430
 JULY, 1952 WODELLEB

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

E.D. JUNIOR CRUISER

30 inches long. 9 inch beam (built as illustration)

PRICE El3.0.0

Ideal for marine usc.
PRICE 12 . 18 . \|l
E.D. MARK III

ESCAPEMENT

E.D. PROPELLERS

PRICE
$6^{*} \times 4^{*} \ldots 2 / 7 \quad 61^{*} \times 7^{*} \ldots 2 / 7$ $\begin{array}{cc}73^{\circ} \times 6^{\prime \prime} \ldots 2 / 7 & 8 j^{\prime} \times 9^{\prime} \ldots 3 /- \\ 92^{\prime \prime} \times 6^{*} \ldots 3 / 3\end{array}$

E.D. WATERSCREWS

11^{\prime} diameter $\times 2^{-}$pitch
 PRICES from 56 to $6 / 6$
E.D. REED UNIT

3 channel.

all prices include purchase tax

MISS E.D. 2 LAUNCH

scale of Channel Conqueror. 36 inches long $\times 10$ inch beam (built as illustration). PRICE \&19. 10.0
E.D. CLOCKWORK TIMER

60 sec. run.

PRICE
89

E.D. SPEEDICORD TYRES

3" diameter.

PRICE
23 each

E.D POLARISED RELAY

E.D. MARINE UNIT

$\begin{array}{lr}\text { Suitable for } 2 \text { c.c. } & \text { PRICE } \\ \text { to } 10 \text { c.c. engines. } & 15 / 3\end{array}$

No. 3 in our series of "ALL THAT IS beSt in british aeromodelling"
THIS MONTH WE FEATURE MEIBCUIEV

Look how Hercury cater for all classes of Modellers

NEW JUNIOR MONITOR An aven beter version of Marcury classic recerd

Drhepr Meresory Kits menter duhation
 MENTOR C.2I日 Intermediete

contert, price to be inmownesd.
SATLPLANES
MAGPIE24": BNOMnert \quad Bi-c lld MAOTIN 40°. Pod-and-Reom $-6 i-41.4$
medlate iot. $\quad . . . \quad \ldots 7,6+1 ; 8$ GREBE $49 f^{\prime \prime}$ Conteit model ior
f A, and unrestricied conter
FA.l. And unrestricted conteter . I2:3+2:9 NORSEMAN 58 ${ }^{-}$. A. 2 model with
fine record LINE ${ }^{\cdots} \quad . . . \quad . .24 i-+3 / 1$
CONTROL LINE
 MONITOR SRunt $135-5$ c.e. $1 \quad . .1813 \perp 4 ; 1$ MK. II T 思ACER. IClassA) if $-\cdots 1 / 3$ MK. I. T. RACER (Class B) 2Bi=+5 I

t FWO IMPORTANT PUELICATIONS Latest "Aeromodeller Annual'" (19511. 10'C. Honnest-Radich 8 4. (Poatege 9d.)
 CetLON Dopes and Finithes: MER. CURY Fusli: STANT Props: TRIM. STMIP Trangters. M.S. Airmheali

Allorders despotched prompt15. and properly Doched for thy port of the werid. We are licensed to emport direct. Corfect rates of erehone. corfert ratel of erehone
allowed en foremen curremcy.

- AERONCA

65 Ine. wing-4pan. erue to
scalle. Suitible for R.C. for 1.5-2.5 diesels

$$
57 /-+12 / 6
$$

- STINSON

gmare linas. (5-75 c.e.
diemali).
$286 \div 6,1$

Y F/F IPIDWEIS

- MALLARD

4 Ins. contes model and many timas winner (2 S diesela)
$18: 3 \div 41$

- JUNIOR MALLARD

34 ins.
veratan
$(5-75$
$4-5$
diatella). 15/-
$+3 / 4$

Orders over \& post sere in U.K. Minimum paridi and packing sharete $9 d$. Retail Model Shops abroad ara incureati in appoint me at thetr buyer. Detaik on reguest.

tFIMING NCME

MERCURY have sef a siandard in flying Scal Kics shat has never bean turpassed. Each one bullda inte deluma model that not only looki frse-ciant but also has magnificene fight chispecteristics. We hare graced a forpe afder for the forthcoming D.H. TIGEN MOTH by Mercury in order to sive modelieri immediate delivery on repease.

- MONOCOLIPE

64, int. wing-span, suitable for

$$
57 /-+12: 6
$$

40 Imin. vartion (5 - 75 c.e. diasals).
$22 \div 5: 1$

- CHIRISLEA SKYJEEP

45 ins wing-span A tarthful reproducrian of podular Belelah cabrin plane. (5 $286-6 i$ * SAIIIPINE

An out-and-out contest dealgn 65 ins. span. Mar be flown $A .2$ or to f.A.1. Irandards If you have already buile zother Mercury Sallplanen, you will particularly
for the comveneme of ererte as bryers, furchase Tar is shown seporately an dfitems. I must be included in olf bhone ordeps.

