stock the ranges of all lading manufacturer: advertising in this journal immediately they are released in the case of new lines. Even thouth space prevents our advertising all was hould like, wo invite you te stnd zo us for evarything you want. PROMPTEST POSSIBLE ATTENTION GIVEN TO ALL ORDERS.
Please send S.A.E. with your enquiries.

ENGINES

We have Jarge srocks including all latert leading makek af edvertised.
Frog 5 c.s.
Allbon Dart Mk. II E.D. Baby . 46 e.e. Mills 0.75 e.e. with cut-aut
c.c. withe out cut-out \qquad
\qquad 411-4 $6 / 6$
... $\quad . \quad 50 /=+8 /$ $47 / 6+7 / 3$

D. Water-cooled

Bite \quad wn $67 / 6+8 / 9$
Allbon Spitfire I c.c. $54 /-+10 / 2$
Mills 1,3 E.E. $\quad \because \quad 75 j=+12 / 6$ E.D.I.46c.e. $\quad . .52 / 6+4 / 6$ Elfin I. 49 B.R. $\quad . . \quad 76 / 8+14 / 4$ Froz 150 ... $\quad .$. Allbon jevelin $\quad \cdots \quad 55 t-+10 / 4$
Etrin 1. 8.R....... $78 / 4+14 / 9$
E,D. Comp. 2 c.e. ... 57/8+4/3
Allon-Mercury 25 ... 57/- 5 9/6 E.D. 2.46 c.c. Racar $72,6+6 /-$ E.D. Hunter 1.46 4., e, $72 / 6+6 /-$
A.M. $35 \quad$... $59 / \sim+10 / 6$

Ameo 3.5 B.B. $\quad . . \quad 78 / 8+14 / 4$
Aminco 3.5 P.B. $\quad . .80 /=+11 / 3$
$\begin{array}{llll}\text { Arrico 3.5P.B. } & \ldots & 60,-+12 / 5 \\ \text { D.C. } 359 & \ldots & \ldots . & 651-+12,5\end{array}$
D.C. 359 \boldsymbol{p}^{\cdots}
D.C. 350 它.

Frog 500 G.P.
Fro 500 I.C...
Wabra Mach I
Webra Piccolo 0.B
(Exportenly) * EjIsf-

STRAIGHT FROM THE BOARD OF

 'ACE' DESIGNER, PHIL SMITH!This latest addition to the VERON range is a really superb 34^{σ} Span High-performance elementary sailplane. Here is yet another Veron "value" kis which can be completed, ready to fly, with the minimum of time and effort. Simpleyet robust construction, plus top-periormance make it equally suitable for the "beginner" or the most avid contestant.
Kit contains detailed instruction leaflet and generously illuscraved "3-D" plan showing step-by-step construction. Selected and Graded strips; sheet and shaped trailing edges.

... ANIS THE FAMOWS VERON"QUICKY"KITS

'JETEX' QUICKYS

Below are illiustrated two of our $11 \frac{1^{\prime \prime}}{2}$ span pre-fabbed, predecorated kits for "Jetex" Atom 35 and 50 and 50B units. Easily $\begin{array}{ll}\text { assembled in } \\ \text { only } 15 \text { mins. } & \text { EACH } \\ \text { (incl. P.T. }\end{array}$
 Suitable for motors of 46 to I c.e. All parts complete with " 3 -D" plan. EASILY BUILT IN $8 / \frac{9}{5}$ (incl. P.T.)
AN EVENING.

RUBBER DURATION QUICKYS

Here are four examples from our range of six $11 \frac{1^{\prime \prime}}{2}$ span duration kits. Each kit is complete with plastic propellers and is pre-fabbed and pre-decorated. Detailed "3-D" plan makes construction extremely simple. Your kit $9 / \mathrm{G}$ (EACH can be ready to fly th only 15 minutes.

MODEL AIRCRAFT
(Bournemouth) Ltd., Norwood
Place, Bournemouth

HAWKER HUNTER. Length 25° : span 20°; weight 4 oz. For Jetmaster motor with Augmenter Tube.

KIT PRICE 21/-.

SUPERMARINE SWIFT

 Length $24^{\prime \prime}$; span $20^{\prime \prime}$; woight $4 \frac{1}{2} \mathrm{oz}$. For Jetmaster motor with Augmenter Tube.KIT PRICE 21/-.

"Miniatures"

of the real aircraft

SKYRAY. Length 12°; span 91";
weight If oz. For Jetex 508 motor
with Augmencer Jube. Complete with cardboard Building Jig. KIT PRICE 10/6.

SUPER SABRE (not illus.). Lengeh -10'; span $7 \mathbf{y}^{*}$; weight 1 oz . Far leten 508 of Atom 35 motors, each with Augmenter Tube. Complece with sardboard Build. ing dif. KIT PRICE $10 / 6$.

SKYROCKET
Length 11z*; span 7*
weight If ox. Power-see
SKYRAY. Complere with card-
board Building dig. KIT PRICE 10\%

Jetex "Tailored" Models give the impression of real aircraft which have shrunk. The reason is that. quite apart from the fine acsuracy of the original scaling down, the fuselage of a "Tailored" model is realistic. It is smooth, rounded-well finished. It is also stronger, more easily built. There are no stringers, no painstaking jointing. The fuselage is an all-balsa skin "pre-formed" in two halves. Wing ribs, keels and bulkheads are ready cut to shape, ready to assemble.You simply glue, smooch and finish.

Try a 'Tailored' Kit now!

WILMOT, MANSOUR \& CO, LTD., Salisbury Rd., Totion Hanes, England
Kindly mention AEROMODELLER when replying to advertisers

Whether you are building plane, car or boat, the key to ultimate success is to base your model on an
E.D. Diesel, the first

E.D. I c.c. BEE

Price C2/15/a
(Water-conled 63/16/e) choice of enthusiastic model makers all over the world.

WITHOUTAN
 Simple to fit, easy to operate and proved beyond all doubt the best power unit for all models.

Seven models available ranging from .46 c.c. to 5 c.c. Every one designed and manufactured by a team of skilled aircraft engineers and individually checked for accuracy and reliability to a standard that ensures the greatest possible speed and performance for your models.

Write for new Illustrated list of E.D. Engines, Radio Control Units, Accessorles, Spare Parts, etc.

This sign-the sun and the tree-stands for quality. It is your safeguard and our standard. Every sheet of SOLARBO BALSA carries this stamp _- Look for it before you buy.

SOLIRBO LTD., Commerce Viay, Lancing, Sinsex.
Tel. Lancing 2000

-a Thinking about Itadio Control?

Here is the book you want. A title especially written for those aeromodellers who, for the first time, wish to try their hand at Radio Control Flying.

Harry Hundleby, Editor of Aeromodeller, has covered in a readable non-technical style the answers to al! those problems that beser the beginner.

From a complete explanation of the principles of operation he passes to detailed descriptions of individual components, and includes complete chapters on stage-by-stage construction of such items as the "Aeromodeller Receiver" and Transmitter, the Pike XFGI Receiver and Bayer's Multi-Purpose Meter. Other chapters include Installation, Tuning, Relay Adjustment, Fault Finding. Flight Testing, and an exhaustive chapter on the Model itself.

Bound in stiff card with a two-colour photo cover, SIMPLE RADIO CONTROL contains 96 pages, size: $8 \frac{1}{2} \times 5 \frac{1}{3}$ in.: is profusely illustrated with line drawings; contains 8 Art Plates depicting equipment and models: includes 4 pages of G. A. Drawings of famous R/C Models and Appendices covering Commercial Equipment and Batteries. $5=$

Publication Date APRIL 22nd

OTHER USEFUL TITLES:

A.B.C. OF MODEL AIRCRAFT CONSTRUCTION

Specially writen as an introduction to Aeromodelling by the famous Revarand F. Calloni modeling by thitia provides a complete groundwork for che bezinner. If takes che neweomer seep by simple step from the firse sighe of a model kit. chrough so the exhilaration of thaz first real flighs. 95 poges, sira: 97×7 in.; 130 Callon pictures; 50 drawings: 20 chapers. Price \$!.

There ard agill a ew copies lafe of this incernationalls famous annual. 4 Sear canteitusions by world famous authors provide a well balaneed mixture of copics to suit zll weromodellers. Containing 160 pates, size: \mid) 5 y in, over 100 plans, diagrams. half-cone pictures, bound in over 100 plans, diagrams, half-cone pictures, bound in
green with gold blocked cifle.

DESIGN FOR AEROMODELLERS

A comprahensive book cavering sha design of evary gype of modal tircraft writen in language that the average enchusiast can understand No cedious formulae. no intricate traphs, but good honcss oractical faces which really tell you the why, whas and how of model dasign Bound in qtif card with a rwo-colour photo cover. DESJGN FOR AEROMODELLERS conzoin: 96 pages, size: 84 x 54 in. is well illustrazed with line drawings, contains an 8 prge Art Insert of phoco pictures showing the principal kinds of modals. Usefui Appendices and Index. Prices 5 .

MORE JOBS DONE

with the

B \& D SANDER - POLISHER DRILL

Here's the tool that opens up a great new scope within your workshop-the B \& D Sander-Polisher Drill! Just look what you can do with it . . . sand surfaces before painuing, shape woodwork-polish and shine gloss surfacessharpen tools-drill in wood, plastic, metal, aluminium, etc. More! You can turn it into a portable saw with an easy-to-fit accessory .. . also use it to drive the B \& D Lathe and turn wood up to 12 in . between centres. Fit the new Lathe accessory and you've a sturdy saw table to work upon. You can own any of 8 different B \& D Home Workshop Outfits for only 30:- dorn and 12 monthly payments. See them at your local B \& D stockist-today!

Sered posicurd for the first in a nete series of tusefal humts for the handyman-Drilling Yobs Around the Home.

PORTABLE ELECTRIC TOOLS

Nry
 MERCURY
 Designed by
 Henry J. Nicholis

Mrowale

Stunt Model de-Luxe for 2.5-3.5cc diesels

THE MOST ADVANCED CONTROL-LINE DESIGN EVER PRODUCED IN KIT FORM

The Monarch is a semi-scale cabin model of modern appearance and superb performance. Its coupled flaps and elevators and deep airfoil section ensure a 100 per cent. stunt performance.

The prototype model was flown right "through the book" on its very first outing by two well-known stunt pilots, one of whom was Henri Stouffs, the well-known World Stunt Champion.

The kit is as prelabricated as a model of orthodox construction can be, with
the result that building time is reduced to the minimum.

The Monarch is a tough model and will stand up to lots of hard wear and knocks. When built exactly to specification and powered by one of the recommended motors, the Monarch is capable of winning stunt contests in any company. yet it is so stable that it can be flown by any newcomer to siunt flying with complete success.

Build it for this year's "NATS."

COMPLETELY PRE-FABRICATED KIT INCLUDES
Die-cut ribs: die-cut fuselage, sides and formers: pre-shased fuselage and cowling blocks; ready cut taiblane elevator and flaps: also full-sized plan and building and fying instructions; bellerank, elevator horn, pianowire, tissure, nuts, boles, hinge tepe. etc. (Dope, cement ond wheels mot inciaded)

* have you had your copy?

Free from your local Mercury Stockist, wo caloar lipe shawing the complate Mercury ronge with every modal photalifaphically illuitrated.

All-over Areo 382 sq. in. Alloup weight with AM. 35 Wine Length Oweroll- -27 inches.

RECOMMENDED ACCESSORIES

Engines

A.M.25, A.M.35. AMCO P. B.35. or similar diesel or equivalent glo-plug engines.
Prap
Stant 9×5 for 2.5 diescls. Stant 10×5 for 3.5 diescls.
Fued lank
Mercury Pressure.fed (med.)
Finishes
Cellon throughout to colours of choice. Finish off with matching Mercury Trimstrip.
CL Handle
Ajustalyne (Rer. Des,) for
Wheels
2-inch Sponge Rubber, strearn*

"Covers the world of Aeromodelling"
VOLUME XX
NUMBER 232
MAY.1955
Managing Editor - - C. S. RUSHBROOKE
Widitor - $~-~-~ H . G . H U N D L E B Y ~$
Anciarant Editor $\quad=\quad-\quad$ R. G. MOULTON

In this issue

Special features

"FAIREY FLYCATCHER"	..	\cdots		236
TALE OF A TAILLESS	\ldots	\ldots	F\%	238
"ARROWHEAD"	...	\ldots	-	241
PRACTICAL AIRFOSLS	\ldots			242
AILERON CONTROL	...			243
"SNOW WHITE"	tas	246
SEE HOW THEY LAUNCH				256
SOLAREO STORY				258
MAKING MICROFILM	\ldots	-	\cdots	264
SAVE THAT GLOWPLUG				206

Regular features

AEROMODELLEER Incorporates the MODEL AEROPLANE CONSTRUCTOR and is published monthly on the 15 th of the previous month by the Proprietors:
MODEL AERONAUTICAL PRESS L.IMITED SUBSCRIPTION RATE: 2i/- per annum grepidd including the special Christma Number).
Editorial and Advertisement Officea:
38 CLARENDON ROAD, WATFORD, HERTS TELEPHONE: WATFORD 5445 (Mondsy-Friday

FLYING AND THE NAVY

OUr special Naval cover this month reminds us of the excellent "work carried out by Naval helicopters during the past hard winter, especially in the hard hit areas of Scotland. The tasks surmounted by this highly specialised branch of the Services amply demonstraxed the indisputable advantages of this type of aircraft, for too long a Cinderella of the aviation world.

We number an increasing following of the acromodelling art amongst our Naval readership, which is hardly surprising, for those who follow the sea for a living are invetcrate model-makers, and Jack has long been renowned for his "ship-in-a-bottle" activities which while away the hours between watches. The advent of the aircraft carrier introduced an aeromodelling touch into seamen's interests, and we know of a number of cases where the flight deck has witnessed some hectic model aviation!

We are left wondering why it is that no official recognition is given to this branch of hobby activities, for we have yet to learn of any clubs at Naval stations. Perhaps their Lordships of the Admiralty may soon be persuaded that aeromodelling is the modern equivalent of more ancient crafts, and of particular interest at shore establishments and Naval airfields. The success of the R.A.F. Models Association should be a sure guidance to those above, and we look forward to the days when a true inter-Services Contest can be arranged on the aeromodelling field.

The U.S. Navy has long been aware of the vast source of air-minded personnel to be reached through aeromodelling, and has on many occasions sponsored and played host at major meetings in the States, besides organising specialised deck landing contests for scale control line models. Can we hope that the Royal Navy will soon make icself known in similar activities?

On the Cover

One of H.M.S. Eagle"a Fairey Flycatcher is eauphe by Charlea E. Brown's versatile eommera when fiying zt Gibraltar during 1930. Point of intercst in this most interesting photograph is that the camery was approximately at the same eltitude as the upper platform on the Fagle's sower-long way down is is nor?

How Simple is Radio control?

Modellers who have shunned or hesitated at entering the somewhat technical field of Radio Control, frightened by such terms as "standing current", "quench coils", "crystal oscillator", etc., can take heart now that our Editor's long-awaited book "Simple Radio Control" is available.

It has been written especially for the average aeromocleller who, with no knowledge of radio, wishes to experience the thrills of radio controlled flying for the first time. In consequence the book deals only with simple single channel equipment described in clear non-technical terms.

An explanatory chapter gives the basic principles of operation, and individual items of equipment, such as the Transmitter, Receiver, Relay, Actuator, etc., are all dealt with in detail. The novice is helped in his choice of equipment, be it commercial or home-made, and in the latter event there are chapters giving stage-by-stage construction details for the "Aeromodeller" Transmitter, Receiver, and also the Pike XFG1 Receiver.
Further chapters explain the installation of radio gear in the model, tuning and operation, the various systems of control linkage, and construction of an All-Purpose Meter.

The Radio Model itself is given comprehensive
coverage, and here as an aeromodeller, our worthy Ed. has the advantage over the somewhat technical titles already on the market. Choice of model and structural considerations particular to radio control operation, are amongst the many facets discussed, not forgetting important items such as the right type of landing gear and methods of trimming.
Test flying and radio pilotage, fault finding and correct soldering are also covered, and there are useful indices giving details of commercial equipment and batteries. Art plates and sketches portray, not only the author's ideas, but a multitude of other brainwaves from well-known radio experts, and we can safely say that this little book is as good a "five bobs" worth" as one is likely to find.

Merited Recognition

We learn that the F.A.I. has awarded a Paul Tissandier Diploma to hard working S.M.A.E. Secretary, Doug. Gordon, who has filled this post for a number of years. These diplomas are a form of recognition of activities devoted to the aviation movement, usually in fields that are not capable of acknowledgment by the award of trophies, etc., and it says much for Great Britain that this is the second award to be made to lBritishers, the first going to S.M.A.E. Chairman and President of the International Models Commission, A. F. Houlberg.

Over eight inches of anoke, Ciseha Harapai, Braumer, Pech and Civel in upper photo look an happy os the Fiallatey boya (belon) during sheir recemt pansal condust organised through AEROMODELLER W'orld Necs colamns.

World Speed Champs.

We learn on best authority that both date and venue are changed for the 1955 World Control-line Championships. Stated in the F.A.I. Calendar to be at Paris over Whitsun, they ate now to be held at l'Aerodrome de Poitiers over July 1, 2 and 3. The city of Poiticrs is just over midway between Paris and Bordeaux, and from the nature of these alterations we interpret that the meeting will be held with another major French meeting. Date for their Nationals has yet to be announced.

Fixed your Moliday?

The thrill of full-size gliding-a hobby close akin to acromodelling - can be enjoyed in good company at the Gliding Clubs to be seen advertising at the back of this issue. First class accommodation, the chance of a whole unfettered week of flying and solo flying after dual control training can be yours for less than the cost of the average seaside laze. Why not try it this year and join the increasing band of A and B gliding badge holders:

Windsor Hishliohts

February 26th was the occasion of the annual Northern Heights M.F.C. Dinner, held as usual at the "Windsor Castle" near Victoria, and as usual the fun was fast and (at times) furious. Sir Pugh Lloyd received the "Malta Cup" on behalf of the R.A.F. Models Association from Lady Boyle who presented the prizes, and founder-member "Rip" was the proud recipient of an album of photographs. All in all, a very pleasant function, maintaining irs standard as an "aeromodellers must".