> ARIHIUR MUIITII 16 meEting house lane BRIGHION-SASSEX-ENG

The NFW and sevestrowit

Lavochkin 17

The plane with

 the new and amazing "IMP" propulsion . . .The appearance of this new model has received anthusiastic approval. It is something REALLY new. Phil Smith, Veron's designer, spent over eighteen monehs perfecting " IMP"—a ducted impeller. The Lavochkin La 17 is an exact ropllica of one of the world's most up-to-dace fighters. This famous Russian plane has been chosen because les form allows for ease and ligheness of construction, coupled with inherent stability of a high order. It's a sheer joy to watch lt fly !

DATA:

Span 37 ins.. lengeh 34 ins. Dasignad for use wish Diessl or Glaw Mus motori from $\$$ c.e up to 87 ce., such $5 s$ the Altoon "Dars"-s c.c.. Frag 50. Elfin 5. Mills -75 and the Amco -87. The complate kit contains stege by stage plen, READY MADE The complate kie containg geage by slage plan, rexol made IMPELLER and STARTING PULIEY. Graded itrip and mhant qualizy orlnted woods. and all the materiali Including moulded Inseruction lashet showing avary itage of constection, also hints and tlos on gempling and hying-

inc. P.T.

VICKERS 504

Hera't the latort edditions so the range:Suparmarina s08, "Butrerly " zalled Naval protaryoe. Hawler Hunter flarmerly hnawn 11 1067), latate fighter ordered lor the R.A F., and Vanom. one of Bricain's '"all-wasther "fighters;
 40.000 fe. In 4 mins. shlpboard intercapeor. and the Rusian ascart fithere LA 17. Every hie contains completely delailed plan, a masterpiecs olauthantidisy by Phil Smith. Ready-cui parll, roady-shaped enciple covars, obaselc whesit, transfers of insignia -ill are Included -averyehing so matea realistic medel.

SIX MORE SOLIDS:

$1 / 72$ SCALE

1067-HUNTER

SOLID RANGE

VENOM N.F. Mk. 2

大 Ask your local Dealer to show you our latest kits 1: !

Pilot, navigators and plane - they've all come a long way in a short time. The pilot left school only 8 years ago. He was commissioned directly he'd successfully completed his initial training. Now at 26 he's a Flight Lieutenant earning over E1,000 a year (including marriage allowance). The two navigators hold short service commissions. At the end of 8 years, they may either return to civilian life each with a gratuity of $£ 1,500$ or else they can ask to be considered for permanent commissions. The plane is a Canberra - the R.A.F.'s first jet bomber. Already it is recognised as the fastest light tactical bomber in the world. They're a fine combination - this aircraft and its crew of three. Ask yourself whether you wouldn't be earning more and living better if you were an R.A.F. pilot or navigator. Then post the coupon for fuller details.

\star If you are 14-17- and keen-join the Air Training Corps \star

* GREATTEST VALUE FOR MONEY ever offered Home Constructors.Modelmakers. Handymen!

Toff Cub home constructor outit

contains

3 MAJOR KITS
*
EVERY PART IS IMTERCHAMbEABLE You can build up a Wolf Cub outfit step by step at extremely low costor install the complete outfit at once.

AND OTHER AUXILIARY EQUIPMENT

SANDING \& BUFFING SET

NORTH（WGBLS
 EAST
 SOUTH SERVICE IS THE BEST
 WEST

ENGINES

Due so present conditions，reocks vary constantly and entines In short supply ar the time of insertion，maty be avalabla when rou raad this．
Allbon Arrow G．P． 550 －Nil． $\begin{array}{lll}\text { D．C．} 350 & 53 & 13 / 4\end{array}$ E．D．GEE I ce． E．D．2．46 Racer E．D．Mu．IV J－46 ee－ Frog iso Diesal froe 250 frol 500 Red Glow Frag 500 Perrol Milli P 75 Mills 5.75 Milla I^{3} Allbon Dare 5 ce． Elfin 5 s．e． E．T．A． 29 47 6． 10.0 $72-10 \%$ $724=100$ $406-9$ 59 $5-13 / 0$ $61 \div \div 13 / 4$ 4） $0-153$ 50.10 － $510-11.9$ $73 \cdot+16,1$ $524+120$ $540-13 / 6$ fros 505 c．c． Elifin 149 c．c． Elfin 2－49 c．c． $19: 6+29 / 11$ Allbon davalin

MADIO CONTROL

E．D．Mif．I，J．valva unlt．Complate eramsmitedr，receivar and asaos－ mant $\quad 1000-69 / 9$ P．T． E．D Mk．II 3－valve unle．Complete transmister and racelvar only．

2\＄0 0．74，0 P．T．
E．D．Mt．Ill Minlatura（Hivac）U位． Complate tremamitear．racaivar and exeapament $159 / 6+39.59 .7$ E．D．Mk．IV Tunad Raed J－channals unit．Complete $4000-\mathrm{l} 100 / 0$ P．T． Any of the thove can be purchalad as separne leems．
SUB ECC SSIA Mard Vilve Rescivar \quad T0／0 $+17 / 6$ P．T Frequency Mater $21,6-\mathrm{N}_{1}$ Mivae Vilve $\quad 17 / 6: 1 / 10$ P．T E．C．C．a available．S．A．E，for llluserased lameles．Every－handy Battarles arocked for any of abova Venner sccumulacori．Leafhe aviciatia

C Cmid 6	
K．K．Calel，64－	1064
K．K．Somrer Minar．	
K．K．Soarar gaby	5
K．K．Somerer Major． 60	$111+27$
K．K．Minlmoa， 50°	70.1
K．K．Invader， $40{ }^{\circ}$	6－1／5
K．K．Cadet， 30°	$10+$
Veron Vorsex．A． 2.	1185：4．2
Varon Coroneft	3：6：9d
Veron Varosonic． $46{ }^{\circ}$	10 － 2 ！
Mar．Marauder	1463
Mar Martin． 40	49－1．6
Mer．Narnemen．59＊	$20.3+4 / 6$
Mer．Gno	60－1／4
og Prince	20 6－4 6
rog Diam．36＊	$7 / 5+1 / 7$

Skeran $25 /$ 倲 $\begin{array}{ll}\text { Skykooler } 40^{\circ} & 25 / 6+5 / 6 \\ \text { Streater } 37^{\circ} & 141 /+4 / 4\end{array}$ Sreminar is．． $14.6+3 / 2$ Lavochkin 17 $\quad \mathbf{2 5} \boldsymbol{0}+\mathbf{5}$ ： Mercury 17 Mallarury 4 a． $3-103+4^{\prime \prime}$ Manocoupe 64＂II ह11 Monocoupe 40 $\quad 2+5 / 1$ Seimen los 42 $\quad 22^{\circ} 6+611$ Sky Jeep 40°－ 24661 Aronca Sedan 65 $\quad 57:+12 / 6$

rog

CIrrus $4{ }^{\circ}$
For 40
กาแม $4{ }^{-1}$
Vixen 36°
Pownvan 49^{-}
Zephyr 33＊
Kail Krafe
kail krate
ub Skron
Outlaw
Aandie
Ladybird
Pirere
Junior 60
Cassine 170
uscemb－Silvipip IS＇6 6 4．2 Piper Supar Crutar $186+42$

OOSTAL INSTUUCTIONS．

 All orderi under $10 /$－add 9d．，25／＝ add I I 40^{\prime}＝add $1 / 6$ ，over $46 /-$ pols frae．For overams，eccording por par diretinaton．Postal Information dereinatlon．Posta Information given of reguent
OVERSEAS NOTES

 A AEMINDER TO NEM CUSTOM菅镇S．Ther purchae caI is not paid by residente out side the Unitad Kingdom．You miny be fortunate to be in a country thet will accipe cash on delivery pancels（sato our cay－ logue for complese Int of coum cries wing thla servicel．We samd an tirmail contirmation on撸 orden and claim a lower rape of dmport ducy tor you If sendine to the British Commonwalth．CONTROL LINE KITS
Froel PT Yent
$242+5 / 4$
Yanmpe
$12 / 3+2 / 1$
Kail Mrale
Ranger
$1 / 4+2 / 4$
Pacer
$15013 / 4$
Siuntmaner． $1 /$ et $4 / 4$
Stunt King il of $4 / 2$
Stune Oueen 21 © 4,0
Skpreramk $26 \quad$ it $+2 / 1$
Skymereak $40 \quad 10$ at 2,4
Phantom \quad In $6+4 / 2$
Phantom
Beebu：12／01 2，
$\begin{array}{ll}\text { Panthar } & \text { Mimiburep } \\ \text { Min } & \text { 年 }\end{array}$

Mimibuser	15
Philibuser	21
$18 / 2$	

Mapcery
$15 / 5+4 / 3$
Inf．Monlear
1／6／3＋4／1

Team Recirl $1 \quad 21 / 0+5 / 1$
$\begin{array}{ll}\text { Team Recirl is } & 21 / 0+5 / 1 \\ \text { Team Racer il } & 19 / 0+4 / 3\end{array}$