Esast meets West

Through our World News columns we have been successful in matching by postal contest leading slubs in Britain and Czechoslovakia. The event took place on cold, snowbound February 27, with

two teams nominated each by Wallascy M.A.C. and Kladno (Czech), plus another team from Wavertree M.F.C. to make it a triangular event, whilst Whitefield, due to strong wind in their district, postponed their part in the contest until better weather arrives. With similar conditions in each country; except for oceasional turbulence at Kladno, we are able to draw direct comparison between East and West. Close results, both individual and for the Wallasey and Kladno " A " tcams make the coming A/2 Championships even more interesting, should the Czechs be able to send a National team.

Aircraft on the cover

The

FAIREY FLYCATCHER

The Feycatcher was one of the early post 1914-18 war generation of Eghters and was considered a very good aircraft. Its outstanding qualities were extreme noisiness and (for its day) an excellent speed range. It was the first fighter specially designed for deck flying duties to go into production and was available in both land and seaplane versions. Beginning service in 1925, it was issued to Nos. 401-8 (Fleet Fighter) Flights of the R.A.F. On the plan are Courageous aircraft colour details and with the relatively simple construction of Mr. Perry's Flycatcher in miniature, enable one to produce a realistic model with sports type flying performance.

Fuselage. Build the basic box structure, as in heavier outline, noting that spacers from F. 6 aft are; of t in. $\times \frac{1}{16}$ in. strip. See that the double stern post allows good access for the rudder pendulum. Cement the front former securely to the structure and attach the front and rear cabane struts. Now add the remaining formers and the side, bottom, and aft top decking stringers. The undercarriage may now be bent, soldered and bound to the fuselage.
the sheet top and side decking can now be added up to the cockpit and the upper mainplane supports bound and soldered to the cabane struts. Add $\frac{1}{\mathrm{~b}}$ in. nose planking and front former fairing. The complete tailplane outline (with the exception of the edges of the elevator cut-outs) is made by laminating $\frac{1}{8} \mathrm{in} . \times$ In in. strips around a cardboard former. Round off the corners so that the tailplane is a simple flat plate, and mount on to top stringers. The fin can now be cemented on to the fuselage after which the rudder can be built complete with pendulum arm and attached with silkstrip hinges.

Wings. Take care to construct the upper wing strongly as it takes up all the lift loads of both wings. The long dihedral braces are important and should be

well cemented to the spars. Note that the centre section of the upper wing is flat with the dihedral starting at the double ribs. The lower wing has no dihedral. Press studs are sewn to the wings with cotton and coment. The wings are covered with Modelspan. Before any water-spraying or doping is commenced, the tailplane struts should be fitted. This will help to prevent tailplane warps. The original model was water-sprayed and given two coats of clear dope and two coats of silver primer. The headrest should be cemented in place after clear doping and before silver is applied. Whilst this is drying the wheels can be made. The only difficulty with these is getting the brass bush square and true with the ply disc. The original wheels were made up complete except for the cones and then the bush was bolted into place. If the wheel is then placed on the axle and spun, any wobble will show up; by straining the wheel in the right direction, the wobble can be removed. Then lock the bush in position with cement, fit the card cone and string rim, and retain on the axle with an 8BA Hex nut.

Dummy engine and engine mounting is made as a complere unit, complete with bearers as on the drawing. It is cemented firmly to the front former. It is not a detailed scale engine, but has a realistic appearance.

Flying Notes. Approx. 1 oz. of ballast was necessary in the nose of the original and the C.G. on the drawing is checked from the model in flying trim. 'I'he upper wing is strapped fore and aft with rubber hands to the cabane stricture. The lower wing is plugged into the fuselage and the struts clipped on. Then the lower wings are strapped together with rubber bands underneath the fusclage. The original has a left-hand climb with a fairly straight glide. On no account alter the wing and tailplane incidences. Any fore and aft instability should be cured by ballast or by variation of thrust line.

A 12 ft . take-off run and then ground-wash effect keeps the model low until the specd builds up for the elimb. Do not try short power-rums as the model does not climb very rapidly and when the engine cuts, the nose drops sharply before picking up the glide. The Flycatcher has proved to be a consistert flier and on one occasion, 10 consecutive flights were made with motor runs of up to 45 secs. There are many sports models that cannot claim a performance of that order 1

Only 29 inch span, you fully stable with a point-fire diesel, the Flycatcher in miniature in a "must" for all biplame fans. Fallsize copied of the $1 / 5$ th acrle plan opposille are oblainable, pricesl poal free from AEROMODELLEK Plans Serwiee

The following is the result of experience gained from a series of tailless rubber powered models．We do not intend to be very technical or to try to cloak the problem of tailless design with a mentle of mystery which may easily frighten off any average modeller who may like to have a go himself．

The possibilities inherent in the tailless layout had long intrigued us，as an interesting sports model if nothing else，although the fact that it was likely to be a very stable acroplane as well，scemed to make experiments likely to be worth the effort involved．

In case there are a number of raised eycbrows at Jour mention of the possibility of a tailless being very stable，may we state that the Dunne Tailless Biplane made a name for itself on account of its stability when it made many flights，circa 1913！！

Whilst searching for data upon which to base a preliminary design，we were somewhat bewildered by the variety of information that was unearthed． Some writers swore by reflex wing sections，others said that high lift sections were very satisfactory；

Tranifing Hhaza the ancep of Arrownead ance of Arrownead in the hatada of the awthof．Featherint
prop is iaminnied
tailless，but refreshed our memory regarding the fundamentals of stabilising an acroplane in flight．

Conventional aeroplanes have a tailplane mounted behind the mainplane which clamps out the in－ herent instability of a normal wing．Actually， wings can be built using a reflex section which have sufficient inherent stability to fly by themselves without a tailplane．However，normally a stabiliser of considerable proportions，from 30% to 50% of the mainplane area，placed at a lesser angle to the mainplane is mounted two or three wing chords behind the mainplane．Generally speaking，the nearer the tailplane is to the wing the greater is its size and the ${ }^{\circ}$ larger is its negative angle．

On a tailless，the usual plan is to sweep the wing back and rig the tips at a negative angle and behind the centre section so that they serve as stabilisers． Movable tabs are mounted at the tips to enable adjustments to the trim to be made．These are called＂elevons＂－combination of the elevators found on tailplanes and ailerons which are carried at the wing tips of full－size aeroplanes．As will be seen later，clevons serve as both elevators and ailerons．As too much sweep reduces the effective span and adds other complications，we are rather in the positon of having a large tailplane close to the wing．＇Ihis，we reckoned，would normally mean a large area and／or a large negative angle in the case of a normal plane．We intended to use a iwist throughout the wing to produce the negative tip， so did not know how big the effective stabilising area would be．

We were influenced by a certain amount of agreement amongst writers that 30° of sweep back worked woll．Such a wing is also easy to draw with a 30° set square and so we started off with that amount of sweep on the Leading Edge．With regard to washout，well 10° seemed a nice round figure and we had to start somewhere．We had a wing rib template of 6 in ．chord which was undicreambered and another of a 4 in ．chord Clark＂Y＂type，and 34 in．span looked about right，Dibedral was influenced by normal duration design and was on the generous side at 3 in ．under each tip．

A fin that had a shape in keeping with the wing was drawn and a very simple flat－topped fuselage that enabled the wing to be moved over a large distance（we had no idea of where the final position
of the centre section would be) was made. An old standby prop was added and the contraption loaded with rubber.

We soon found that the plane would handle considerable power and climb very steeply without a stall, and that the tricky part was to trim the glide. It was noticed that if too much negative elevon was used as power fell off and the model went from level power flight into glide, the nose rose and the plane would sink as if dethermalised. The power climb however, was very fast and safe at something approaching 60° with no sign of a stall!!

An interesting theory is suggested that could account for this; from Fig. 1, it will be seen that a considerable portion of the wing lies behind the C.G. and it must be remembered that the angle of incidence progressively decreases towards the tip.

With 10° of washout the wing at the centre rib may be at about 5° angle of attack in level flight, in which the tips are 5° negative, probably below angle of zero lift, and so not lifting at all.

Now as an aeroplane climbs, the propeller pulling upwards, starts to carry some of the weight, thus the wings have less work to do. However, unless some measure is taken to reduce the wings' lift they will keep on doing their full work and develop too much lift. Thus loops and other similar and generally unwanted manoeuvres are brought about.

Now we suspect that our tailless being pretty highly powered, starts off lifting strongly and increasing its angle of attack until a point is reached where the centre section is stalled. The tips being at less angle of incidence and still lifting behind the C.G., overall lift is reduced and a nose down load is being applied. A very satisfactory state of affairs.

On the glide we have no thrust and of course, the forward specd is lower, so our guess is that the tip portions of the wing are giving an up-load on the nose tending to stall the aeroplane. This tendency has to be overcome by having a forward C.G. position.

The original tailless is still an excellent sport model, after nearly two years of flying, and created a British Record of just over two minutes.

We decided that we could have too much of a good thing in the way of washout, so the next design had only 7° and to play safe, we used a flat bottomed aection throughout.

This time we tried a low wing and thought a cabin would look nice, so the result was Arrorehead. Stability was in no way impaired and flights were very consistent indeed. The plide was better than the carliest design but being faster, due to the lower lift wing, the overall duration was about the same. They result in an attractive though unorthodox sport flier plans of which are reproduced overleaf and are available through Acromodeller Plans Service.

At this stage we did a bit of thinking. Both models
weighed 5oz. and carried 18 oz. of rubber. Wings were about 170 sq, in. and they had notails. Much of the wing was acting as a stabiliser and a short coupledstabiiser at that. Stabilisers that are short
 coupled, or close to the wing, are normally large in area, about 40% or more of the wing area, and this meant that our wing was probably no more than 60% efficient. Now 60% of 170 is only 103 sq . in. and a loading of $5 \mathrm{oz} / 100 \mathrm{sq}$. in. is quite high for a small model.

Feeling reasonably confident we now drafted a tailless to the following specifications- 260 sq. in. area, 6 oz . total weight, with 3 oz . rubber. A large dia. single blade folding prop was planned. Sweepback was increased slightly by using 30° on the Trailing edge instcad of 30° on the Jeading edge as on the earlier designs. In an attempt to get as much of the wing lifting at normal angles of attack, and yet retain sufficient stabilizing action, only 5° washout was used with an undercambered "Davis" type section at centre, and a thin flat bottomed one at the tips. Using light wood, the weight came out as estimated.

Effective wing area was now in the region of 60% of 260 sq. in. or 156 sq . in. giving a loading of about $40 z . / 100 \mathrm{sq}$. in., approximately Wakefield Loading.

We had no further opportunity to fly the machine before the Lady Shelley Cup Contest, but we were sufficiently confident with the type to enter this event, despite rather windy conditions. Our first two comp. flights were only just 90 secs. due to carelessly inserting the wrong motor. 'Ihis was corrected for the third light which clocked just

Darbastelle is British Record Joller, the model rlescribed aboae

over 3 minutes. This good time was largely due to the high degree of stability displayed when it bounced about in tight circles in a very turbulent area over the flying ground.

One of the first things that is likely to bother the designer is where to place the wing. On normal types this is not too hard to estimate in advance as most models are quite happy if they balance at about 50% back from the leading edge of the mainplane, and in any case there are plenty of published designs and much information available which can aid the decision.

The key to stability of any aeroplane lies in the position of the centre of gravity in relation to a point on the wing called the Neutral Point. The nearer these two points are together, the more stable the aeroplane and the less corrective work is required from the stabiliser.

Thismeans that, in the case of the tailless, the

Skid type undercarriage is not dis. tinguishable in this action shot. Note curve in therubber motor which has just been released -on low turns

George Wools temonsiraten that tounching arrowhead is nod difficult-in fact there'a no tail to knach aff
nearer the Neutral Point and the C.G. are together, the less amount of washout is required.
Fig. 2 shows how the Neutral Point may be found. It is 25% of the Mean Aerodynamic Chord back from the Leading Edge measured on the Mean Aerodynamic Chord Line.

In practice, using approximately the same sweep as shown on the diagrams if the wing is mounted so that it balances approximately on the Leading edge at the Aerodynamic Mean Chord, and provision is made for about $\frac{3}{3}$ in. fore and aft movement, the final wing position will be easy to ascertain by test flying.

If different sweep back is used for the C.G. to come in the region of 2 in . of the Mean Aerodynamic Chord in front of the Neutral Point and allow for a bit of fore and aft adjustment.

With regard to construction of the swept-back wing, we find that it is not too easy to build to the same total area as a normal wing and stabilizer for the same total weight. This is due to the sweep-back needing more material, so we would advise light wood.

Washout should be built in, for any variation in washout from one panel to the other is equivalent to a warp on a normal wing. As orthodox wings are built flat to prevent warps it is logical that a washedout wing should be built washed-out for the same reason. The method we use is to pack up the trailing edge at an angle, by means of a wedge of balsa, running from Root to ' Tip , keeping the leading edge flat. As warps on a washed-out wing are not easy to detect by eye, some sort of warp resistant structure would seem desirable if it docsn't put up the weight too much. The obvious thing to do is to use either diagonal ribs thereby forming a Warren Girder rib layout, or geodetic construction. Arrange for about 1 of the span under each tip for dihedral.

Our elevons have been around 8% of the wing in area and mounted in such a way that their settings are positive and yct shock proof. The method shown on p. 238 has proved satisfactory.

Are tailless types as efficient as normal aeroplanes? Well, given a fraction of the development lavishe upon their tailed brethren, we don't see why the shouldn't hold their own in open contests.

Thoughts

on selection of airfoils by
New Zealand's
Frank Bethwaite

The QUESTION of exactly how efficient one wing is, as compared with another, interests me. For some years I have been making glide tests on a wide variety of acrofoils. The method is to launch a test glider from a height of about twenty-five feet, and time and measure its glide path and distance traversed as it glides to the level surface below.

Very early it was apparent that different types of section varied enormously in their tolerance to change of speed. A thin, highly arched wing may be very efficient at one particular speed, but very poor at any other. A less arched, more evenly curved aerofoil may not be quite so good at any one speed, but will be far more tolerant to change of speed. I now think of the one wing trimming to a "point", and the other trimming to a "range". The sketches try to explain why this should be so. The thin, arched section accepts smooth flow at only one angle of attack. Greater (slower), separation spreads up the aft upper surface, the wake thickens, and drag increases rapidly. Less, (faster), separation occurs in the deep undercamber below, causing turbulence and again rapidly increasing drag. The smoother aerofoil manages to ease the air smoothly around itself over a much larger range of angle of attack, or speed, and hence it matters very little what speed the model flies at, provided only it is somewhere within the efficient range.

If our models were to fly only in a flat calm, the problem would be
reasonably simple; build that wing with the proven minimum sink in calm air. But more often than not the wind blows, and wind means turbulence. An anemometer graph of say, a ten m.p.h. breeze will invariably show gusts to fourteen or fifteen m.p.h. and lulls of about five or six m.p.h. In other words there is a gust factor about the average speed of the wind itself. Nor is the turbulence confined to the layer just near the ground, although it may be more marked there than higher up. A ten m.p.h. wind would be expected to stir up the air to about fifteen hundred feet, or higher in thermal conditions. Thus a model will inevitably be riding turbulence in any sort of breeze at all.

A Wakefield, or an $A / 2$, will normally fly at about 18 feet per sec. We have just explained that it will be riding constant gusts of say 6 or 7 ft . per sec., striking it from ahead, astern, or sideways, at any time that it is flown in a breeze. The model with the super-super thin highly' arched wing, which is trimmed to fly at the stall plus a bee's whisker will probably plunge around the sky, either stalled by a tail gust, or rearing up with high drag in a gust from ahead, sinking rapidly, while its knowing owner mutters away about downdraughts. The model with the tolerant wing, which has deliberately been trimmed to fly in the middle of its speed range, and not just above the stall, may well be soaring easily. It will not stall in tail gusts, but will lift hodily and turn slightly into gusts from ahead or one side, and quite definitely reducing its sinking speed by this selective use of the air's energy.

Clearly the greater a range that an aerofoil will accept with efficiency, the better will it be able to soar in turbulence. Aerofoils which show a large range, both on test and in practice, are characterised by sharp entries, the high point of their upper surfaces well back, and little undercamber. The popular wings of today do not suit at ail. My pick at the moment is an NACA $4409 / 34$, with about 1 per cent. of undercamber swept in. This sinks at little if any greater speed than the best Isacson or Benedek, but it sinks faster near the stall than at a noticeably higher speed; in other words, it exhibits the "range" which I seek so earnestly. Another fairly good one is an NACA 4612, with the entry sharpened up and thinned to about 10 or 11% thick. (The former is the higher one in the heading, the latter is the lower one.)

May, 1955

Remarkable new variation on control-line opens a new field in aerobatics

AILERON

 CONTROL
as developed by

H. M. JAMES

Early in 1949 an aeromodeller flew his controlliner into some high tension cables and was killed. A press description of the ill-fated model said, "It could fly upside down, loop, and ROLL". Although presumably an error, it did raise the questionWhy not? In December, 1949, a model with aileron control was tested. It never rolled, but it did prove the idea possible.

This was the start of a series of models of which the present model is the eighth. Two pairs of 30 ft . lines come away through an outrigger running parallel with the swept back leading edge to allow the guide plate to come in-line with the C.G.

'A' HALF ROLL (gOIH STOPS) 'B' - FULL ROLL INBOARD SIOP)
use of Stops

Rudder offset is adjusted automatically to give "out" rudder in both normal and inverted horizontal positions, and "up" in a vertical bank.

The out-rigger, nose assembly, and engine do not roll with the rest of the model. This avoids trouble with torque and fuel fced. Aileron control is by a second handle, arranged so that "Up" gives Bank in, and "Dows"' gives Bank out.

Slight "out" aileron is advisable on bank incounteracting the natural tendency to bank in. The model will stabilise itself on an even keel, though more "out" aileron may be needed on the windward side of the circuit. To bank in, gently case back the aileron handle. The model will maintain height in banks up to 45°, but will lose height if held at a steeper angle.
When rolling, the elevator must first be neutralized and full aileron applied. The rate of roll is such that it is difficult to judge when to neutralize the ailerons. Detachable "stops" can be fitted to the wing tips, checking them as they come level with the outrigger, and preventing over-rolling.
There is scope for further experiment with "Rollers", for example developing a larger version, and combining it with normal stunt characteristics, making possible a vast new range of aerobatics.