P．E．GREGORY \＆SON（ALTON）LTD． ALTON TEL． 3376 HANTS

 alton unequalleo return post senvice s．a．e．for lists

Tel ：LANC7NG 2090－2099．PLANTATION WOOD（Lancing）LTD，COMMERCE WAY，LANCING，SUSSEX，GIIMS：SOLARBO WORTHINO

THE WIDEST SELECTION OF PLANS IN THE WORLD

THIS IS
 WHAT WE OFFER

50 Plans of free fligMt Powen deviget 1 4 Piana of CONTMOL LINE Madela, Including Scala, Sami-atala and furctional designa, Team Racarn, Spaed Madali and Eeglnnars' Planea: 27 PIane of POWER FLYING SCALE and
 6 6 Plam of RLGBER POWERED Denleni, including Samimeale, Wakefeld, Blylanes, Bexinners' Modaly and Exparimantal Typas; A Plane of WATEMPLANES-recond-breakial Senplanes. Flying Boren, etc. 34 Plank of GlIDeRs with madeli in all nlyen. cantene, pienure and scala or semi-scala! 20 INDOOA MODEL dealenis madIO CONThOL Models; 7 JETEX and ROCKET Plane 20 UNORTHOOOX dealgna.
OVER 300 of these dasigne ere lilueratad with photagraphic half-eones of the aceual models, and in all cases span is siven, togothar with atitable powar ualt and belof deccpipelan of the madel depictad.
IN ADDITION aur ancrimpled range of AAFOIL SECTION SHEETS covering ill of the mont suitable modal esctions mer lisecd with full deacription.
THIS SHPAGE CATALOGUP can be your cuida to better and more ancisfing myiagdo not delay in eandine an for your copy. Fill in cougon balow and amad with 4d. Postal Order (or atompa) THIS VEAY MOMENY।
FREE TRANSFERS Evary plan now sanc out contalna a puir of blua and gold slide emenfers at che A.P.S. Fiying Plamboy to decorate your finished model.

500,000

 PLANS!0VER a hatf a millan flying model plans have been sent to aeromodellers all over the world-who have built and flown in full confidence that AEROMODELLER PLANS SERVICE drawings presentod the Bnest models, by the mosi expert designers, painstakingly set out for exact reproduction by comparatively inexpert builders; or in the case of more complicated designe calling for the more skiful onthussast, accompenied by detailed instruction sheets in all cases of difficulty.

From a mere leaflet our Plans Catalogue has grown to nearly booksize with its 36 -pagos packed with illustrations of the most extensive range of flying model plans a vailable in the world. For the converience of would-be builders designs have been grouped into sections: Power models for examplo are in no less than six sub-divisions covering both engine sizes and purpose, with further sections dealing with scale models. Each saction ss troatod in the same helpful way, while a list of recommended designs suitable for the newcomer or the not so expert is included.

With the aid of this detanlod catalogue that not only illustrates over threo hundred of the better known designs, but gives wing spans, and other informa bive particulars, any aeromodeller, no matter how distant he may be. can order in comfort and confidence by post with the assurance of prompt service. Those happily situated near a model shop can equally order through their usual dealer, and make use of the detated materials lisi that appears on most of the larger drawings to order their wants in that direction over the counter.

Our frst announcement of the new list laft month brought an avalanche of requests ; if you have not sent off 8 d . for yourg, write to-day while our first print is still available-a coupon is included below for your convenience.

To: AENOMODELLE日 PLANS SERVICE, 3 CIarendan Maad, Watford. Harta. flosie and mea copy of youp New Plans Caralazue, bar whieh I anclose 6d. (in numpliposenl arder)

Numin
Addreme
Metra sla enchasa your FREE Casalogue of Model Boass, Model Cam and osher medel plans. (Delute if res mquired).
 our fune inswe announcement have now been filled. The catalogue grored in be even larger-st pages initead of 48- then wa hed reckoned. mance the stight deftry in recorvinat oure steplies from the printers, which in turn hald up initial despetrhed mour reoders.

ROLAND SCOTT

THE MODEL SPECIALIST

－FOPULAR ENGINES

Fros 30， 5 cx ．Cherel

E．D．－He c．e．Maby Oillim Eifin $50,-5$ c．c．Dlasal Albon Dert，ficc．Diana Ameo 87 Ce．Mis． 11 Dlew！
 Mllip 75 ce．．Didrel Millis．75 e．c．Dieral
ED．Bes，lcc．Dism！ Eltinn 1.49 c．c．Diamal Allbon Javelin 1.5 cc ．Diasal froy 150 i． 5 c．c．D． CH mal Efha 243 C．c．Dasa！ E．D．Camo．Spaciel2 ce．Diem
 E．O． 346 Mis．IV Dianal E．O． 348 Mk ．IV Diami O．C． 350 Mk ． 113.5 cc Anco $15 \mathrm{c.c}$ ．Diesel Yuton 498.2 c．c．flow Plug

高 POPULAR KITS
－CONTROL LINE－
Phantorn Mice Traimer
Manger Clasas＂A＂＇T．R．
Stune Quean 5 c．c．Siua Sturk Qued sec．c．Stu f．W．I\％Seale stunt Minibuenar Clana＂A＂，T．
 Splthre 22 Scale Sevat New Juntor Moaltor Mk．ITamRenerClazs＂E＂ ME．Il Temmacer Clang＂A＂ Vanesge Clam－8＂T．R Vaneafe Clam－8 Ambarador 2.5 ec．Stuns Seour Tam Rucar Clasa－ Beabug 1－5 cec seune

＊POPULAR KIts

－CLIDER－
 Yorax A． 2 Sailjan

 Cadar 30°Chef A． 2 Saliplena
Veromonic 0°
jplena
Veparonic N_{o}
Narsiman $A 2$ Salplana Meraudar A． 2 Sadplana Prince 60^{\prime} wingipan Plern 36° Forture 40°

$$
\begin{aligned}
& \text { Fortura } 40 \text { RUBEER } \text { Ace } 30^{\circ} \text { apen }
\end{aligned}
$$

$$
\text { Sanator } 32^{\circ \prime} \text { eper }
$$

$$
\begin{aligned}
& \text { Sanaror } 32^{\circ} \mathrm{cgen} \\
& \mathrm{Alax} 30^{\circ} \text { gione }
\end{aligned}
$$

Alax 30° span
Wiksh 36° gpan Coblle 24 нрал －RADIO

Skyocometer 46° spat

 Junier 60， 60° span Southerner 60． 60° upan Faleon 108＂ipen Stuntortan 72 span Mormecoupa 66° scale Alronka Sedsn ecale Aaronka sedinn scalehadto Queran 72° ipan －POWF Pirate $34^{* 3}$ span Cemans 36° scale Lsdybird 41 seml－sale． Pipar Supar Crutser 46． Luncombe Stivire 46° Cardinal semlescxit Mondcouse 40° icele Skyierous 40° icale Skyle4t 40° icale Fox Fiomy giplene Fipeny Biplane
Stinion los， 40° atel Streaker Comperliton

大 TO ORDER＊

Lint yopp requiramente and

 sead P．o．or Cheque－i will do she reat．C．O．D．asrvice is available．Add $1 /=$ Poatege on all kist and accerisorime under $2{ }^{3}$ ；
SECOND－HAND

t ENGINES ${ }_{*}$
All ln perfect condition－money back 11 mot Eatiafied．
E．D．Comp Special 2 ec
Milia 1.3 Mk．II Dlesel
Allbon Arom 1.5 e．c．G．
E．D．Mk．IV ；th c．e．Dlatel E．O．Mk．III S． 1
Tros $250.2 \cdot 5$ ec．Disme 1
 EIfin It Dlemal Fray 500 Sec Ghow D．C． 350 Glow Plug Mecoy 29－5 e．c．Glaw Alswoed Wisp B Ce Forrear 99． 16 ce．Petro Mechoralr 4 cac．Pitrol MeCay 49， 12 e．c．Glow Fortay 29， 5 cec．Glow Cannon 300 ，I ce Patrol Ardom 199． 3.2 ce．Glow E．D ML．III Seluesil， $2 \cdot 46$ ce． frot 150 is oc Dinal

＋JAP SILX

 Supplite mra meting Jow． Patit cantalalng It en，yde． Fuat＂Chusta，If panela

4
4／4

you to success

through personal postal tuition

THOUSANDS OP MEN in important positions were once students of The Benneti College． They owe their success to Personal Postal Tuition－The Bennett College way，You have the same chance to qualify for a fine career， higher pay and social standing．

One of these courses will lead to your advancement
Accountancy
Auditing
Book－keeping
Commercial Arithmetl
Costing
Economics
Agriculturo
Archltectura
Aircraft Maintenance
Bulding
Carpentry
Chemistry
Civil Engineering
Dietel Engines
Draughtsmanship
Electieal Engineering
Electric WIring

GENERAL CERTIFICATE OF EDUCATION．
Journalism
Languages
Literature
Mathematica
Public Speaking
Police Subjacts
Short Story Writing
Road Making
Sanitation
Shoet Metal Worle
Steam Engincerlng
Surveying
Telecommunications Telerision
WIrcless Telegraphy
Works Managemant
Workshop Practice
and many others

MODEL AIRCRAFT COMPETITIONS

WEEKLY COMPETITIONS AT ALL BUTLIN'S CAMPS

AYR • FILEY PWLLHELI • SKEGNESS CLACTON

Contests for all types of aviation models will be held throughout the season. Entries will be limited so that all types will compete on equal terms. Prizes will be awarded each week at each Butlin Camp to the winning competitors.

Combine your hobby with your holiday!

For full particulars and holiday booking forms write to:
BUTLIN'S LTD., DEPT. M.A.
439 OXFORD STREET, LONDON, W.I

SUNDAY, 21st SEPTEMBER, 1952 at
FILEY, SKEGNESS, AYR and PWLLHELI HOLIDAY CAMPS

I RLBBER DL:RATION

COVITEST

2 GLIIBFR DERATION
CONTFST
POWYER DEIRATION CONTEST

4 TRAM RACE, GIASSA

5 Concotes delegance

> Prizew for each event lst PRIZE £10 2nd PRIZE £5
> 3rd PRIZE £2 10 s
> PRIZF, £5 for each member of winning team (Total £15). PRIZE \&5 for the most oustanding model taking part.

ENTRY FEES: i: 6 per contesi for S.M.A.E. members to be paid into the S.M.A.E. General Contest Fund.

PRIZES

These will take the form of cash vouchers. The tutal prize money offered by Butlin's represents the highest figure ever donated for a series of contests in Great Britain. These additional competitions at the four main centres provided by Butlin's Limited at Ayr, Filey, Pwiltheli and Skegness, offer casier travelling facilities and additional attractions to competitors who may find it difficult to attend a National Rally and who may wish to combine their "HOBBY with their HOLIDAY".

VOLUME XVII
NUMBER 198
JULY 1952

"Covers the IVorid of Aeromodelling"

Edtar:

Mublic Relationa Officers D. . LAIDLAWDICKSON

Published monshly on the 15th of the praviaus monsh by the Propriators : THE MODEL AERONAUTICAL PRESS LTD.
39, Clarendon Roed. Watford, Merss.
Subscipetion rate $21 /$ - par annum prapald
(Including Christmes Double Number).