RUDDER ROD LOCKED
INTO BULKHEAD

World News

Most re-printed article ever published in the model world was undoubtedly our "scoop" on the Soviet Championships (MMS) at Moscow, reported in December ' 54 issue. To date we have had the pleasure of reading it in Spanish, French, Italian almost verbatim, complete with sketches, and snippets have appeared (one with $A / 2$ and power times reversed) in other English speaking mags. This clearly indicates the enormous interest in Soviet modelling and means that participation of at least one Iron Curtain country in the World Charnpionships will be eagerly followed by all readers. To date, we have news of intensive monthly eliminators for a Czech $\mathrm{A} / 2$ team calling for around 25 contest flights per entrant to find the better fourafter flying through that lot the leaders deserve to make the team!

Kind words for British Mail Order houses in the model business come from Sj Sgt . Tinkler serving in Nigeria. $\mathrm{S} / \mathrm{Sg} t$. Tinkler decided to try his hand at aeromodelling after arriving out in the "blue" and selected a kit (Mercury Monocoupe) and engine (Allion Dart) from Advts. in the A/M. Both were received vis aimail only 6 days after despatching the order and a subsequent query regarding fuel was replied with a formula per return. In three weeks the Monocoupe was completed and became the first model ever to fly at Kaduna airport. In fairness to the Mail Order houses, we refrain from quoting the name as we know such service is typical of all of them.

Highlight of the All-India Aeromodellers' Association annual rally held at Calcutta on January 16 th must have been a $17 \frac{1}{2}$ minute flyaway by Gopal Chandra Roy's Frog 250 powered A.P.S. Suiss Miss. Impressive Association handhook with a dozen or more beautiful trophies illustrated shows intense activity in this part of the world where A.P.S. plans are extremely popular.

MEXICO: Britain's $1 / 2$ pionear Phil Guilmant, nown in San Angel, has a 'SS A/2 wish Beredek 83066 wing, Clark Y tail amd 1 chord tail mamant. AMGENTINE: German resident Urich Stanapa risea a KA B Infant for Vone steering auxiliary power, madel mas seen last month as agtider in Herr Gremmer's thought provoking oricle. CZECHOSEOVAKIAs Ufr. apan Gramman Panther treighs almost 7 db., flies at 62 m.p.h. on komid-builh jet. Geo Be* raver is only 30 in. for its racing Busek 10 ca . enginc.
SINGAPORE: Youmy Mise Wee holdı brother Robin's Bird Doga great flier until sabotaged by a rival we are told, and MALAYA Ho Loon Shn's danghter with peoppa's stant model' They train'em young out therel In GERMANY Folfgang Zwilling's Flying Frog followa hia fying ring (Dec. 53 insue).

In Israel first eliminators for an $A / 2$ team to go to the World Championships rook place over December 2426th, together with an open rubber event and a power elim. 16-year-old Reuben Brand of Holon topped the A/2 results with a "Last Straw" daing $10: 29$, and notable point was the predominance of own designs-a very healthy sign. Naftali Kadmon suffered the embarassment of watching his Naftinofet entry ditch into the sea a half mile off-shore, then his reserve model showed obvious signs of being afraid of sharing its brother's fate. A second elim was due to take place in January.

Tip fins have jumped the Adriatic from Jugoslavia and have taken on well in Italy. Several published designs have the new feature most of them having, perfectly fist wing panels and very large fins. We recently had the opportunity of seeing a range of Italain model plans marketed by "Aviomodelli" under the guidance of Adriano Castellani, onc of the regular Eaton Bray visitors, and the standard of draughtsmanship and design detail is very high. Among the range of plans are Roberto Bacchi's F.A.I. "Tucano" power model, Amato Prati's "Speed King" 2.5 c.c. record holder and a host of topline controliners. Address is Via Grandi 6, Cremona.

Flypaper (1031 Pond St., Bristol, Penn) the alert newsheet style model paper from the U.S.A. carries an
 engines from .19 to .35 . Looks alright, but which prop do you flick, front or back? Magazine also states that a full team will represent the U.S.A. in A/2 this year for the first time. From the West Coast Model News we gather that the San Francisco Vultures have an annual 1,000 lap team race and their lines are 60 ft. long. All c/1 models are eligible, and this year there were six models in the circuit, ranging from the winning Fox 35 Flying Plank to an Anderson Spitfire powered Bomber. At one stage, all models tangled, and during the 1 hour 35 minutes taken to cover the fabulous mileage by the winner, tank and engine trouble took its toll, reducing finishers to threc. Sacramento Aero Aces held an r/c round-the-pylons race with pylons 100 yards apart. Speeds were not high: but at least it's a start towards Jim Walker's suggestion of four years ago. Same club has a band of jet r/c-ers but cannot get their Japanese jets to stay in one piece, apparently they split at the seams. Maybe they should try Dynajets.

Last month we were able to give the New Zealand Wakefield team, and now we have the names for $A / 2$ and F-A.I. Power. The glider boys are Laurie Ackroyd, B. McElwain (both also in Wakefield team) and C. Le Breton, Pete Carter. Top time was 12:19 for five tlights. In power, there's H. J. Henderson, G. Gilliver and G. W. Gibbs; top time being only 8:36 and no name given for the fourth place. Proxy flown, the models are to be despatched in May from New Zealand.

Abova: CERMAN molhod of measuring elida angla and rata of sink is indicated by sketeh from Thermik Presumably phataEraphed by sime exponkre at night, tight traces from fuselagigand fin uould give lina of flighe acrosi a phato print. Righr: Biggent control-liner in the Horid? CZECH accule Ztin grainer is $1 / 4 t h$ soalh, 9 fi. 9 in apan, weight $25 \mathrm{lb}_{\text {, all }}$ in hardwoads Flies at 25 m.p.h. wish 45 c-e. engine, mado with the model by G. Bumek, W'p.h. Winh d5ede. engina, mado with the model by G. Bumek, what he uren or cable?

JAPANESE ara highly developer in combit aft, above in an "experudahle" example. FREVCH Fokefield by venorable Gerlaud hes somathing new in dismptore, below

for sport flying with -75 to Ice try . . . SNOW WHITE

40 inch free flight design with new 'easy-to-build' sheet fuselage construction featuring
tongued formers and slotted sides

by MARTIN BRIDGE

SNow white was designed primarily as a good looking sports Model. Construction is strong and simple and can be tackled with confidence by anyone with even the most limited experience. An E.D. Bee powered the original, but the Mills 75 , Allbon Merlin or Spitfire can be substituted. The designer has had hours of trouble-free flying with the all white prototype and trimming is simplicity itself.

Construction

Start on the Fuselage by cutting out all the formers and the 青 in. sheet sides. Check the former tongues in the notches in the sides. Bend the undercarriage from 14 s.w.g. piano wire and bind to the ply formers with thread. Join the sides with the formers, cementing carefully, especially around the ply joints and cement in the hardwood bearers. When dry drill the engine mount holes and fix the 6 B A bolts. Add the 1 in . top and bottom fuselage sheeting, celluloid windscreen, dowelling and ply tailskid. Bind and solder the undercarriage legs together and construct the cowling as detailed.
The Wings are quite straightforward. For ease of construction, the wing thickness does not taper. Thus the ribs only require tapering rear of the main span. The wing section is thin to give a fast scale

flying speed. Start construction by notching the T.E. and pinning it down on the plan, followed by the rear spar, wing ribs, $\frac{1}{4} \mathrm{in} . \times \frac{1}{4} \mathrm{in}$. L.E., and the main spar. Use hard stock for the spars. Cement the of in. L.E. sheeting carefully to the L.E., ribs and the main spar. Build the centre-section incorporating the ply dihedral brace and cement the wing panels in place, leaving them to dry at the correct dihedral angle.
Tailplane and Fin need little explanation. Use medium-light stock for the fin, making the key from hard balsa. Cement the fin to the tailplane and fair it in with the fuselage using scrap sheet.
As Snow White is no contest model, it is worth the few extra ounces involved to obtain a neat finish. The original was doped white all over with red and black trim. Before covering give the entire model two coats of sanding sealer, rubbing down with the finest sand-paper when dry. Cover all surfaces with light weight Modelspan doped on. Give two further coats of sanding sealer to the sheet fuselage, sand lightly and give several coats of thinned colour dope. Water shrink the wings and tail and apply two coats of 50% thinned clear dope followed by colour dope if desired. Use Sellotape for masking the trim lines and give the completed model a coat of fuel-proofer all over.
Flying. Check the C.G. position and add any necessary nose or tail weight. Test glide over long grass. The glide will be fairly fast but flat. No more than to in. packing under the tail T.E. should be necessary and a little left rudder should take care of the glide.

Right thrust and downthrust will give a wide climbing left-hand turn under power assuming that there are no serious warps on any surfaces. Use an 8×5 nylon prop for testing, and a wooden 8×4 for best results.

[^0]

MATCH BOX COVERED WITH $1 / 32^{3}$ SHEET BALSA. TOP ε BOTIOM FROM 1/16"

FRONT \& REAR $1^{1 / 21} \times 2^{1 / 8^{\prime \prime}}$
 TO SHAFT. GUIDES TO SLIDE IN AUGMENTER TUBE.

TOPE8OIIOM
$11 / 2^{2} \times 3 / 4^{\prime \prime}$

Ganget Review

Let's dip down in the gadgetry files and see what readers have to suggest for improvements in our modelling. 'There is always something new to be learned from a visit to another modeller's workshop, so why not give a thought to these ideas, all of which are tried and tested. Don't forget, if you have a bright idea and think it would be of service to others, send it in to Gadget Review, c/o Aeromodeller. We will soon tell you if we have seen it before!

Starting the ball rolling this month, George Gray, who spends his time at the Fire Station in London's Edgware Road, gives us A , an adaptor for converting glider into power. Following the success of the New Zealand R6-B radio-controlled design with high mounted engine, this conversion should be a popular one. Simply cut a ply former to the shape as indicated, cut a slot or drill boles to take the wing tongue, and slip between the wing halves. Used on a converted APS Hoverking, this mount has carried an E.D. Bee and required about 5 degrees downthrust to prevent loaping.

PAA loaders will like the idea EH, sent in by A. J. Longstaffe, well known to Belfairs and Hatfield clubsters. The small PAA man is, by sheer chance, just the same size as a standard British matchbox. Just cement a head and top to the inner drawer of the box, cover the outside of the outer with $1 / 32$ nd, add loose ballast up to the required 4 ounces (or is it to be 5 ounces? ? ?) and cement the top down firmly. Pilot can also be used without internal ballast for sport work. Also from the same chappie, girmmick is especially for the Jetex boys, who are having trouble getting the fireworks into action up the spout of an augmenter tube. Piano wire frame in 20 guage serves as a locator and to hold a piece of igniting d/t fuse. Can also be arranged in pairs for a twin Jetex mounting in a scale D.H. 110 or for the ambitious, in fours for a Comet installation.

Kecping the sludge from exhaust and other messy gencrations of a diesel, out of an airdraulic timer is no easy task. Reader John Hartley of Wednesfield in Staffs, cases his Elmic 1D in a rolled paper tube with a ply dise end mounted across the fuselage. Not only can the timer be removed for cleaning without leaving a gaping hole in the fuselage, but it is also protected both structurally and for cleanliness. With similar arrangement in all your models, the timer can be switched from one airframe to another on the field.

Anyone ever thought of using a castoring undercarriage wheel? D. Williams of Kenton has, and for a tricycle, the idea has much to conmend it.

E shows the detail, as employed for a two-inch airwheel, with an angled bearing to prevent the wheels from swivelling about in fight. Cross wind landings are no longer a model hazard!
J. Green of Birkenhead is one of many who have suffered in recent months with a cold engine. When worn in the bore, a diescl can be pernickety in cold weather (with acknowledgements to more reputable makes) and a wrapping of silver paper from cigarette box or chocolate bar around the fins, liberally heated with a match, cig. lighter or taper, soon gets the engine into summer temperatures. The effect is quite surprising and usually results in a first flick start. See \mathbf{F}.

Simplicity pays off in any model, and with power contests mixed between hand-launch or rise-offground in the coming season, the idea of a quickly detachable unit from Sgt. Carfrae of R.A.F., Bawdsey, Suffolk, is worthy of study. Shown in G the "Clip-on" is hooked over sidewinder bearers and held in place with rubber band binding across the lower bearer. This band takes the shock in a heavy landing.

Could there be anything left as original in tank ideas? One might have thought that previous Gadget Revicws had exhausted the supply, but young 14 -year-old J. Ridley of Newcastle-onTyne has found yet another. This time its an old motor cycle carb: float chamber 11 and it becomes an excellent tank for c/f or Helicopter with only minor modification. Larger floats can be cut down to any desired capacity and the only point to watch is that the filler hole is blanked off for flight, leaving only a small air vent

Ever arrived on the field to start unpacking and have to get the cement tube into action straightaway? We do quite often, and the usual cause, apart from carcless packing, is that projecting wing dowels, etc., have a nasty habit of poking into carefully covered wings. R. Bishop of Romford, offers a simple solution in where a strip of hardwood (could be hard balsa scrap) is cut and drilled to slip over the offending parts. Easy isn't it?
And did you know that an ordinary candle can be made into a blowlamp? See If for the method, you'll be amazed how quickly a soldering temperature is obtained-only snag being that you need more than one pair of hands! J. Banks from all the way over in Jamaica found this one out for us.
Lastly, one which might cause you to break out in fits of spontaneous laughter--or might strike you as being a sensible thought. It seems that one,MeTavish of Scotish address, was out flying his KK Soarer Minor one fine day (when?) and after the first launch he lost the towing ring off the line. Doubtless heeding the expenditure of the day on bus fare to the field with only one flight achieved, our McTavish sought consolation and was rewarded with one of those sweets that arrive with a hole in the centre. Yes-you guessed it-they make fine towing rings, though the wet grass is a bit hard on their durability and they are likely to dissolve at any moment. So if you are due to go out for a day of towline flying, take along a packet of Polo's!

AEROPLANES IN OUTLINE
Number ${ }^{23}$

by J. R. ENOCH The

 Boeing B47 StratojetDering 1945, several American aircraft manufacturers were engaged on design studies for multi-jet bomber aircraft to replace the existing piston engined types which were very quickly becoming obsolescent. Of these companies, Bocing Ltd., commenced work in July 1945 on the development of an aircraft based primarily on the tried and proven B. 29 design.

Transition from piston to jet power presented numerous problems, and in order to obtain the maximum advantages of the new power medium, a considerable amount of research was undertaken, including continued investigation of Junkers research with swept-wings. To determine the layout of the basic design many $1 / 80$ scale models were built and wind tunnel tested. Typical of the configurations first conceived was the Boeing Model 424, a conventional B. 29 airframe having the piston engines replaced by four jet engines, mounted in Twin "paired" nacelles, similar to those of the B. 45 Tornado. A later model, No. 448, had a "fishmouth" intake in the fuselage nose with the efflux from the four jet engines passing over the centresection of the high, swept wing. From this was developed a model which had shoulder intakes abreast the cockpit, the same engine installation as the Model 448, and similarly a 8.29 fin with swept tail-plane. The forward fuselage was of "doublc-bubble" section with a large flat sided ventral radome. By November 1945, a model more closely resembling the B. 47 shape had been tested, with two "paired"-pod mounted nacelles, each having a single air intake, mounted at $1 / 3$ span, and a single jet mounted on each wing tip.

Basic design work on the Boeing Model 450 was completed in June, 1946, and in September, 1947, the first of the two prototype XB. 47 's was romplered, the aircraft flying for the first time on December 17 th with Robert Robins and Scott Osler (co-pilot) at the controls. The second prototype was flewn on 21st July, 1948, and like the first was powered by six Allison J.35A turbojets of $24,000 \mathrm{lb}$. and capable of $500 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. In 1949 , the XB-47's were re-engined, the J.35's being replaced by $5,000 \mathrm{lb}$. thrust G.E. J.47-3 turbojets.

A pre-production batch of B.47A Stratojets
was ordered in November 1948, initially 75 were to be built but only ten were completed, the first on 1st March, 1950. Powered by J. 47 GE. 11 Turbojets, each of $5,270 \mathrm{lb}$. thrust, and with the all-up weight increased to $185,000 \mathrm{lb}$., the B .47 A A were extensively used for development flying and crew training.

First of the Stratojets to enter service with the U.S.A.F. Strategic Air Command was the B.47B which embolied many refinements and structural modifications, principal of which was the strengthened wing. The first B.47B was flown on 26 th April, 1951, and early production airctaft were similarly powered to the B.47A, later B series. aircraft were fitted with GE.J.47.A23 engines with a thrust of $5,800 \mathrm{lb}$. each. A load of $20 \times 1,000 \mathrm{lb}$. bombs could be carried over a range of more than. 3,000 miles. The only defensive armament comprised a tail turret with twin 12.7 mm , cannon; remotely sighted and operated by the co-pilot from. his swivel seat position in the cockpit.
B.47B's were being produced from three major assembly lines, by Bocing at Wichita, Douglas at: Tulsa, and Lockheed at the government owned Marrieta plant. By December, 1952, over 300 hadi been built with a production rate of one aircraft. per day.

On 7th April, 1953, the first two of a Wing of 45. B.47B aircraft touched down at Fairford, Glowcestershire, to begin a three month training tour in the: U.K., having flown 3,120 miles from their U.S. base at an average speed of $555 \mathrm{~m}, \mathrm{p} . \mathrm{h}$.

From the B.47B was developed the KB.47Bfight refuelling tanker, the existence of which was made known on September 2nd, 1953, two years after tests had begun. The aircraft, normally a B.47B, is supplied with a conversion kit, enabling it to be modified for "Flying Boom" or "Probe and Drogue" flight refuelling. The RB.47B is a photo-reconnaissance version, adapted for this duty by the removal of bomb doors and the fitting of a self contained pack of 8 cameras. Several test-bed variants exist amongst which are two standard B.47B's which had the outboard motors. replaced with PW.J. 57 turbojets, for accelerated tests in connection with the XB. 52 research.

May, 1955
programme. XB.47C was the designation of a projected version, intended for production but later cancelled, powered by four Allison J.71.A5 $9,400 \mathrm{lb}$. jets. Latest test-bed is the XB. 47 D two of which are used for high altitude research with turbo prop engines, and supersonic airscrews. The inboard engines are replaced with single, 9,500 shp Wright T.49. W1 turbo props.