Contents

SPECIAL FEATUAES PAg』

LIL ABNER	394
SULTAN	396
D.H. IOA (SWALLOW)	390
THE TEAM FOR BRUSSELS	403
ELECTRONIC REV. COUNTER	409
TTTCH .	412
BOWDEN COMMENTS	420
SUPER DETAILED SPITFIRE	427

REGULAR FEATURES

HANGAR DOORS	3η
RADIO CONTROL NOTES	400
WORLD NEWS	404
ESPECIALLY FOR THE EEGINNER	406
MODEL NEWS	416
TRADE REVIEW	418
ARFRAME CONSTRUCTION-	
TAILPLANES..	422
READERS LETTERS	428
NRGRAFT DESCRIBED-	
THEAUSTER B.4	430
SCOTMSH PAGE	432
CLUB NEWS	433

Editarial and Advartisemant Offeen: 3B, CLARENDON ROAD. WATFORD. HERTS. Tel.: 544

PATMENCE REWAEDET

IT is only natural for every hobbyist in regard his particular interest as terribly important to both himself and others, and it is a continual source of annoyance when onlookers do not evince the degree of enthusiasm that he considers due to his particular craft. We cohless to being decided culprits in this respect ourselves, for it continually passes our comprehension when individuals closely connected with aeronautics display a complete lack of interest in-or appreciation of-the value of acromodelling, eithcr as an engrossing hobby or a training ground for the Aircraft Industry.

Thernfore, it comes as a refreshing breath of fresh air to learn that a major decision taken at the recent F.A.I. Conference in Madrid will in effect make acromodelling Number One priority on the Federation's agendas for the coming year. The delegates were in unanimous agreement that it is from the ranks of the world's aeromodellers that the best material will be lound to man the ever increasing demands of aviation, and whilst this is merely confirmation of an obvious fact to us (who are naturally biased) it is a pleasant thought that at long last the Industry is recognising the undoubted value of encouraging individuals with aeromodelling experience into the realms of advanced aeronautics.

Equally pleavant to our personal ear is the information that the F.A.I. is now seriously considering the holding of a "centralised " type of meeting for the annual World Championship contests. As far back as 1950 your Editor submitted a scrica of proposals to the S.M.A.E. for consideration. the broad scheme being that all the Championship aflairs be held at one venue annually. thus securing a better meeting. and easing the troubles of transport and cxpense. Though exact details of the scheme now under consideration are not available, wo understand that the basic principles are the same and wo can now look forward to a grand annual mecting at wbich all the various World class Championships will be decided.

It is not clear in which manner the annual venue will be selected. but we muintain that a calendar of nations able and willing to hodd such mectings could be drawn up. thus duplicating in some manner the system under which the athletic Olympics are conducted. The advantages of knowing beforehand in which country the Championships will take place in any given year are obvious, snd will allow for adequate planning lyy the host country, and those intending to be represented. Under the present system, a number of meetings in various countries have to beorganised, and it is not until a particular contest is decided that one knows where the following meering will take place, and the very necessary preliminarics relative to collecting of funds, etc., can be properly undertaken.

Cover Picture

Budt to marimume F.A.I. site of $16-1$-g. /h. liflimy eroa, thin 14d-im. apam

 fi. Eidicarde -all of the St. Albane I luh.

The lant "Amnic "

That dear old docile aeroplane, the faithful Annie of tho Air Force, Avro's Anson, has at last been taken off the production line after 17 ycars on the stocks. Many of our readers will have nostalgic memories of first flights in this historic 'plane of many roles, if only to remember the bind of winding up and down that manually actuated undercarriage, or the clatter of the blister cowled Cheetahs. The 11,020th Anson was delivered to the R.A.F. on May 27 th and was handed over by the managing director of A. V. Roe and Co., Sir Roy Dobson, at Woodford aerodrome. Although this will be the last of the line, we can expect to hear Ansons in the air for many seasons to come, reminding us that old soldiers never die, and only fade away when every possible use has been extracted from them.

The Anson started life as Air Ministry specification $G 18 / 35$ and went through life as Bomber, Convoy escort, Trainer, V.I.P. Transport and general Taxi-plane in all the Air Forces of the Commonwealth. A number of Marks were made in Canada, and, assembled in Australia, it was known as the $\mathrm{A}-4$. We are sure that by whatever name it was known, aeromodellers the world over will respect the Anson for its magnificent service.

The INostman alwnyw knocks Twice

Petween one and two thousand eager readers merit our apologies for offering by-return postal service for our new Asromodeller Plans Service Catalogues which will have only come to hand (or so we devoutedly hope) by the time this issue is on sale. We can only say how sorry we are that their enthusiasm should have been so damped and plead our own enthusiasm for the carliest possible circulation of a catalogue which has not been available for solong. Could readers have seen our editorial staff making frantic efforts to get this work to press, with desks and floor covered with two-inch wide illustrations and their hundreis of accompanying descriptions: heard the plaintive cries of "Have you seen the so-and-so picture, it was here a minute ago ? ': and, above all, heard the howls of protest as someone left the door open for a breeze to disarrange the tidy piles of sorted items, they would have appreciated our difficulties. lirankly, as a completely revised list, it took far longer than we had expected, or allowed for, and is only now coming along a month late thanks to a lot of overtime and some splendid co-operation by our printers.

However, it is now really ready, and we hope everyonc who has not yet got their copy will write

in confidently for our boasted prompt service!

Newn of the Nintm.

All events at the Nationals are open to all at the appropriate fees, but entries must be made on the official forms contained in the 1953 Handbooks, reaching Londonderry House no later than July 2lst, together with the appropriate fees.

Flying will commence at $11 \mathrm{a} . \mathrm{m}$. on both days, but it is anticipated that operations will cease by $5.30 \mathrm{p} . \mathrm{m}$. on Monday, August 4th. In the Team Racing events, all Class " A" entries will be flown off on August 3rd, and the Class "B" event will be acconmmodated on the 4 th.

Coach and car parks will be available on the 'drome, and catering is by N.A.A.F.I. Those people who will be staying in private accommodation but who require meals during the day are requested to notify the organisers (via the Hon. Sec. "Nationals": C. V. Christoff, 3, The Broadway, Haywards Heath, Sussex) who should also be contacted regarding possible local accommodation. Lests of accommodation can also be obtained from the Town Clerk, Town Hall, Gosport, Hants, but all are reminded that carly booking is essential, as the Nationals take place during Navy Weok.

Marginal Allowance

Following representations from the S.M.A.E., the F.A.I. Models Commission has agreed that the margin by which a speed record claim must exceed the prevous figure be reduced from 10 km . hr . to $5 \mathrm{~km} . \mathrm{hr}$. No success, however, resulted from the proposal that the present 10 per cent. margin for Duration, Altitude and Distance be modified, which is a pity. It appears only commonsense that the higher a particular record is the harder it is to better it, and to be forther burdened with a tolerance based on a percentage of a high figure is somewhat farcical. It is much casier to rase a low duration record than it is to push a high figure
up by cven a few seconds, but the present system demands that a high figure be surpassed by an even greater margin.

*portamanamip?

The closest team race finish yet seen in Class B racing, occurred in the C / L eliminators for the teams to go to Brussels and Namur, when Claydon of E. London won by a slender few yards over Harper of Outlaws in spite of the latter being ten m.p.h. faster in the air. The reason for this being the shorter range of the faster model and its subsequent extra pit stop.

Not content with the announced result, a section of the Northern visitors who had travelled no little distance to compete, decided to champion the close losers and raised their opinions in no uncertain manner, bringing in that aged " preference for the South " argument through which most sensible aeromodellers have seen daylight. All credit to the officials for not taking up the argument and the teams for taking only an inquisitive interest in the one-sided controversy.

The very closeness of the result augers well for us to be able to field different teams of equal strength at the two international contests. Good luck to them.

Welconie Support

Prizewinners at the 1952 British Nationals (R.N.A.S. Gosport, 3rd-4th August) will be gratified to receive awards that are more in kceping with such an important event than has obtained in the past. This year, the Federation of Model Aircraft Manufacturers and Wholesalers have donated the sum of 50 guineas towards the priza fund, and this gesture has been followed by the decision of the Council to allocate the sum of $£^{25}$ to the same cause. In consequence we hope to see "Nats." prizes at least on a par with those seen recently at locally organised Rallies, etc.

Other news from S.M.A.E. quarters is that in future all senior affiliated members will be regarded as eligible to operate as timekeepers-a welcome concession in view of the long standing confusion in this direction. For too long have meetings been handicapped by the lack of a main essential in the proper conduct of flying, i.e., sufficient recognised timekeepers. Perhaps we shall at long last dispense with that everlasting call for " more timekeepers, please!"

The 1952 United Kingdon Challenge Match will take place at Tilstock Aerodrome (near Crewo) under the direction of the North Western Area. Date is, of course, the 14th September, and we hope to sec all four eligible countries participating this year, having learnt that Wales will definitely be sending a team this time. May we hope that the fine standard set by the Scottish hosts last vear will be maintained, for we regard this annual Match as a highlight of the British calendar.

Photo'm. . . Glons: pleame:

Interesting photographs, action shots or posed pictures of unorthodox models, are always welcome at the editorial office. Whether for article illustration or any of our regular features, the quality of the submitted print must be of the best quality for reproduction. Sharp and clear prints, size 6×4 ins., on glossy paper are needed: but pleasc. oh-please, include a piece of card packing to keep? the print safe from creases. Unsuitahle prints are returned quickly, and if a glossy enlargement is not within your scope, submit the negative instead. Payment is made for all published photographs.

Hs Air to Meligium

The two major control-line contests of the year, the World Speed Championship and Championship of Europe to be held at Melsbroek aerodrome. Brussels July 4 th -8 th, and the second International at Namur on August l0th can easily be visited by cycling aeromodellers with minimum of expense and wasted time. Ostend is only 35 minntes by air from Southend in Essex, where Silver City Ainways operate a regular air ferry service on the hour, every other bour with their famous Bristol 170 Freighters and Brussels is only a further 80 miles from the Belgian airport.