The current production Stratojet, the B.47E, first of which was flown on 30th January, 1953, has been ordered in large quantities for the U.S.A.F., the 1,000 th Stratojet to be constructed, a R.47E, emerged from the Wichita plant on 14th October, 1954, and was delivered to the Air Force on December 17th, seven years to the day after the prototype's maiden flight.

Classed as a medium bomber, the B.47E is manned by a crew of three, pilot, co-pilot, and bombardier-navigator, who together act as a very highly skilled and efficient operating team, capable of performing each others duties. Fully pressurised and air conditioned the crew's compartment has ejector seats in tandern for the two pilots, alongside which is a gangway, leading to the nose and entrance hatch. This is situated on the port side aft of the radar fairing, hinges at its forward edge, and has a built in telescopic ladder. An inner sliding door provides the pressure seal. The single picce backward sliding canopy is hydraulically operated. Within the nose, the Nav/Bombardier is provided with a downward ejecting seat, the escape hatch being forward of the "radome". The latter hinges downward from its forward edge providing unrestricted access to the blind bombing radar and mass of electronic equipment contained therein. An optical bomb-sight periscope projects slightly at the nose, above which, on the Starboard side, is the retractable fairing for the flight re-fuelling intake. Except when the large 1780 U.S. gallons fuel tanks are carried under the wing, all fuel is contained within the fuselage. Tanks are located forward of and behind the bomb bay which has capacity for a maximum load of $20,000 \mathrm{lb}$. Fore and aft of the bomb bay are the twin wheel units of the tandem undercarriage, retracting forward into the fuselage. Out-rigger single wheel units which retract forward in the inboard engine nacelle provide lateral stability on the ground. A twin 20 mm . cannon barbette is the only defensive armament of the B.47E. Located in the tail and fitted as a detachable unit, the turret is fully automatic in operation. The controlling Radar mechanism housed in the fairing at the base of the fin provides warning on the approach of aircraft, tracks, directs and fires the guns when within range. Access to the gun magazines is provided via a large door under the rear fuselage. Between this hatch and the turret is stowed the tail braking parachute.

[^1]The co-operation of the Boeing Airplane Co., is gratefully appreciared.

The thin flexible high aspect ratio wing of laminar flow section, swept at 35°, is in one piece, bolted to the fuselage at fous main points, the Alluminium alloy skin being milled from sheet to a thickness of in. at the root and $\frac{1}{1}$ in. at the tip. Two piece hydraulically actuated ailerons and Fowler type extension flaps occupy the whole trailing edge. On the upper wing surface at approximately $1 / 3 \mathrm{rd}$ chord are two parallel rows of vortex generators which improve airflow characteristics over the silerons to increase lateral control and stability at high speeds. Pod-mounted, to reduce airflow interference between nacelles and wing the power units are GE.J47.25 Turbojets of $5,850 \mathrm{lb}$. thrust. With water/methanol injection, thrust is increased to $7,200 \mathrm{lb}$. to supplement takeoff power, additionally, a "collar" of $331,000 \mathrm{lb}$. Assisted Take-Off rockets can be fitted to the fuselage aft of the rear wheels. When power is expended, the unit is jettisoned instead of becoming deadweight as was the case with internal arrangement of earlier machines, later production B.47E's are not fitted with the internal rockets.

Generally similar to the B. 47 E a developed Photo reconnaissance variant, the RB.47E has a nose lengthened by nearly 3 ft . to accommodate photographic equipment in addition to that contained in the bomb bay. Designed for long range day or night operation, the first RB. 47 E flew on the 3rd July, 1953. The QB.47E a radio-controlled drone version was projected but after several successful fights the idea was dropped. A crew trainer variant is designated ETB. 47 .

Despite the critical landing and take-offtechnique, inherent with the tandem undercarriage arrangement, which requires landing speed calculated on weight at the time, to be within limits of 2 m.p.h., the performance of the Stratojet is remarkable. Normal maximum speed is approximately 635 m.p.h., but recently, whilst on test, a B.47E averaged 794 m.p.h. for 30 minutes, aided by a tail "jet stream".

Co-operation of Baping Aireraft Co. in the preparation of thio
artiele ts gratafulty acknowlerlged

RADIO

 CONTROL NOTESHoward Boys reviews ausefulmeter designed by H.R. Clayton that is both Absorption Wavemeter and Crystal Oscillator combined

C1. 25 pf. Air Spaced Variable.
C2. 25 pf. Air Spaced Variable. C3. 1 pi. Air Spaced Variable. C4. 0011 mfd. 350 v, mica.
C5. 5 pf. Ceramic.
C6. 50 pf. Ceramic.
R1. 47 K ohra.
$\mathrm{R2} .47 \mathrm{~K}$ ohm
GR. Germanium Rectifier,
Sw. Westinahouse WG7B.
SW. OniOti Switch.
 dia former, 1 i in. long, grooved 16 turts per inch.
L2. IS! turns, tapped at 8 and 12 tums. 20 a.w.e. on 7 in . dia. former 2 in . long. Grooved 16 turns per inch.
L3. Radio frequency Choke.

1. Phone Jack.

XTAL 6780, 9040, or 13560 Kc/o.

Following the writer's remarks in the February issue regarding receiver tuning, the following letter was received from Mr. H. R. Clayton of "Geebaa" boat fame:-
"I was interested to read in your article that you advocated the use of a low power transmitter for receiver alignment, the transmitter frequency being controlled by the same crystal as is used in the main transmitter. It may be of interest to your readers to know that a somewhat similar system has been used with my "Geebaa" series of boats, which have been demonstrated in public several times in the last few years. The transmitter is not crystal controlled, but adjustment of transmitter and receiver is carried out with the aid of a third unit, which is an absorption wavemeter and low power crystal oscillator built into one unit. 'The wavemeter can be calibrated at any time by reference to the crystal oscillator and can then be used to check or adjust the transmitter frequency, whilst the receiver can be adjusted on the signal from the crystal oscillator, which has a range of only one or two yards. In practice this system has proved most reliable and I have used it continuously since 1952. Its main value, of course, lies in the fact that it enables one accurately to check several transmitters whilst using only one crystal."

The reliability of this system can be fully endorsed by the writer, since he has used it (except that the wavemeter and crystal oscillator were two seperate units), on many occasions. The writer believes that if this system was generally adopted by radio control modellers, it would please the P.M.G. and all in authority who have the radio control movement at heart. It is a very attractive idea to have the crystal oscillator and wavemeter in one unit, so Mr. Clayton was contacted, and very kindly loaned his instrument for description. It is shown in the photographs, and the circuit diagram is given in Fig. 1. Figs. 2, 3 and 4, show respectively the front panel, top view of the baseboard behind the panel, and bottom view of this base, Both parts are made from aluminium about $16 \mathrm{~s} . w . g$. and are rivetted together, fush on the front. This part fits into an aluminium box 4 in . deep inside, which has

a handle on the top and an insulated hole for the aerial, to line up with the aerial socker in the base. There is room in the case for the combined L.T'., H.T. battery which is a Drydex, Drymax 514.

Note that the holes in the front panel must clear the spindles of the condensers $\mathrm{C} 1, \mathrm{C} 2$ and C 3 .

At the back near the top, a piece of aluminium tube is fixed horizontally inside, with one end open to the oucside, which is covered by a swing plate. This tube holds the aerial for storage and transport. The aerial consists of three pieces of $\frac{1}{8}$ inch aluminium tube with a length of wire each 6 in . long, making a total of two feet. Two of the tubes have pieces of wire fixed in, and protuding half an inch, so that the aerial can be fitted together fishing rod fashion, see Fig. 5. Now for some notes on other components.

The valve is a IT'4 and is readily obtainable at $5 /-$ to $7 / 7$ "surplus". The valve-holder can be amphenol, paxolix or ceramic. The eypes of resistors, condensors, and R.F.C. can be seen from the photos, and are readily obtainable at quite low prices. Although Mr. Clayton used a Westinghouse meter rectifier for $G R$, the writer has used a cheap germanium diode for the same purpose. The phone jack is not necessary, but is sometimes useful with an audio modulated transmitter. The coil formers should be available from reputable radio component dealers. The wire is best wound on a slightly smaller former, and then eased onto the proper

former, so it sinks firmly into the groove. It should be varnished with a proper coil varnisin. Crystals of suitable frequency are not available cheaply these days but it is sometimes possible to obtain fairly cheap ones and get them ground to suit. Actually any crystal that will give frequency between 26.96 and 26.28 on its sccond, third, or fourth harmonic would be satisfactory. (For the tyro, this means that if the crystal frequency is multiplied by 2, 3 or 4 , and the answer is between 26.96 and 27.28 then it will be suitable). Calibration of the dial is not very easy, but would not be essential if a crystal of the frequency stated under Fig. 1 was used. With C3 and 1 pf as atated, the
(Continued overleaf)

 which show an amazing diversity of model launching technique.

Photos ahore, left to rifthti- Linn Juniar with Torp. 19 porered design using ashedralled tailplane and high mounted motor. This unorthodoz Fiying Nidinay being lannehed at the gallop, th radio controllarl. Linfortunataly, mo ifftaith are aneritabie. John Donang Jme. dentomatratea the thridh of water-plane flythe da hia Clats: a model mover off in a elomal of apray and the ourner gwts hin fees well and traly mpat / Note the extra push diash on the fin to get bauyancy to help tha sake of

Action' is the aperatile ward as thit Torp. 19 powered model rakea the air. Sal Taibi, famona American designor, thaven how in lawneh withou! wretiling gour feet. He was on this ocrawion atherreping a san Li.S. wedurplane rerord-hence the long dfil His design irend feotured on the famom "Spacer" oppears to hate a following in the Statet, mamily, the underalumg fin an portrayed in the nert pieture. As ahours Carl Lindlet with an Ejfin is diesel in the act of vertical 3 poind velemoff.

RRDIO CONTROL NOTES CONTINUED FROM PAGE 255
dial covers 26.8 to $27.5 \mathrm{mc} / \mathrm{s}$, which is just what we want. To help readers who build one of these instruments, and get it working satisfactorily, the writer will put two more spots on the dial for the cost of return postage. It will however be essential to write first, and not just send the meter along. The 100 microamp racter used by Mr. Clayton is not now available ex-government, the cost new being around three pounds. However, there is another type that can be used satisfactorily. This one as purchased has two needles that cross in the middje, and has L , and R , on the dial. In some of these meters the two necdle movernents have a common permanent magnet, but in others the two movements are quite separate, one of which can be removed if desired. This can then be put into another case and used for another frequency meter, or with a selenium cell to make a photographic photo-electric exposure meter. Great care is needed in removing these movements to avoid bending the needles. There are coils or something in the case which should be disconnected. Two littie wire spirals will be found coming from the ends of the moving parts, and wires should be taken from the ends of these to two terminal screws going through
the back of the casc. A small tagbord can be fixed to these terminal screws to hold the associated rectifier, resistor, and condenser. A small tagboard is also fixed to the baseboard to hold the battery wires. All wiring should be as short, rigid, and well spaced as possible, but flexible wire is of course used to connect from the tagboard to the battery. Some wires are shown going through a large hole near the back of the baseboard. This hole was obviously made for some other purpose, so in making a new instrument it would be better to use a smaller hole and rubber grommet.
To set up this instrument, it is first switched on and a pointer on the knob of C3 set to the position on the dial corresponding to the frequency of the crystal harmonic. Adjust the two trimmers C 1 and C 2 to give maximum deflection of the meter needle. To tune a transmitter the instrument is set up and then switched off. The transmitter is then tuned to give maximum meter needle deflection, with the transmitter as far away as possible, still giving a readable movernent of the needle. To tune a receiver, the instrument is switched on and the receiver tuned in the ordinary way, but will need to be only a yard or two away from the instrument.

CRTOCRAM RT

BY JOHN SHEPPARD

Try this large chuck glider for fun or contest flying

Clone concentration of machinery rith minimium morement of reaod Is eviflent in this vicue of the mill. 14 imodi is tranaported on form Jift truchs, frays on which are made from balsa to holp save wight for delivery girls who move trucks from tariass departmants. Vertical pipeat are duat catrachor and bright iltumination provides vary clean working conditions

Ac left, Jack Kent erasn euta buid timber to length with a special saw Teeth are so arranged that a velvet surface rennlts aerose the ent of the block. This oparator handies every pince of Solarbo, checking for piace of Salarbo, checking for cecording to weighf, and removing uzeless dimber

Right: The Over. hand planer flat. tens and squares up bulk timber after it comes from fler it comes from thecross-cut.
Operator Peter Priets ie cleaning up $3 x 3$ black

Left: fit the dimension bench, bloct is cut to gat length by Darry Bird with a high speed circular sove. Offcuif-if nny-are grabbed by ansistana and entlecied in anek it foregraund

WE VISIT THE MODEL INDUSTRY

STORY

. . or how you get your Balsa

In the middle of the fifteenth century the Inca Emperor Tupac-Yupanqui was busily engaged in exploring and conquering the neighbouring territorics of his empire. When content with overland operations, he set sail into the vast unknown Pacific Ocean with an armada of giant balsa rafts and no less than 20,000 followers. In a year he scoured the coastline and sailed 500 miles west to the Galapagos Isles before returning to claim that he had found the four corners of the earth.
Deep in the jungle of that same empire, now divided by new frontiers, one of which is that of Ecuador-the "Equator" land-a Colorado Indian with red painted body, black spotted face and mud caked crown, machetes his last "hand" of bananas for the day (A.D. 1955 -five centuries after the Inca Emperor) and looks for the nearest group of balsa trees. He wants to make a raft, for balsa in the Spanish language means "raft" or "foat" and our Colorado native knows that a few trees will lash together and float him downstream to Esmeraldas or Guayaquil with a profitable banana crop.

Now these two stories may, you think, have little to do with that shees of smooth quarter grained $1 / 16 \mathrm{in} . \mathrm{x}$ $3 \mathrm{in} . \times 36 \mathrm{in}$. balsa you have on the workbench waiting to be cut into formers and ribs. How wrong you arefor if that Indian hadn't found the need to float his produce down to the port, or if the Incas hadn't explored the use of balsa-you might well be faced with other timber for your model making. For in Ecuador there is no such thing as a balsa plantation-and a good propartion of the supply of logs arrives because there exists a steady demand for bananas, pineapples and other tropical fruits-and the only means of transport in most cases from hinterland to coast is overwater on the rivers.

Balsa grows wild-and as the lightest timber known, with weight per cubic foot down to as little as 4 lb ., it seems strange that it should share the jungle with the heaviest timber, lignum vitae, with an average weight of 96 lb . per cube!

Our balsa grows fast in the torrid heat and heavy rainfall of Ecuador, reaching maturity in five or six years and odding four inches to its diameter each year. It is usually cut close to the ground when about 20 in . diameter and height reaches from 50 to 60 ft . If allowed to go higher it might become top heavy and damage irself in high wind, and, of course, in the restriction of natural growth a big tree becomes difficult for the cutter to bandle.

During the flotation dewn to the coast the balsm absorbs water and attendant pollution to add colour io the endgrain. Mincral colouring drawn into the trunk duting growth is often seen as pinkish or streaky marking on cut sheet balsa and does not represent weakness or give any reason for not using it, though the idea is to provide the modeller with good clean wood, free from "blemish"-Solarbo, in fact.

This, then, was the background to our recent visit to Solarbo Ltd., on the south coast at Lancing in Sussex. In a day we were to learn more about balsa than one could expect to pick up in a lifetime of sparetime modelling-and far more than we could possibly hope to
convey in words at this stage to you the reader. The difticultics, involved procedures, and skill required to mill and market balsa on the scale of operations seen at Solarbo are sufficient to inspire the utmost admiration for the dominant personality of John Paterson and his extremely efficient organisation.

Baisa arrives at Lancing in huge planks. The current stock is of mammoth proportions and provides an awe inspiring sipht for any ardent aeromodeller. It is scientifically stacked, kiln dried and graded according to weight and texture and it passes eventually through the hands of skilled craftsmen. At a glance they can jdentify the grading of the balsa and even tell the shipper responsible for sending the timber over. 'They weigh the waod in their hands and pass it to a saw that cross-cuts the endgrain to eliminate "shakes" or cracks in the wood and an off-cut is thrown away. When the sawyer has finished the balsa surviving this scathing examination passes on to the planer, and into the mill.

Now that offcut we mentioned may be a piece 6 or 10 inches long or just a skim off the end of the plank; but anyway it's the beginning of the waste figure looming over the horizon-a figure which magnifies un to almost 50% of the original stock by the time the circular saws, thicknessers and spindles have churned their way and turned halsa into dust. And that is only part of the story, for balsa's big enemies, mineral stain, fungus and worm can lic hidden in the largest of planks until the planer cleans the surface square. T'o help reduce the waste percentage, selection at the source of supply over in Ecuador is made by the Solarbo agent, a man retained at high salary to see that only the best comes our way. Thus we see that there's more 10 balsa than one might imagine-yte there's more to come. Analysis of the timber gives the amazing figure of only 10% wood content-the remainder is airl That is, of course, why balsa is so light and buoyant-and why it is a difficult timber to machine. Special saws, new techniques are needed for efficient sawmills like that at Solarbo, and there's no doubt about it, the endless cacophony of high pitched song from the battery of machines is a true indication that the factory is working at full speed ahead all day and every day.

Passing between the machines we see the way thin sheet is cut from block, only seven or so $1 / 16$ th sheets for each inch of block (that waste figure again). How the bandsaw cuts the outline of a block of wings, and the gang saw or multi-bladed spindle satu splits the block down to wing thickness. Most fascinating of all, the elever use of spindle action in making those near finished Mercury kit fuselages. The " Mac " was in full scale production during our visit, and the sight of that upper fusclage block being formed in scant seconds from a square block was revealing indeed.

Kit parts for many of our prominent manufacturers, some colour printed in Solarbo's own print room where small chuck gliders get their decoration by the sen-thousand-and strip, sheet or block bearing the familiar Sun and Tree stamp in red, pass through rigid inspection before despatch. Batched and graded, the balsa as we
know it in the shop is a very different item to the baulk that entered the kiln.

Applications for balsa in industry, for packing, refrigeration, etc., are known to most of us; but how many are aware of the Solarbo surf board or the balsa/ aluminium packing case with terrific strength/weight ratio, these are only two of many other items from the Lancing factory. Experience in lines like these lead to further developments in the model field, "Li-Ply" being one, resin bonded balsa modelling boards another-in fact so many applications that we left the Solarbo plant firmly impressed with a picture of a rosy future for all connected with so talented an organisation.

Righil Silren Jlemanwarih making up pachn of Solurbu theci for despateh is the im . despateh in the im.

 Noth bult atare is batherround. Helaw A Buol Prince planer rith Eddia Darnham planing down offecula to a otanderd thiek. aces. Bottom rintit
 of Mercury Mac wings of Mercury Mac wings
to outline before they are sliced to thickness

ONe might almost call this feature "Jet news" this month, there has been such a spate of torch-types recently that we have been able to gather this collection of variations from super-solid to ducted fan and pulse jet. Just to add a spot of consention we also have a Tiger Moth and RTP Team Racer to remind us that the airscrew is not yet dead!

Ambitious home-built pulse jet with microscopic bore (above) is by J. Shipley of Belfairs. Said to be a $x!x!x!$ to start, it uses flutter valves made from razor blades and has a glowplug for initial starting. Span is 17 in ., performance unknown.

The admirable French magazine "Aviation" loaned us the photo of our Modej of the Month. They featured this remarkably detailed "solid" of the Marcel Dassault Mystere IV by M. Rager Bessiere in a recent issue and it seemed to us that it is the involved model of its type yet described in print. Built to $1 / 10$ th scale, on the Jg as seen in photo A, the Mystere has working everything, including an ejector seat and undercarriage. Inside the fuselage is a "magnetophone" to reproduce the whine of an Avon jet, plus a turbine to deliver realistic efflux of air at the tail end. We are not surprised that M. liessicre spent some 2,700 hours in perfecting this 44 in . model.

One would not normally associnte the Canberra (IB) with gliding, and a flame-out in the real thing would certainly not inspire a desire so remain seated. P. J. Lambert of Kentish Town was prompted by the A.P.S. Fighter Glider design to think of making a model of the English Electric aircraft on the same lines-so the 42 in . all-sheeted tow-line version in this picture became reality and as visitors to Epsom Downs know, it glides fast and well. Mr. Lambert is currently building a 5 fr . Hawker Hunter.

1/72nd scale solid Kits are enjoying a minor boom in the trade, but Eric Vine of Bexley Heath builds from plans as he prefers to use the better woods such as American Whitewood. He also puts in long hours to get a perfect finish and the D.H.110 and Sea Hawk in C represent some 160 hours of effort. A stickler for accuracy, Mr. Vine makes his own transfers tool

Now for a ducted fan, only this time it's a centrifugal fan by John Coatsworth (I) with a Merlin 76 generating about $3 \frac{1}{2}$ oz. static thruse. Only $19 \frac{1}{\mathrm{i}} \mathrm{in}$. span and weighing 91 oz, this Boulton Praul $1[1$ is the first centrifugal job to use a nose intake. Compliments are due to John Coatsworth for his pioncering of the "fan-on-its-side" layout.
A nice breath of the conventional is brought along by Frank Buckland's control-line 'Iiger Moth in E To $1 / 8$ th scale and using a lrog 500, the 'Tiggy tuas a regular sport flier until one fine day it was hooked onto a pair of borrowed lines-need we say morc? Of coursethey broke. Same engine is used in the ducted fan
 of Wokingham.

With multi-blade fan of the Newbold style and short intake duct this is a control-line model weighing some 30 ounces for its 32 inches span. Latest addition is a ring around the fan edge which improves thrust, but flight tests have yet to take place and we venture to suggest that Mr. Campbell is poing to have to find a lot more revs before he gets that wing loading airborne.

We've already mentioned Canberra's and the Einglish Electric Co., and in \mathbf{A} we have a picture taken at the home of the famous bomber, where the EEMAC held as static exhibition. Henry Pyptiuk produced his amazing jet for all to see, and we hope that he will be able to demonstrate same to the general public at the Nationals. Briefly, an Amco BB, 3-5 drives a two stage axia! fan, with two stator rows, one of which forms the engine bearer and main structural unit. This blower is followed by a re-heat system with the ignition working on an entirely new principle. All of which is most inspiring and we hope that Henry, a member of the E.E. Aircraft design staff, will give us a thrill at Waterbeach.

That last model should be quite speedy, and the one in $\boldsymbol{\Pi}$ is also in the fast class. This is an O'Donnell approach to the indoor team racer we gather is becoming a popular pastime in the North. With tiny wings and rear cockpit, it bears remote resemblance to the famous pre-war French Caudron Racer
'I'o finish on a jet, photo .J is a scale Lockheed Shooting Star that has been on John Claydon's building board for the last three years and has at last received its final top dressing of silver wallpaper (what a blessing Pete Hickie discovered this medium and gave us the info. to mention it in Model News some time backcountless models have since been reafistically covered since then). To return to the Shooting Star, Span is 50 in ., and area 550 sq . in., with weight at 6 lb . A Dynajet enclosed in the fuselage should give it $75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Eant European 2.5's (Ieft), the Jugaslav Apra.250. It k with frant rotary crminkinaft wafi'a and plain bearingl. (Right), the Hisngarian Silf-03 Proson, teish extrentely short atrate of 12.4 mm . ard farge 16 mm . bore. Rear dilec ralve and bushed erankshaft in thia racer, said to froduct 22 b.h.p.

Twins arb in the news. Several twin cylinder diescls, the French Delmo and British Taplin special, and American petrol'ignition EIf, O.K. and I'al engines have been going for some time, the latter being convertible to glowplug if desired. What is really news is that a range of three air and marine glowplug vertical in-line twins are marketed in the U.S.A. by the newly merged K \& B-Allyn Company and these are expressly designed for glowplug operation. With the K \& E3

Taplin Turin with single carb makes a terrific noise with one firing per stroke. Is started on "one" from cold
reputation for supreme performance in the contest field and Allyn's attractive employment of beautiful dic casting particularly in marine outboard units, the new series should be worth having. Reports tell us that the 2.5 Sky Fury twin can be held in the hand at full revs, it's so smooth. Frontal area is of course very small, and significant point is that the $099, \cdot 12$ and $\cdot 15$ are entirely

new displacements with new castings and not modified combinations of "singles".

Ohlsson and Rice, a name associated with model engines for many sears, enters the $\frac{1}{1} \mathrm{~A}$ sphere with an - 049 reed valve engine that comes with radial tank mount or can be beam mounted. Vertical rear downdraught carburettor and large exhaust ports, go with long crankshaft to give it a "new look" among small engines. At other end of the scale, Forster Brothers have re-introduced their petrol/ignition " 99 " 16 '4 c.c. two speed engine for sic.

Webra's for ' 55 are boxed in plastic with a transparent lid. Big price cuts are made through the range, and the two-needle 25 c.c. plain bearing Winner is now radial or beam for ric. Increased performance in this engine is in part due to purchase of modern Steinhauser guto lathes which have raised the standard of internal finish even higher-as well as raising production rate and thus bringing the prices down.

Olivers have moved. Switching from Nottingham to "Four Acres'", Ringwood Road, Ferndown, Dorset, the quality engine makers werc hard at their machines within hours of getting the furniture off the van and Ferndown first heard the cry of new-born "Tigers" within 5 days of the move. Backlog of orders for these engines is big, our delivery dsie for a Tiger is scheduled for Novemher; but we can wait-it's worth it.

Clang1 About half the print of April issue had run through the machines when we discovered two figures had transposed themselves in the prop-rpm table for the 1 c.c. Taifun Hobby. These should read correctly as the 7×4 (Trucut) giving 10,700 and the 6×6 (Stant) giving 12,600 гpm.

Lefr, the Twrb-O.Prop atilizell Jatax principles to driva an tra

Belose, Ruasian K-18, g-5 dieati, baarn resemblance to ED Raest, wan wed by Kucarov to place Jrd ith Moacote condsin This one b in Buigarian mpacdater

ENGINE ANALYSIS (Revised)

Mills 1.3 cc SPECIFICATION
Displacement:
1.33 c.e. (.081 cu. in.) Bare: 406 in
Strofe: 625 in .
Welkht: $3 t$ ounces. Max B.I.P.: .093 at 10,000 r.p.m. Max torque: 12.402 -in. at $5,000-6,000$ r.p.m. Power rating:
. 07 B.H.P. per c.c.
Two "used" models were the subject of this test, the better of the two performances being taken. Despite being a side-port engine the Mills is an extremely powerful unit and remarkably easy to handle. Design has remained largely unchanged since the Mills first appeared. The original Mark II was modified in 1950 to incorporate revised porting. An ideal engine for medium speed operation.

Le Simann IIR 1.5

SPECIFICATION

Displacement:

$7.3 \mathrm{cs}(.0 \mathrm{cos}$ in.) Hore: 13 mm . (. 512 in.$)$ Stroke: 12 mm . (. 472 in) Weight: 2.625 ounces. Max B.H.P.:
ar
.109 at $\mathbb{H} 1,200$
Max $10 r q u e$:
12.0 at 7.500 r.p.m.

Power rating:
0725 B.H.P. per c.e.
Prations report (no
performante figteres)
May, 1954.

Previously tested for propeller/r.p.m. performance only, torque Ggures have recently been derived from the dynamometer unit to complete the "AEhomodrllkr" data on this very popular French engine. Performance appears up to normal 1.5 c.c. standards, without being outstanding. Allbon diesel fuel used for the re-run.

K A HTorpedo 15 specification
Displacement:
2.43 c.c. (. $15 \mathrm{ru} . \mathrm{ln}$)

Bore: 0.595 in.
Strolse: 0.535 in.
Weight: $9 \frac{1}{4} \mathrm{oz}$.
Max B.H.P.:
. 186 at 13,750 r.p.r.
Max torque:
16 oz . in at 9,080

Power rating:

. 076 B.H.P. per ce.
A complete re-test has been run, on a production engine, using a fuel more suited to the design, together with adequate cooling and the elimimation of excessive vibration between engine and dynamometer. Mercury No. 7 fuel was used with the addition of a further 12.5 per cent. nitro-methane. Maximum torque achieved on test was slightly over 16 ounce-inches (although the engine was not tested below 9,000 r.p.m.) and maximum B.H.P. 186 at 13,750 r.p.m.

2. Gardled affect of acetone coliodion paured
3. Hthat happena sehen slope af on A м м

4. Firnt cluan the murface of the waine by ilraving a piece of newnprint aeronn it

5. Pour the mixture on to the water with the spoon just above the surface

It is Now universally agreed that for really successfut tlights with indoor models, whether RTP or free-Aight, Microfilm covering is a "must". When properly made, microfilm should look like cellophane but should differ slightly from it in consistency. Cellophane is quite "dead", having no elasticity, whereas microfilm should have a slight amount of "give" or resilience; not too much, however, or the covering will balloon out of shape when the model is in fight. Cellophane has a perfectly dry and almost brittic feel about it, but microfilm should be very slightly tacky-just enough to cling momentarily if the finger tip is pressed against it. Too much of this quality and the film becomes positively sticky; while if it is too dry it will not be possible to attach it to the framework of the model by the simple method of licking the halsa wood and pressing it against the film.

Materisals Necoled

1. A couple of fluid ounces either of clear vope or flexible collodion. The latez costs about 8 dl . per ounce from any chemisr.
2. A few ources of amyl scelate. (With dope, ordinary thinners would do.)
3. One or two ounces of castor ail.
4. Ifew teet of soft wire, abous 18 s.w.g.
5. One or more flat dishes, at least two inches deep, free of sonp or devergents which would affecr the surface temsion of the water rhey are to hold, and three inchen larece all the way round rhan the particular unit of the model for which the mictofilm is nceded.

General Method

Fill the dish with lukewarm water and clear all foreign matter from the surface by drawing across it a piece of newsprint. A teaspoonful of the microfilm mixture is then poured onto the water from as near the surface as possible. If the dish is long and narrow, the spoon can be drawn down the centre as the liquid is poured smoothly out. The solution spreads rapidly over the surface, crinkies a little round the edges, and sets in anything from one to ten minutes according to the mixture. Collodion is usually quicker than dope.
To remove the film from the water, bend a iength of soft wire into a loop or rectangle, an inch or so smaller than the area of the film all the way round, and with the ends of the wire bent into a strong handle at one end. Lower the frame gently onto the surface of the film, and with a moistened finger-rip, roll the edge of the film up and over the wire all the way mound. Slide the frame and film sideways from the water, and hang up to dry.

The Misture For Mierofilm

Dope or collodion alone would not spread properly over the water surface. They would go milky in colour, and dry out wrinkled and hard. Amyl acctate is added to prevent this "blushing" effect and to thin the solutions, making it easier for them to spread, while a few drops of castor oil smooths out the spreading motion and imparts a certain elasticity to the resulting film.

Collodion

First of all a word of warning. There are two sorts of collodion available: Collodion BPC , containing acetonc, benzine and amyl acetate (it is sometimes called simply "acetone collodion"), and flexible collodion, or collodion BP which contains ether and castor oil. Fig. 2 shows you what happens when acetone

- how to make it by Rev. F. Callon

collodion is poured onto water; it breaks up into a sloppy, curdled mess, and does not improve much with the addition of castor oil and amyl acetate. So make sure that the collodion you buy is fiexible collodion, with BP on the bottle.

For experimental purposes, a full teaspoon contains about one quarter of a fluid ounce. An old one-ounce dope jar, well cleaned out with thinners, will do for mixing the ingredients, and since we do not want to waste materials it is best to take one teaspoonful where the formula stipulates an ounce, and divide the number of drops specified by four.

A good film, though rather on the fimsy side, was obtained from one of the formulae given in the May, 1951 Aeromodeller, but using more amyl acetate:

$$
\begin{array}{lll}
\text { Flexible collodion } & \text { I. } 1 \text { ounce } \\
\text { Castor oil } & \ldots . & \ldots . \\
\text { Amyl acetare } & \text {... } & \ldots . \\
\text { Arops } \\
\text { dropa }
\end{array}
$$

This at any rate will serve for a basis for experiments.

Dope Ticrofilm

The consistency of the dope used for microfilm should be watery rather than treacly. With the Britfix dope used in the present experiments it was found necessary to add an equal quantity of amyl acetate before the mixture became really workable. A much greater percentage of castor oil is needed with dope than with collodion. The amount recommended in the 1951 article was one teaspoonful to two ounces of dope or banana oil, but quite a good film was obtained by using much more than this, namely:

$$
\begin{array}{lccc}
\text { Dope } & \ldots & \ldots & 1 \text { ounce } \\
\text { Amyl acetate } & \ldots & \ldots & 1 \text { ounce } \\
\text { Castor oil } & \ldots & \ldots & \frac{1}{2} \text { ounce }
\end{array}
$$

In teaspoons that would reduce to one spoonful each of the first two and half a teaspoonful of castor oil. Rather a flabby film resulted when equal quantities of all three were tried, but not too sticky for all that.

Final Dlbservations

A teaspoonful of the correct mixture should spread evenly over an area of at least 15 inches by twelve inches. If a thicker film is required, do not alter the mixture, but pour on more for a given area, i.e., use a bigger spoon or a smaller dish. If the film sticks to the sides of the dish trim it carefully away with a razorblade dipped in water before attempting to curl the film on to the wire frame.

It sometimes happens that the film is prevented from spreading properly by an irregular crinkly edge which forms almost at once after the mixture is poured out, and which encircles a liquid pool of the solution. If this happens, the crinkly edge should be quickly picked up out of the water on a piece of stick, when the rest of the solution will at once spread out to the edges of the dish leaving a smooth, unbroken surface.

To use an American type glow plug (designed to operate off a battery voltage of 1.5 volts maximum) on a 2 -volt lead-acid accumulator without overheating the element, and thus shortening its life, it is necessary to drop about 0.5 volts between the accumulator and the plug. The advantage of using a lead-acid accumulator (nominal 2 volts) as compared with a standarsl dry cell (nominal voltage $1 \cdot 5$) is the longer life and ability of the fonner to give a high and constant current of the order required for easy starting.

Now the value of the dropping resistance required will depend on the current drawn by the glow plug. An average figure of 3 amps may be taken as typical (and again a point against the use of dry battery "boosters," since these polarise rapidly with such a high current demand and are readily discharged). The theoretical solution is then a dropping resistance of 1 ; $6 \mathrm{th}(-166)$ ohms inserted in one of the battery leads, assuming that these leads have negligible resistance. Typical lengths of solid copper wire, or copper-nickel resistance wire which could be used for the "dropping" resistance are given in 'I'ables I and II. The actual value of the dropping resistance will not remain constant, but will change as the resistance heats up (although with resistance wire this change is small enough to be negligible). In any case, heating effects are minimised by using larger wire sizes, in preference to very thin resistance wires.

Save that GLOWPLUG

Words of warning for users of 1.5 V plugs-from R. H. WARRING

However, an equally suitable, and far more practical solution is to use the resistance of the leads thernselves as a suitable dropping resistance, by making them of length equivalent total resistance of about 166 ohms. Again data can be derived from tables of the electrical resistance of high conductivity copper wire (as used in normal "flex"), but in view of the divergence between some data of this nature and practical tests on a number of samples of flex, it was decided to measure the actual voltage dropped by sypical lengths of readily available flex which could be nominated as a "standard."

Practical test results

The practical specimens selected were sample lengths of Rex purchased from Woolworths, of the 2d. per yard, fourpenny, fivepenny and sixpenny quality. All of these flexes, incidentally, are stranded Grom 0076 in . ($36 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) diameter wire, the price difference being largely accounted for by the number of individual strands employed in each lead and the type of insulation. Typical test results are summarised in Table III.

'L' LENGTH OF STANDARD
FLEX REQUIRED SELECTED FROM TABLE III
NOTE: FOR RESISTANCE PURPOSES ACTUAL LENGTH OF WIRE EMPLOFED IS $2 \times Z$

TMDELIS

TABLE t. LENGTH OF SOFT COPPER WIRE (SOLID) FOR . 166 OHMS RESISTANCE

Stize (s.w.g.)	**	\cdots	\ldots	14	16	18	20	22	24	26	28	30	32
LEVCTH (ins.)	\cdots		\cdots	1,250	8 HO	450	250	150	55	63	42.5	30	23

TARLE 11. LENGTII OF COPPER-NICKEL RESISTANCE WIRE FOR . 166 OHMS RESISTANCE

Si2e (3weg.)	\ldots	-.	\cdots	20	21	22	23	24	25	26	27	28	30
Lencth (ins.)	...	\ldots	'.*	8.75	7.0	3.3	3.9	3, 3	2.7	2.2	1.85	1.5	1.05

TABLE 111. TYPICAL PERFORMANCE DATA "STANDARD" (WOOLWORTH) FLEX LEADS

Price	W'ire Stze	Instlation	Voltace ai Plug* 4 Yards Flex	Nominal Lenctif for 1.5 Volts at Plecg	Recommenden LeAD l. FxGTH (yards)
2d.	7 Strands . 0076	Plastic	0.5	1 yard	13
4d.	14 Strandos . 0076	Rubger and Plastic	0.95	2 yards	2-2
Sd.	14 STRANDS .0076	Rubsfr and Braid	0.95	2 yards	2-2.
6 d.	23 Strandos 0076	Rudber and Braid	1.2	26 yards	23-3

- 1.95 Volts at Battery on Load

It will be seen that about two yards of the 4 d . or 5 d . flex (identical except for the type of insulation) should provide a lead length capable of "dropping" the necessary half a volt between accumulator and glow plug-Fig. 2. With the more expensive flex, $2 \frac{1}{2}$ yards would be a safer figure. In the case of the plastic-covered seven-strand flex, just over one yard of lead would be sufficient.

An apparent anomaly is that the more expensive the flex the more you require of it! But this quite is logical when you consider that the better the flex,
the lower its resistance or the better its conductivity for normal purposes. A general recommendation would be two yards (or perhaps two and a half yards, to be on the safe side) of the $14 / 0076$ flex, when the mortality rate of 1.5 volt glow plugs used with accumulator "boosters" should be considerably reduced. Once accumulator voltage drops to about 2.0 volts off load, however, it may be necessary to shorten the lead length (i.e., reduce the "dropping" resistance) to maintain a satisfactory "hot" glow plug element.

I've got that sinking feeling

What's the answer?

"Some thermal! My model went upwards just as fast when the D / T operated." An all too common remark, which generally means another lost model.

It happened at our local club contest towards the end of last season, although this time two models were involved. Both had tip-tail dethermalisers, and both models were similar in design, size and weight. And both had got in the same area of lift. But when the D/Ts cut in, one continued to go up out-of-sight, whilst the other one came down.

What would YOU do in a case like this? Think a montent, then twist the page for one solution to the problem which is printed below:

Having at last reached the stage where all constructional obstacles have been overcome, the assembly and test of a new engine must not be rushed, but be carried out with as much care as was put into the construction. Cleanliness is of supreme importance in ensusing that the motor shall have a long working life.

Cleaning--Wash the parts thoroughly in petrol, paying special attention to bearings. Assemble all the parts and check that everything fits together properly. Usually something does not. The con-rod may foul the sides of the crankcase and the piston may touch the top of the back cover. Whatever the trouble, attend to it now. This does, of course, assume that you have designed an engine which can be assembled! !

Dismantle and select all the ferrous parts (shaft, piston, cylinder, etc.) excepting toll races, which should still be perfectly clean; put them into a tin containing washing soda, and if this is not available, soap powder and water, and boil for several minutes to remove ingrained grit. 'The parts are super-clean after boiling and if not oiled will rust rapidiy. Lny them out on clean paper and handle as little as possible.

If a ball race has beenme dirty, it can be cleaned out by carefully spinning it over in a bath of clean petrol. Aluminium parts are cleaned with petrol and a smooth cloth, hearing surfaces being rublied as vigorously as possible to remove grit. Give them a final dip in perrol to rernove fluff.

Crankshaft Assembly.-Assembling an engine having a plain bearing crankshaft is not difficult.

May. 1955

Making your own ENGINE

Part Six

Assembly and test

by DAVE SUGDEN
Inserting a plain journal bearing is effected by warming the crankcase and pressing home the bush in a vice, using suitable blocks of wood, being careful to avoid any transverse loading which might distort the bearing.

Fitting a ball bearing crankshaft can be decidedly tricky. Using a piece of nube to bear upon the inner race, press the rear ball race on to the crankshaft, using a vice. Warm the front bearing housing over a clean gas flame and insert the race. Tight force with a vice might be needed. There should be a face against which the outer race may seat squarely. 1 l is easy to distort the outer face and excessive force must not be used. If the beating will not enter or has distorted out of round or does not run frecly, it must be removed and the offending part of the housing, usually detected by the score marks, scraped down. A balsa knife makes a good tool for this job. He careful to remove metal evenly all the way round if the bearing is too tight. To remove the bearing, re-warm and tap out with a drift or with a piece of ground silver steel made to a very tighe fit in the inner race.

Having fitted the front bearing into the crankcase part of the engine and with the rear ball race on the crankshaft the next step is to mate the two assemblies. Warm the rear housing, or the crankease, and with the front bearing supported on both its outer and inner races press the crank shaft into position with the vice. If it will not fit or is stiff, remove and attend to the trouble. When fitted, a slight tap in the reverse direction relieves stresses set up between the bearings, and the shaft should then spin freely. Slight "lumpiness" may be tolerated on an ordinary engine and it may be found to disappear when the engine warms up.
General Assembly.-The remainder of the assembly is not difficult. As parts are put together they should be marked so that on re-assembly they can be fitted in the same position. E.g., mark the front of the con-rod and insert the gudgeon pin from the front of the piston. Mark the cylinder. Always tighten opposite screws progressively to ensure that the part-a cylinder head or back cover-is evenly seated.

Gaskets should be used on all joints for the purpose of making absolutely certain that there are no leaks. Many a good engine fails co perform properly due to a leak. A leaky crankease can make starting tricky, which on a new engino can be quite difficult enough with unknown settings. Tough paper is ideal for gaskets.
With everything assembled the engine should turn over rather stiffly. It is a good thing, having mounted the piston and cylinder, to turn over the motor whilst it is immersed in petrol to flush any remaining dirt from the bore. If on tightening up, the piston has become stiff in the bore, either the cylinder is out of line or the conrod holes are not true. Try the effect of turning the

[^2] parlicular engine
con-rod back to front. If the cylinder is giving the trouble, rum the motor over several times, remove the cylinder and look for rubbing marks which will indicate which way it is out of line, and where the seating should be adjusted. Tightness due to malalignment will loosen up with running as the con-rod bearings wear, but if it is the cylinder that is out of line the motor will never deliver peak power and the con*rod will rapidly wear and may even bend or break. Every effort should be made to assemble the motor free from binding of any sort, as this is the best means of ensuring a long life and high powes output. If any parts have to be worked upan they should be re-cleaned in the manner prior to the commencement of assembly. Lubricate with castor oil.

Testing and Running.- The motor is at last ready to be run. Bolt it to a suitable mounting and arrange the fuel level low enough to prevent the motor from flooding, but high enough to keep the fuel at the jet. The weight of a plastic prop eases starting and one should be selected which will not allow the r.p.m. to exceed 8,000 on a plain bearing engine or 11,000 on one fitted with ball races.

A suitable fuel is equal parts of castor cil, Derv or paraffin, with either a 2% addition of amyl nitrite or nitrate. As the motor becomes more free this may be modified to a final mixture as follows: 15% castor oil, $\mathbf{5 5 \%}$ Derv, 27% ether and 3% amyl nitrite.

Open the needle so that when choked the fuel is drawn through the tubing at a normal rate for the size of engine. Choke a couple of times and screw down the compression until it feels reasonable. Flick several times and if without success try and prime through the ports. Whilst flicking, turn down the compression until the engine "pops". Further priming should result in a burst and if the engine fails to roar into life, open up the fuel setting. If the motor still does not start and shows no signs of excess fuel, drill out the jet to a slightly larger size. A reasonable design, made with moderate skili, must run, and perseverance will end in success. Mly first motor took $1 \frac{1}{2}$ hours to start; the latest one went on the third fick

Glowplugs present no appreciable starting difficuities. Equip with a long reach or warm plug, wind the needle well open, prime through the exhaust port with fuel, say Mercury 5, and with a good glow the motor will run. A reduction of fuel brings it to the best running setting. It is as easy as that! The compression ratio is difficult to assess on glow motors because of their deflector head pistons and shaped cylinder heads, but it is easily judged by performance on various fuels and plugs. If on changing to a short reach plug the engine runs as though it is starved of fuel when the correct running setting is approached, compression ratio is too low. On the other hand, if it runs well on all plugs but sounds rough on certain fuels the compression ratio is too high especially for the fuel involved. The best ratio is determined only by checking performances carefully, on the best fuel with the best plug.

When the motor has lost all stiffincss in the piston bearing it is virtually run in and small props can be used. If after a run the piston feels on the stiff side or looks dry the oil content of the fuel should be raised or a thicker oil used. To prime a new engine with oil before a run is a good thing, making for a long life

The state of the oil thrown out of the exhaust ports gives a good indication of the conditions within the engine. More nitrite is needed if it contains carbon. If after two or three runs however it has a "poly-chromatic" look, rapid wear on some part is indicated and the motor

Dismantlcdi wicte retedla trander porin and canstraction
should be stripped, examined, and the trouble rectified, before the part-usually the con-rod-is too badly worn. Engines fitted with ringed aluminium pistons are more prone to produce this phenomenon, but it should not be allowed to persist.

A spot of jeweller's rouge or Brasso in the fuel assists a stiff engine to run in more rapidly, where without it the process mighe take many hours; but it is only recommended where peak power is wanted quickly. It can knock hours off the life of the engine.

The most important instrument for engine testing is a good tachometer. Wirc reed indicators are not sufficiently sensitive or reliable. The most convenient merhod is to run the mator whilst someone compares its note on a piano. If the instrument is in tune you have a fairdy accurate check on r.p.m., and anyway it provides a sensitive means of checking small variations in r.p.m. The table gives the r.p.m. indicated by the various notes. R.p.m. are halved if the note is an octave lower and doubled if it is an octave higher ! !

Notes of Engine R.P.M.
Niote \ldots c \quad c \quad d \quad e \quad g \quad a $\quad b^{\text {Middle }}$
R.P.M. $\quad 7,680 \quad 8,6+10 \quad 9,60010,20011,30012.80014 .40015,350$

TRADR NOTES

We wanted some really good control-line wire for a 21 lb . full stunt model and wrote so Russell Models, 6 Ryton Street, Worksop. Pete Russell came back with full details of his range, plus copies of the uscful hints and tips sheer he sends with every order. Single strand Ralvanised in 8, 10 or 15 thou, is 1s. 6d, whilst multi-ply stainless stranded wire ranges from 6 s , to 8 s . according to thickness from 8 to 16 thou. Latter is supplied on a returnable reel, and any length can be supplied to order. Russell wires are used by most leading CiL fliers. Jasco, of Southport, sent along their ready to assemble trio pictured below, and in an hour we had all three flight-tested. The Scout (4s. 6d.) has a smart plastic prop and nose assembly, tlies welt, and the IIorsa (3 s . 6d.) surprised us by being quite a performer in spite of having no dihedral. Most attractive is the silver-doped Sabre (3s. 6d.) which can take a Jetex unit or be flown as

Heter batheroneri boyg with prototypen. Note Jarelin in frant and Slarfire in baclatrund. Right: E. IV. Balsa Stripper is erverele and eary ho ase
a realistic chuck glider. Handlaunch is not so casy due to wingsweep, so we advise catapult action for this one.
$1 \mathrm{in} .-1 \mathrm{ft}$. scale pilots in modern vogue, complete with L.S. style "brain-bucket", glare visor and oxypen mask are marketed by Peter Smith, of Croydon. Lnpainted, they are 2 s .9 d . and fully painted at 3s. 6d. inc. tax. For Tcam Racers (Class A) and the Jetex Swift or Hunter they are just the job. Smaller pilots are to follow, all in same plastic, and packed in Polythene bags. New Soldering Iron, below pilots, is the Solo tool, with pistol spot welding action. Can be uscd from mains of battery on the field and cosis 85 s . complete, or 37 s .6 d . for tool alone. It works immediately after switching on.
'I'ransfer V'amish by Humber Oil, sold with internal brush at 1 s . 9 d . (below) also comes in handy for that super high gloss finish you wanta tip worth remembering for that next Concours effort.

Behon right: Niper eallpaper wathegive is alao good for couering - niaken li gallona per park: 1,001 Knife nt ln. 6d. with two clow bie-ended hiades is to be recommended

SOMETHING USiESUAL in displays is being laid on on St. George's Day, April 2rd, by the Army at No. I Perrolcum Reserve Depot, R.A.S.C., at Wicst Moors. near Ringwood. Hants. (just behind Bournemouth). A complete range of demonstrations af all types of models is demonstrations of all types of models is organised, starting at 2.15 with yachis and power boata, free and R/C, and working
throurh ald branches of aircraft and orther models to a conclasion at 5.30 . Demontratort will include "works teams" from E.D., Veron, and Jetex, and refreshments will be available throughout the show, which is, reedless to say, open to the public. Sounds like a very nice aíternoon out.

Nor'therin

The four Area SiC mestings for 1955 will again be held at Rufforth, and the committec have agreed not to take advantage of the variation in elimimator dates now permitted by the S.M.A.E.; the eliminators will definitely be held on the dates given in the S.M. A.E programme.

The inter-club postal contest between New Zealand's Hastings M.A.C. and she HUDDERSFIELD D.M.A.C, was flown off on March 13th; in susis winds and with snow and mud to contend with, the British club did very well to apgregace 31 : 01 with a four-man team. Unfortunately the N.Z. time was not yet in by press date. Hudderstime was not yet in by press date. Hudders-
field will be staging a rally on May 15 h at field will be staging a rally on May 15 h at
David Brown's Airfield, with open rubiber glider, puwer, C/L stunt, and combat. Pre-entry $1 / 9$ including programme (D Armarrong, 64 Dryclough Road, Hudders field) or 2,3 on the field. (Good prizes in all events.
Elccoratitution of the ROTHERHAM D.M.F.C. sces a new start made with 33 S.M.A.E. affiliated members, inctuding number of old stalwars. All the old elub's 10 trophies have been revived, and a club room and fying fied laid on, so that any lone bands in the district have a chance to join a top-line group

tionth Exetern

Now in the foress is S. Gibbons, who collected all the '54 EXETER M.A.C. Chanmponships; at least he's in company, for a good many of this club's members are in the same spot, More mernbers would be welcome. RC and scalc are two major welcome. Rents reconty, and, with the extensive incerests recently, and, with the extensuc
building going on, an excellent scason is building goin

East Midiamd

Winter has seen combat the main activity is FORESTERS (Nottingham) M.F.C., with all sorts of vintage lobs being dragzed out to replerish supplies. Building has concentrated on T.K., and the
strenteh is at present abour 25 class A and 12 class 13. Plans are afoot for a grand open CJL rally, of which more anon.

Londion

Sunday, May 1st, sees the CROYDON M.A.C. Gala at Chobham Common, 10,30-6.30. Entrv $1 / 6 \mathrm{gr}$. and $1 \mathrm{i}=$ if, on the field only, any mumber of entries may be mode. Fvents are open power, rubber, plider, slope soaring, and chuck glider, three cash prizes in cach, and a championship trophy for highest aggregate in thi three main events. S.M.A.E. Tules apply Train or Green Line or A30 road to Sunningdale. Further info. from R. Martin. 21 Cacsar's Walk. Mitcham (mark envelope "Gala") or phone Derwent 6011, exc. 110 in office hours.
C'L is the principal activity in MIN. CHENDEN M.A.C., chiefy T.R., but with improving weather more outdoor stuff is anticipated. Nore members are soughtwrite to B. Hagot, 12 Winchmore Hill Road, Southexate, N. 14.
Anarchy (or something) is suspected in HAYES M.A.C., where one member has made an k / C car and another a boat. Mowe an kic car and another a boat. flowever, the snowh hasn't put the rest of of comp. jobs arc being readied. After last year's experiences. some mods. asc being made to the club championship poincs system, and the number of contests counting for elub trophics is being cut down.
Two interesting open events arranued by NORTH KENT NOMADS M,C. are the C. H. Roberts Cup, for rubber-driven fying boats, on Jlackhmath, Sept. 11th, and the sill' Kent Rally (open to all Kent modetlers and those in S.E. London poscal districts) on Dartford Healh, July 10 rh . Other svente are not as yet dated. Furtber gen. can be had from A. R. Parkcr, 3 Eversley Avenue, Barnehurst, Rexleyhearh, Kent.
tie-organized under a new name. Chelmsford M.I.C. now becomes the ANGLIAN M.F.C., on the look-out for new members, M.F.C., on the look-out for new members, laid on for the ycar, including foum fete displays, an exhibition, and club and interclub events, besides the S.M.A.E. achedule. All types of models are builr, wizh contests for all. Flying takes place every Sunday on the Baddow Meads.

North Western

Activity is strong in WIGAN M.A.C., who firmly intend to make this year even better than last. The winter programme fintished with lase year's prize-giving and finned whow of club contests by D. Morgan. Power holds pride of place in the club, with rubber and glider close behind, bur only one RiC enthusiast is reported so far.

Fourteen trophics were distributed among CHESTER M.F.C. members: C. R. Fittness (3), F. Dedd (2), H. F Wilde (2), K. Madern, H. Nichols, 1. Dodd A. Lever, G. Jones, and Mesdames Modern and Fitmess. The prizes were presented at the Annual Dinner, atended by some 60 people, including visitors from ocher chubs. The A.G.M., held a few days later passed off smoothy and left the club all ready for the season
reay for the season. 1955 evwnt in SHARSTON D.M.S. was a 3 -flight, 2 min. max, 100 ft line event for gliders of a total ares of $180-220 \mathrm{sq}$. in. Snow and gind interwened, but flying took place, winner being comp. sec. E. J (elliwel), No times given.
Monthly clah nights have been inatituted by WALLASEY M.A.C. for a trial period. The club have decided to take in the Nationals and the Scortish meteling this year; orher news of their activities is derailed yeser; orther

Up to 40 gocs the membership of the relatively new ST. HELENS (V.M.C.A.) M.F.C. and this number includes wix R/G fliers. first contest trip ever was scheduled for the Completon rally on Faster Monday, but this will be by no means the last. Aprid 16th sees a dance, etc., being ran to raise funds.
Shatering performance by a 12 yr . old of BLACKPOOL AND IFYEDE M.A.S. WM the tuming in of two half-turn test fights of over $2: 30$ straight off by P. Richardson. with a Thomas designed 40 in . lighweight. Two orher juniots, M. Roe and P. Moss. also have potent rubber jobs, and all the jumiors are mad keen to get at contests. Should be some red faces up there this year? hnother club changing its name is Edpley Heath M.A.C. in future to be STOCKPORT M.A.C. Active in all directions, the latest scherme is a series of very simple lectures on various aspects, to foster junior interest. On away days a prize is awarded for the best club flight of the day, and ur the Winter Raliy this was won by S. Lenssen.

GOURIEPIIT

Pcrmistion to fly at R.N.A.S. LeceonSolent has brightened the future of GOSPORT D.M.F.C., though the first comp. arranged therc was snowed of aftes un hour. However, a second atterrpt a woek later saw R, Harris win with his 2.46 powered senator averaking 2:30 off 9. Combat also took place with the usual results.

Still spotting is ASHMEAD S.M.S., whose 70 members will be visiting numerous aerodromes, ctc., during the summer, as well as competing in identification with nearby schools and clubs.

Early efforts at combat by READING D.M.A.C. saw proctisinge entrants eliminaxing themselves rapidly, till when the contest officially started only two remained! indoors. Jecex speced was won by P. Farm-

S.M.A.E. CONTEST CALENDAR

Apr. 24th

Weston Cup 2nd wikfd. eim. ? Astral Trophy 2nd Power elim. J Area May Fth
$\left.\begin{array}{l}\text { Repmes Trophy } \\ \text { Acromadeller } / \mathrm{C} / \mathrm{C} \text { Trophy } \mathrm{R} / \mathrm{C}\end{array}\right\}$ Cen May 15th
May 15th Power DC
May 29th
Cent

bzough with $41.1 \mathrm{~m} . \mathrm{p} . \mathrm{h} .$, the model，like ectets others，ueffering from insufficient urea and thefefore flying at a treamendous angle of attach，引．Sienring wan deaign conleat，with il c．c．F／F joty，and B．Heale was well ahead in engine staring－-149 gecs． wat well ahead in
with thilla .75 ．
with most enjoyable dinner．ete．in GOURNEMOUTH M．A．S．was altended by a company of 4 ，and conaideralsle amount of unimpected ialont was revealed in the cobloret and in forfeitt which con－ tributed to the cuenine＇jollity．

Fins of the year conteaty in SWINDON M．A．C．was ascramble event，which let the Juniors in with abang．First wan Jr．Mortimer with Playboy，eccond Jr．Howard with a with a Playboy，eccond Jr．Howard with a
Recepowered Acorgion，third K．Pavier with hia new $\mathbf{A 2}$ ．Much building ia going on． but en air of secrecy prevails，so ensthing might appeat．

Loose－end modellen in the Southmmpton district should gro long to Cemetery Lodge． The Common，any Friday between 8 and 10.15 n．m．whert SOUTHAMPTON M．A．C．will welcome shem．So dar rhis year A．Sanger has won the chuck ylider event and B yiny，Jetex；speciaculer derniec was E．Jenk in＇ceam racer，which lefe the lines at 80 and finished up in tree．Better check connectjons nex time，ch？

Photopraphod oi lank year＇s Northern Gala mas thd charry proup from hoto． centia ．IT．A．s．

East lmwhian

Bullying by the comp．sec．has occasioned a spol of cantest－mindedness in NORWICH M．A．C．，althouph a acheduled T．R．Eomp． had to the postponed due to anow covered runways．J．Rant won an＂ $\mathrm{A} p \mathrm{p}$ arance and Ingenuity＇event with an o．d．nubber mode whach Jater，an eses，ingenioully disappeared whach later，on cesr，ingensousiy disappeared on its frgt boyht

MTalliand

Practically all C．L is HEANOOR D．M．A．C．， witho assiduously practise each Sunday Who assuluously practise each sunday M．A．C．lask of a cluberoom is badly fele． M．A．C．Inack of a cluberoom is bady felt． have a at at few T，R．events．

Around 100 people thorouwhly enjoyed a LFICESTER M．A．C．film show，and a small profit was made．A recent Jetex speed event saw a new club record of $54.6 \mathrm{~m} . \mathrm{p}$ ．h set up by G．Brewin．while R．Shepherd leads the dozen or so entriet in the first lea of the winter buildingifying comperition．
A wand or olocal eshintion（April 16th－
21rd）is lowing filled hy RUGAIY M．E．S． （A．S．）and despite the near eliminators sood haw of models in guaranteed． Highlight of the winter was an aeronautical film show which will now be made an anmasl even．
An exhibition and a comprehensive contest programme zee in the affing for WEST BROMWICH M．A．C．The existing officers were rerumed at the A．G．M．．but four members were added to the committec and two trustees were oppointed．It wat also decided to go inno the quention of new club trarafers and headed peper．

Nerefil Naisterin

Surprising the number of clubn re． forming this month．Yet another in WEST HABTLEPOOL D．M．A．C．with fifteen keen nuembers，a choice of flying zrounds． and a clubroam which they＇re hoping to exchange for $\frac{y}{}$ larger one． F / F power it favourite，but 12 entries have been registered in a buidding，sovering，and Aying camp．for 30 in ．rubber models．Monthly meetinge will change ta weeklies when mamberahip climbs；senior men would be especially welcome．S．M．A．E．affiliation in expected

hortly．
 shorily． lewtern

No very competition－minded but never－ heless pratty active is CHELTENHAM M．A．C．，running to 25 memberi and with a choice of fying grounds，thanka to megotiation in the proper apirit．Novel megotiation in the proper apirit．Novel
touch is the holding of C / L and F / F meetinus on altermate week－ends；another unusual idea is the production of a once－ searly magazine with denigna，etc．．included
Provisional date for the Wert of England Championahip is Aurust 281b．say

BRISTOL AND WEST M．A．C．Recently the club invited the public to a Brains Truat and，with the help of press publicity sttracted s good erowd to sak queationt on sttracted aroad erowd to sak queationa
the club and aeromodelling yenerally．

sipintli Whasterire

人 C／t，stumt comp，on May lat kicke of the HASTINGS AND BEXHILL A． domestic programme．New mernberm are invited to conlact Jempson． 379 Hexhitl Koad，sr，Leonards．

Scotland

ds may be imagined，snow put a crimp in flying activitien in the firse couple of month or so of 1955 ，bue ARBRORTE M．A．C． members dug thernelves 3 CJL circle to keep their handa in．Mot of the club＇ current building is C／Le，with the odd glidet here and these
MONTROSE M．A．C．had an enjoyable wacial evering at which all fair companiona ecceived a box of chocolates to snunch while watching fim－strip restiew of＇S4 and film－thow．Outdoats，one of the mos fimsteresting modela due for flight iests in
 Sedbergh．FiF rans have been ploughing through 9 in．of to of unow．flying rubber kits ind a Brivd Dou from A．p．S．

An unusual ecenr for Club Nexs in report froen a Chamel Ialand club GUERNSEY M．F．C．，recently formed， numbers 20 and is increasing fast．Weekly indoar meetings are held，and the firm flying mecting wat quite a succens．
Aying mecting wal quite succeis． Findiy，a request for an Amencan pen－ interests，comes from i．＇．Homewood 87 Station Road，Ifendon，London，N．W． 4 And that＇s all for another manch ＂The CLUBMAN．

NEW CLUES

ROTHERHAM D．M．F．C．（re－formed）
D．M．Walker，1G．St．Leoharde Road． Entwood，Rotherham，Yorb
ANGLJAN M．F．C．
N．Willin， 42 Mildon Road，Gr．Heddow Chelrnaford．Fesex．
STOCKPORT MA．C
H．Sbermer 141 Wooda Moor Lane Stockport，Chethire．
WFST HARTLEPOO1．D．M．A．C
D．Anplegrarth． 18 Grovvenor Sireet， Went Hartlepool．Co．Durhenay．
KEIGHLEY MiAC．
B．Miller， 37 Woolpock Street．Keighley． Yorkn．
GUERNSEY M．E．
II．Winterflood．Tiverton，Gibauderie． Guernsey，C． 1.

SECRETARIAL CHANGES

S＇r．ALBANS M．A．C．
C．M．Christic， 96 Victoris Street Se Albana．Herta
HORNCHCRCH M．A．C
E．G．Ilodger， 244 Partoes Avenue Dagenham，Facr．
SPALIDING D．M．A．C
P．Sanderson．The Village，Moulton． Spalding，Linc
LEEDS M．F゙C
M．W．Bxinew， 6 Alarston Gerdens． Cross Gare，I eedn．
SOL＇THERE＇AREA
L．Webaler， 4 Alma Square，Crom Sitreet． Farnburough，Hants．
B1．ACKIEATII M．F．C
1＇．Crossley， 11 Droadfield Rond，Catford 1．ndon，S．E． 6.
EXEL＇ER MLA．C．
R．Denoham． 25 Hamlin Gardera． Wigeter，jevon．
D．Morgan． 8 Lock Strete Ortell， nr．Wigan lancn．
SHARSTON DMS
D．Cook， 63 Stancliffe Raad，Shararon， W＇ythenshawe，Manchenter．
WALSALL．M．A．C
J．H．Jerres． 116 Birminghem Road， Aldridge，Stefts．
WILLASTON I．M．A．C
R．A．Crossley．Burnaide．Heath I－ane Willaston，Wirral．Chethire．

A Complete Range for Aeromodellers
 \section*{We produce this range of ustur}

Props. 2/0 $\frac{1}{2} \mathrm{~d}$. each. tion with the famouse of useful accessories in conjuncproducts they are guaranteed Engine Series. Like allour known slogan: .Engineered, and to quote our wellLifetime". In addition to those to last a Modelling also Marine Accessories. Full illustrated there are Acsessories. Full details of these and all NEW AL NEW ALLBON ILLUSTRATED CATALOGUE

Extended Compression Screws $2 / 5$ to $2 / 10$ each.

Send 6d. in Stomps to the Monufacturers:
DAVIES CHARLTON LIMITED

Easy to BUILD Easy to FLY:

SABRE

12 inch span Scale Model

All parts are $s e m$. finished and ian be assembled In a mater olminuest Atrpactively finished in silver and red it can be llown with or withour Jerex. Price

All Jesco hits and yliders available. 5 en your local Hodel Shop.

TROJAN

18 inch span CL Trainer
An sxectionaly strong model that is ideal for she beginmer. Profile fusalage and sheat fying surfaces make ie garticularly casy to build
 price $10 /-$
NEWSFLASH: Santa Maria Galleon kit reduced to $19 / 3$ JUNIOR AIRCRAFT SUPPLY CO. LTD. SOUTHPORT

BUD:MORGAN

The Model Aircraft Specialists

SEND 4d, in atmpss far MY COMPLETE PRICE LIST, KEIL VERON E.D X-ACTO MERCURY FROG SKYLEADA SKYCRAFT AVION, SKYLEADA. JETEX, ALLAON. ELFIN. O'MY DOPES and CEMENT, SOLARBO BALSA WOOD, te, atc.

POSTAL INSTRUCTIONS: Ali Orders over $£ 1$ sent post fras, under CI sand Is. pascage. Sand cash with Order or C.O.D., I will send the zoods and you pay the poitman. Overseas Ordera Welcome. Sand P.O.s," International Money Order or Bankars' Deaft.

SPECIAL COMBINATION

New Kafikiz

New KeilKraft "ANZAC" 39 in. Free-flight kiz. plus. MERLN .76 ec . engine, plus suritable propeller COMPLETE and Past Frea 59:11.

POPULAR KITS

Keil Krate ANZAC, 39 span
$2 / 3$
Keil Krak DANDY 21° soan FOCKE-WULF 190 and
M.E. 109
S.E.S 16^{*}, and Fokker D. 8 … $3 / 4$ Varen PR'OVOST CfL. Trainer $\%$ Varon SKEETER speedboat ... 10,4 Keil Kraft CHAMP C/L Mercury MATADOR F/F, $50^{-} 25 /-$ Varon CARDINAL F/F ... 16111 I PAY CASH FOR GOOD SECOND HAND DIESEL ENGINES, SEND FOR MY OFFER
SOLID MODEL AIRCRAFT AVIAN $1 / 40$ scale, S.E.SA., CAMEL, ALBATROSS, S.6B, Spifire Mk, \mathbf{Y}, Tompest, Mustane Mk. I. Hurricane fll at $5 / 7$ each. SABRE and SWIFT $6 / 2$ eakh. Postage on solids anly 6d. BATEMAN $1 / 72$ seala: Spisfire Hurricans NA. Musesne Xiery. harricans, Switt. Ayro 70\%, D.H. Vampire all at 2 fg each. Full range Vampire all it $2 / 9$ each. F
in MY NEW PRICE LIST.
In MY NEW PRICE LIST-
FULL RANGE OF SKYEADA FULL RANGE OF SKYLEADA
SOLIDS AVAILABLE SOLIDS AVAILABLE af 3 E each
TWO NEW VERON SOUD KITS: TWO NEW VERON SOUD KITS:
SAAB 2ja. LANSEN 1/2 each. FuII range in grock. Send for Free VERON Leaflet.

SECOND-HAND ENGINES
E.D. Baby . 46 c.c.
E.D. Bee $/$ s.e.
E.D. Comp. Specizl
E.D. Racer 2.45 c.c.
E.D. Mk. IV 3.46 c.E.

Frog 500 glowplug ..
Frog 150
Elfin 1.49 c.c
Elfin 2.49 cc
D.C. 350

Mills 75 c.c.
Allbon Dars 5 e.
Arden 199
e."

EYA 19

- $15 /-$
... . $15 /$
… $\quad 30{ }^{\circ}-1$
Many Engines in Stock, rend for hath.

FROG KITS REDUCED IN PRICE
Strato-D. 42° F/F Power
1/-Sami-pyion loía CRRUS 18 semi-gylon
FOX 40 Pyfon powar FIREFLY Biplane 36° F/F ZEPHYR 33° for .5 c.c. TAROUIN 35° for 5 c.e. CONTROL LINE Vandivor CONTROL LINE Vandivor MIRAGE for 5 c.e. SENIOR FLYING KITS all a: 15\%

Rayon, Linnet, Redwint Horor
Tamtit and Widgeon. All listed in my new price list.

NEW VERON SOLID KITS
Fairay GANNET
S.A.A.B., 1.29
S.A.A.B., 32 LANSEN

Full rang of VFRON 3 3/a stock. send for price list.
NOW AVAILABLE, KEIL KRAFT 1955 HANDBOOK. Sand Ild. for your copy. Past paid.

ENGINES

Naw frog SOMk. II
FROG 150 Mk . II
FROG 500 (GIInwplug)
MARINE FROG ISO
45 i-75/-

All the following ALLBON
ENGINES in Stock
Eambi - IS c.c.
$\therefore \quad$ 108/1
Dart .S e.c.
Merlin 76 c.c.
Spitfir I c.c.
Javalin 1.49 c.c.
(… 65/2
All the following E.O. Engines
Baby 46 c.e.
Beel c.c.
Hornet I. 46 c.c.
Compatizion Speciel 2 c.c.
Racar 2.46 c.c.
Huntar 3.46 e.e.
Milas Spacial 5 cc.
Ameo 3.5 c.c. P.8.
Anco 3.5 c.c. B. B.
Elfin Ball Bearing 1.49
Min B 75 (... 91/-
Mills 75 c.c.
Sand for the complate Engine price list, including WATER COOLED for mast E.D. and ALLgON ENGINES. Full range of JETEX MOTORS and FUEL, alc. in steck.

Full range of KEIL KRAFT POPU-

 LAR 1/6. FLYING SCALE KITS ALWAYS IN STOCK. Sand for free illustrated kell kraft PRICE LIST
SPECIAL OFFER: JETEX M. 7

 KIT plus JETEX 50b moter with Klu , Wlus JETEX SOE moter With 6d. poseage. Kit without motor 3/6 JETEX SILHOUETTE KITS FOR THE SO MOTOR SWIFT and JAVELIN, now redused to 3/6
USEFUL ACCESSORIES

 Allbon UNIVER5AL TEST STAND 12/6. CELSPRAY lor a perfect finish 8:6. YEOMAN STUNT TANKS fram 3/6. YEOMAN TEAM RACER TANKS 15 c.c. $3 / 2 \%$. BONDAGLASS ar naw raduced prise. DROME AIRWHEELS, $\mathbf{2}^{2}$ din. $9 / 2$ pof pr., $2 t^{\circ}$ dia, 9ill, 3y" dia. II SWANN.MORTON CRAFT TOOL $2 / 6$ with 3 blader. TOOLS 2/6. WIth HANDITOCI. with 4 blades 5!-SOLARBO BALSA PACK
4/6
No. 2 5/6

22 CASTLE ARCADE
Phone: 29065

spithine

WORLD WAR IT
 1/72ND SCALE SOLIDS

These new additionito the fincous Bateman Range includa shaped fuselage, flying surfaces, and zpinner. a moulded cockpit, mecal girgeraw and plastic wheels, with accurate plan and cranslers. Other kits available in this seriest ard:
North Kmerican
MOSTANG $2 / 9$
Retail Price

Curtiss
KITTYHEWK including tax

MODERN JETS

Accurate plans and pre-ghaped parts make these the finest solid kits on the markec. There are nine types syailable if prastint, and modellers should watch our adverts for new additions.
Hawker Hunter, 1/72nd Scale ... 2/9 Supermarine Swift, 1/72nd Scale 2/9 Saunders Roe AI, 1/72nd Scale 3/3 Gloster Meteor, |/72nd Scale ... 4/Gloster Javelin, li72nd Scale ... 3/9
Canberra, I/72nd Scale 5/6
Avro 7078, 1/72nd Scale... ... 2/9
D.H. Vampire, li72nd Scale ... 2,9
D.H. Comet, $1 / 144$ rh Seale \quad... $4 / 9$

All Prices include P.Tox
From Your Local Model Shop

BATEMAN SOLID KITS

Sole Trade Distributors
A. A. HALES LTD, 43 \& 49 Eleanor Besi, Jewes Fwh, Londen, N. 1 Phonel Bowes Park 3070

Look for the
Stamp

3Dimensions

Our Balsa atrip, thaet and block It accuracely machined from the very batt quallty T imber obtainable.
Our prices are CHEAPER becauma:-
(I) Our Timber is specially selected to an exacting specification in Ecuador.
(2) We do not have co find athernasive markess for unsuitable Balsn, coniequently the waste facter Is gratily reduced.
If you tuy kite than you have boughe our Balsa. For over cen years we hare specialired in cutting to manufacturars' requiremente.

FOR YOUR SCRAP GOX

Our Reject Bundlen mada up of assarted strip, sheat, or block Galsa or Obach In approximare 12 Inch lengehs, offer unbeatable value at ONLY dd. Each.
Postage on RETAIL orderi up so 10/-, 1/6; 10f- to 20/-, 1/9: ovar 20/" POST FREE. Detailed price liat of all timber sizes. Send S.A.Efor your cody
TRADE SUPPLIED AT FULL DISCOUNTS-SEND FOR LISTS.

E. LAW \& SON (TIMBER) LTD.

272-274, HIGH STREET . SUTTON • SURREY 'Phone: Vighiant 82el (2 lines).
ITALIAN AGENTS: Sec, Comm. Solaria A. R. L. Largo Richini, 10 Milan.

SWIFT, SKYNIGHT, METEOR, MIG-I5, SKY ROCKET, SABRE, GLOSTER JAVELIN, HUNTER, SCORPION, YAK-25, ATTACKER, THUNDERJET.

A range of 12 authentic 1/72 scale Jet Fighters complete with cockpit covers. Easily the finest vatue for money in the trade.

All опн Prica
2/6
including P.T.

ALWAYS INSIST ON
TITANINE
Dopes, coloured lacquors, fuel prooler, cement, etc. , s a
HALPAK MODELS LIMHTED RICHARDSON STREET, HALIFAX, YORKS.
R. S. for RAPID SERVICE
ROLAND SCOTT 147 DERBY STREET

A Few Irilliant selling Lines out of Mundreds Available:

SILVER CLOUD Fury biplane $1 / 72$ solid 3/6. AVIAN S.E.5A, and Albatross D.III I/48 solid 5/7. SKYCRAFT Mosquito 4/11, Vistor 4/I. Typhoon 3/6, Beaufighter Mk. I 5/9. FIREBALL gliders I/6, Junior 6d., Pif 4d. TAYCOL Comet electric motors $4 \frac{1}{2} / 6 \mathrm{v}$. 4 amp . $13 / 6$ each. SMOOTH SILVER aluminium sheer. 45 s.w.g. $12 \times 18 \frac{1}{2} \mathrm{in}$. $17 / 3 \mathrm{~d}$ doz. sheets. FIBRE SHEET and tin plate all gauges. Brass gimp pins in bulk or small pack. Brass wood serews from $\times 00$ up. Brass serew eyes from $\times 000$ up. Metal silver foll paper $3 /$ - per shees. Silkspan tissue $20^{\circ} \times 36^{\prime \prime} 12 /$ doz. sheets. New list of ship, yacht and galleon. Fittings now ready.

Trade Only - Full Trade Discounts to Retailers

BICYCLE BELLE SAYS :

SPRING IS
ALWAYS JUST
AROUND THE CORNER IN

THE PAGES OF

THE COMPLETE CYCLING TVEEKLY EVERY WEDNESDAY PRICE 6 ${ }^{\text {D. }}$
If any dificulry, mpire enciosing 7isd. (poseage included) for emerins copy to Citcularion Manager, 44 Hopion Srreer, London, S.E. 1

How-to-do-it Magazine of Ul.S. Modeldom

 Read FLYING MODELS, the only American magazine devored exclusively to model aviation! Every issue includes how-cobuild data on new model airplanes of various types (with full-size plans wherever possible) . . . worth-while hints . . . photographs . . . how-co-do-it information . . . and features for sport a-plenty!Published every other month. Annual (6-issue) subscription: 12/6

Mail your order and remittance to-day to:
AILAS PUBLISHING \& DISTRIBUTING CO., LTD. (Dept. A)
18 Bride Lane, Fleet Street, London, E.C.4.

L
LIVERPOOL
Modellers can be assured of personal service coupled with expert knowledge of aeromodelling requirements at any of the following shops.

Liverpool Model Shop
10 Maorfields. Liverpool 2
100 rards Exchange siation : 5 ming.
Kim by K.K., Pier Head, Skyleodo, leen, jasco. Skycroft. Eocemon. Arian, ED. Altbon Engines. Good atocka Bolso.

GLASGOW
 CALEDONIA MODEL CO.

Model and Precision Enginegr: 5 PITT 5TREET, C. 2
Aurrafia's Main Distributor for: their Plams Service

BIRMINGHAM ${ }^{\text {Nerthem }}$

The MODEL MECCA 204.206 WITTON ROAD, BIRHINGHAM 6 All lcoding Madel Alreraft Kits and Accessories.
Triong, Tilx, Graham-Farish Rathwars. 5 t Sa Buses pass the doop. Write. "phone or coll.

BOLTON

Tel.: 7097

ROLAND SCOTT

The Madel Sbecialize
147, DERBY STREET
The obviaus shap for all Model Aircroft Requirements

EANTERBURY

MEERS (Enginecring) LTD.
THE MODEL SHOP. 20 SUN STREET. CANTERBURY (Under the Shadow of the Cathedral.) The lorgest seeck of Aeromodelling Equipment in East Kent. Yout visiz weicamed. By celern-Pastal Service.

DARTFORD

MODERN MODELS
49-5 L OWFIELD STREET DARTFORD. KENF
Whacerer rour needs, send io us ar cal. T.A.E. for fist

DONCASTER

Fels: 1524
B. CUTTRISS \& SONS 49, cleveland street,

Gall and see aur Shop

CLASSIFIED ADVELETISEMENTS

PRESS DATE for Issue, June, l955, Aprit ilst, 1955.

ADVERTISEMENT RATES:

Private Minimum 18 words 6e, and 4d. per ward for each subsequent word.
Trate Minimum 18 words I2a., and 日d. per word for ezeh subsequent word.
Box numbers are permissible-to couns at 6 wordis whon costine the advertisement.
COPY and Box No. replitet thould be seat eo the Classified Advartisment Department, The "Aeromodeller." 38 Clarendon Road, Warford Heres.

FOR SALE
Keilkraft Falcon, Rudderbug Airframes witable for radio control 30; each. B.E. 1.49 c.c. Elfin as new 25/-. Fox, Upland Drive. Brookmans Park, Herts
For 35 and Veco 31, borh nexallent condition. $C 5$ ench or nearest I. Ledger. Witcombe Hostel, Brockworth, Glos.

Frog 50, Mills .25 , Mils 1.3, Fror 150 , Elfir 249. Recven 6 c.c. petrol, 27/6 each. All good, or exchange any two tor E.D, Racer. Downes 78 Norwich Road, Dereham, Norfolk.

American Super Atom Petrol Engine . 097 cubic inchet. Dench tested only, Ofers. Povey, 65 Sebastian Avenue, Shenfield, Fssex.
Offers.-K. Vulmere 5 c.c., Smico P.B. Glow, 2.4 c.c. Mills in mmal metal car, Horme-made 5 e.c. diesel, Headphones, all good condition; Frog 250 poor. 4 Beech Avenue. Peterborough, Nositisnts.
McCoy 60 (Glow or Ignition) Plugs, Rood condition, (5/5)-. McCoy 55 (9 c.c.) Glow, new, (4/15/- McCoy Transfers included. Dowdesmeil, γ Victoria Sircec, Gloucester.
E.ID. Mk. IIt Receiver and Spare Valve in rood condition, 50/-. Roberts. 23 Wray Crescent, Wreagreen, Preston, Lincs.
Sell book Westland Aircraft 10/-. Neur Firo 50 37/6. 95 Model Engineers 1944-46 6.1. Wanted plan Airspeed Horas published March, 1944, pay $7 / 6$. Harrison. 128 Dalston Road. Carlisle.

New, unused, Boomerang RC Outfit, $\mathcal{C 8}$. Or anything modelling plus cah. Ranke, 28 Morlais Court, Gadoxton, Barry, Glam.
Arncrican Model Supplies. Jim Walker fuel repulato and pressure and C1. Sivanil tissue 10 shects for 8/6. Latest Timit timers 17). Plans for Carl Whedeya "Senior Senator" F. A.I. Champ. $6 / \mathrm{m}$. Kits $9 / 0$ ench for Hellcat, Musing. A, 26, Thunderbolt, Lighening, Thunderatreak, Cougar, Taylorcrafe, Neroncs, Piper Cub, Shystreak, Sabre, Corsair, Fi90, Banshece Cutlass, Thunderjer, Voodoo, Scorpion and Mig. Send British Postal Order payable Joyce Schafer, Box No. 460.
Enthusist has engincs, airwheels, radio-control equipment for sale Each one as new at barasin price. S.A.E. for detailed list. Box No. 461.

BOOKS

Antique Mircraft Fans: Sulsserite to the Antique Airplane Newa, 12 pages of news and photos of ald sircraft. Membership and subscription 3.00 per year. Payable via International Money Order. Antique Airplane Aanocimtion, Hox 52 Ottumwn, lowa. U.S.A
Radio Control for Mlodel Shipm, Boats, and Aircralt, by F. C. Judd G2BCX, 144 pages, 135 diagrams and illustrations. Standard Edition 8/6. Cloth lound Edition $11 / 6$. A really comprebenslve work on thin fascinating ubject. Obtainable through your usual supplier, or, in casea of difficulty, direct from the publisher-Data Publications Lid., 57 Maida Vale, London, W.9.
All American Magazine supplicd. One year Model Aimpane News 35:Popular Science $31 ; 6$; Popular Mechanica 32/-, free bookles listing othera from Willen (Dept. 1), 101 Fleer Street, London, E.C.4.

WANTED

Herborough books "Spitfirt" and "Hurricanc" in excellent condition ior cash or Canadian or American merchandise unavailable in Britain. Quote price of requirements for either to: Keith Barlow, Box 250. Gravenhurst Ontario Canada.
E.C.C. Hand Transmitter, 951 Receiver and 202 Eacapement. State price and condition. B. Norrie, 47 Pitkerro Road, Dundec

TRADE

Every concaivable item of Workahos Equipment readily available under our Pernonal Hire Purcbase Plan. Write for detaile today to Garnera, - B Primrose I Iill, Bamsley

DUPLICATING
Attention Club Secs. :-Speedy duplicaring, 50 foolecap 7/-. McLachlan, 67 Station Road, Harrow, Middleaex. Harrow 2762.

SITUATIONS VACANT

Salea Aswistant required for leading North London Model Shop. Previous experience essential. Applicancs should wrice ntating age, experience and maty roquired to Box 458
Part-time Draughosman/Tracer required for preparing and finishing plans for model sircraft is London arca. Previous experience end high clasa wortmanship essential. Write to Box 459 .

GIGEIFFLAENDER REBORING SERVICE FIELD BANK, CHESTER ROAD, MACCLESFIELD Normal Service and prices, sen previousadyartiesments, wili contimut unell JUNE ITEh, '55. WORKS CLOSED for holidays from JUNE Ifth to JULY Znd INCLUSIVE, during which time wa raspacefully request our cuscomars to refrain from sending work or enquiries, in order to avoid disappointe renenta and dalaye. Normal Service will be resumed an from JULY 3rd, 's5.

OUR NEW GOUERNMENT SERPLUS CATAIOGEHENo. IT

containing over 400 Items, price $1 / 6$ post free, $2 / 6$ overseas seamail.

Arthur T. Sallis (A.M.)

93 NORTH ROAD, GRIGHTON, SUSSEX
Telephone BRIGHTON 25806

Elmer
$25 / 8$ EACH
trade enquiries
WELCOMED

THE ONLY VARIABLE PITCH, CONSTANT speed propeller on the world MARKETS.

Send S.A.E. for lliustrated leaflet

E. AYLWIN KELSEY \& PARTNERS

Woodlands, Stroud. Glos.

GLIDING TUITION

HOLIDAYS FIXED? NO: Then why not learn to glide on a B.G.C. Holiday Gliding Course. Instruction in DualControlled Gliders by qualified Instructor. Terms from $11 \frac{1}{2} \mathrm{gns}$. inclusive of Hotel Accommodation.
Write for information to: Course Secretary, Bristol Gliding Club, 18 Norley Road, Bristol 7, quoting ADV/2

Telos
Stocipert 578

THE MODEL SHOP

280 Mellineton Road South, Stockport, Cheshire
A complete range of kits, engines, access. aries, and radio control equipment by all leodine manufacturers. Mail Order Service.

SUTION

Surrey's Habby Cantre
E.I.S. MODEL SUPPLIES
271. HIGH STREET,

SUTTON, SURREY
Stockists of all aeromodelling oceessarias Also ralways, ships, cors, elc., by return postal service

39 PARKWAY, CAMDEN TOWN, LONDON, N.W.I

VASTT LONOON'S LEADING MODEL SHOP OR ORDER BY POST WITH CONFIDENCE

GLIDING HOLIDAYS 1955

Apply to Secretary of the SURREY GLIDING CLUB. LASHAM AERODROME, Near ALTON, HANTS, for details of Courses from April to October. One Week Including Board and Lodging :: :: 12 guineas

TRUCUT PRECISION AIRSCREWS

They Compare

 and CompereUsers of JOYPLANE products become very enthusiastic about their superiority. They compare them with similar products and then wax eloquent by compering to their friends the Indisputable merits of JOY-PLANE.

Buy and tryJOY-PLANE
LATEST:
'NEW DISCOVERY'BRAND LUMINOUS PAINT
(IHPROVED QUALITY GNGGTER LIGHT AND LOMGER LIFE

Cartons $2 / 6$ and $4 / 6$, contsining Base Coat and Luminous Top Coat. The newere novaley in fighe. A plane san be alive whth light when fown in the dork. deal for party noveltias, atc. Laflet and particulary irce from:

TURNBRIDGE LTD. London, S.M. 17

The Shop with the Stock

TEAM RACERS
Marcury Mk. 1 "G" ... 26110
Marcury Mk, II "A" 2214
Marcury Mar "A" -.. 2714
Mercury Mec "A" ... $17 / 1$
Mercury Teman " A "
K.K. Ranger " A "....

$\begin{array}{llll}\text { Veron Minibuster "A"A" } & \cdots & 17 / 6 \\ \text { Ver }\end{array}$
Veron Philibuster "B" ITJS

ENGINES for Clas: A
Allan Mercury 25 ... 66/6 E.O. 2.46 $\quad 7816$ Elfin I. 49 BR 二. Allbon Javelin 1.5 65 ENGINES for Clans
Frog 500 R.G. 75/. Eni 29 141/il TEAM RACER TANKS 15 c.c. $3 / 3,30$ c.c. $\mathbf{~} / 6$.

JONES BROS of CHISWICK
 S6 TURNHAM GREEN TEARACE, W.4.

Phone CHI 0ass (I min. from Turnham Green Station) Ext. 1911

Conditions of Sale

This Pariodical is seld subject to the following conditions-That it shall not, without the written consent of the publishars, be lent, rasold, hired-aut or otherwise disposed at by way of Trade except at the full retail price of $1 / 6$ and thas it shall not be lant, resold. hired. oul, or orherwise disposed of in a musilated condicion or in any unauthorised cover by way of 7rade: or affixed to or as part of any publication of adverrising, literafy or pictarial matere whatsoever.

THE "AEROMODELLER"
18 CLARENDON ROAD. WATFORD, HERTS.

\section*{| ALEEN |
| :---: |
| MERGURY |}

\star for C/L Stunt
and Combat, F/F and R/C
\star The Engine for the Mercury Monarch
see page 232
$\star \quad 3.5$ c.e.

* Peaks at 12,500 r.p.m.
\star Weight-4 oz.
\star Outpuz in excess of 0.27 b.h.p.
\star Low Fuel
consumption

$$
\begin{aligned}
& \star \text { As good in ier cigss an tie } \\
& \text { ALLEN.MERCURY } 25
\end{aligned}
$$

69/6
Manufactured by:
ALLEN ENGINEERING (Edmonton), LONDON, N. 9
Sole Trade Distributors:
HENRY J. NICHOLLS, LTD., 308 Holloway Rd., London, N. 7 Export enquifits: Courtney Reed Export, Lid.

See these NEW

BETTER-THAN-EVER IITS at your model shop!

ANZAC

39 INCH WINGSPAN

PRICE 12/3

INC TAX

DANDY

21 INCH WINGSPAN
price
$8 / 9$
INC. TAX

1955 KEILKRAFT HANDBOOK and CATALOGUE
expertly written articies on building, covering. fighe testing, diesel th start him off in the hotby. There ars catalogue of the Famous K.K. range of aircraft kite and accessories.
A MINE OF INFORMATION FOR ONLY 9d.!
ON SALE AT YOUR MODEL SHOP
\$ole distributors in U.K. for ALLBON \& D.C. Engines ELMIC Timers \& DiTs. ELFIN Engines
AEROKITS BOAT KITS
Also diseriburay: for
E.D. E.C.C. BRITFIX.

AMCO, SOLAREO
Manufactured by E. KEIL \& CO. LTD., WICKFORD, ESSEX (Wholesale only)
Plesse buy fram local model shop or order from a mail order house

[^0]: Nealifng In ita matural olement, photo at laft wean faken ckring regent winter monihs. Full-sisd copidg of the $1 / 41$ sheald plan opposita con be obiained price $4 / 6$ poat fres from the AEROMODELLER PLant Smevice

[^1]: Heading oppoaive shama on RB-TIE fying bigh ovet Smnsan. This photo-racce teraion in desipned for both high and las receonaimonct. Aboves A B-4ZE ahoring Assisied Take-OIf rocker firting. This is the rype respornible for muny of the high
 shows minor differenced thomgh mont mortification how been infarnal and with Angines. Latest B.47E'o have umdaraidea paintrd with rafiective whits finith to protect erate and airframblrom effects of nuchar uceapons

[^2]: spring sicel ret-reader of repate, and by momprariean, thit is -qual to the beot of the Unif-race enginsi, tigare is now higher frum Dave's Luiess. Left: Shaft from heading amyina has mods to the crantureds much credit is due to Olioera for detail in thia