Keen cyclists will scoff at this distance. passing through interesting Belgian scenery, and by virtue of the fast and regular air service, can allocate an extra day for a sight-seeing journey whilst on the way to the contest. Namur is but 30 miles further 00.

Fares are 25/- each way for the bicycle, and 7.5/per passenger, but should the pressure of the purse make itself evident, the twenty minute flight from I.ympe to Le Touquet in France can be made for $65 /=$ each way including bicycle, and the journey at the other end lengthened by only a few miles; though involving a frontier crossing.

Even further economies can be made where club parties of 24 passengers can make the trip for as little as $46 /-$ per bod and bike. Sounds like just the thing for that holiday on the Continent, we suggest you write for details from Silver City, 11, Gt. Cumberland Place, W.1.

Hound "Apromodellerm"

Stocks of bound yearly volumes of the Anromodeller are waning fast and we must report that only three volumes are now available. As a special offer to clear our shelves and make way for other sumptuous iterns we have in hand, the original price of $27 / 6$ is now clipped to 61 only, which is indeed a very reasonable figure for these bandsomely bound collections of countless valuable references.

The three volumes still on sale are No. 11 (Dec. 1045-Nov. 1846), No. 12 (Dec. 1946 Nuv. 1047) and No. 13 (Dec. 1947-Nov. 1048 . Orders should be sent with remittance to our offices at 38, Clarendon Road, Watford.

1FOLLOW-liP from the 1)emon King which we published in the March 1050 issue, the I, il Abner series by A. E. Hurch, has been developed up to Mk. V in the past ycar, and it is this ultimate form that we publish here. The designer gave us a sperial faultless demonstration of his prototype, and its simplicity plus high performance left a considerable impression.

With 310 square inches for an Ameo 35 diesel, I.il Abner circulates at between 60 and 6 m m.p.h. onl 60 ft . lines. It in absulutely smooth to tl , and by virtue of the full span flaps, there is no limit to the manoruvres it can tackle. Fven if an occasional errar of judgment should bring unwelcome contact with mother earth, the structure is such that repains are very rarely necessary.

(onneruction

Make up the engine bulklnead, and fit the tank in place before adding the side panels, then fat controls. When making the control system, bend the Hap push-rod to the exact dimensions given on the plan: but leave slight over-length on the elevator rod for adjustment. Now add all furmers and plank the forward decking.

Whilst this is drying, the tailplane can be marle. the elevator hinged and the horn firmly cemented in place, with two locking pieces of wire as shown. Then fit the tailplane, and with the bellerank set at neutral bend the push rod to suit. Shect the wing bay, with the exception of the rear two inches, which gives snfficient space to locate the fiap horn and make adjustments. When this has been done, the bay may be completely sheeted, leaving the access slut shown. Fin offiset. if desired, can le built into the rear upper fuselage when the sheeting is apphed. Otherwise, construction of the wing is conventional. needing no explanation, except perhaps for the ballast weight which is titted in the starbnard tip between spars with t in. sheet at front and 1 in at rear.

Full-size copics of the 1 scale plan opposite may be obtained price $4 / 6$ post free from the Aeromodeller Plans Service.

43L ABNER

SULTAN

A MID-WING SPORTSTER FOR 1.3-2 c.c.

By

BERNARD R. WILDMAN
Aged 23 . . . aberhrlor reajdent in
Edmantan ... applird photagrapher hy
irade... actomedrlling inietenla arr
centred on armi-seale aud rubber dura.
tion . . . alena keen eveliat.

$1{ }^{1}$Elib's a sport model with a "vintage" air about it, resembling in several ways the familiar lines of the pre-war era, and souncily designed to be tough to the extreme.

When IBernard Wildman first thought of this design, he had in minsl that vivacious looking fighter, the Vickers Jockey, and he set about producing a model that would combine the serniscale appearance with appropriate performance in the air. Power in his prototype was the ever faithful Mills Mk. 1, and right from first tests, the Sultan fully conformed to all that was required of it.

Take-off is a delight to bchold as after a long run on the ground, the nose lifts to a steep interceptorlike climb, whilst each Hat glade is terminated by smonth " whecler " handings.

No doubt with the more powerful rotary valve 1.5 c.c. diesels now available, the Sultan would climb skywards at a rate indjcating prop-jet

'Trimming

Check the line-up and that the C.G. is immediately below the mainspar. Hallast should be added if necessary. Then wait patiently for a calm day for the first fight test. Don't attempt to carry out glide tests in anything other than reasonable wind conditions, or a false trim may result and have disastrous effect on the power fight. Test into wund, preferably gliding down a slight incline so that the Sultan will have a chance to gather correct Hying spoed. Add packing under the tailplane if required, no more than is in. at a time, and adjust the trim tah until a last flat left hand turning glisle is achieved.

Fill the tank and start the engine, then with timer set for a ten secund power run. launch gently into wind. (Hserve buth prower and glide trim carefully, and when the set-up is cunsidered correct, try the first take-off. You'll be thrilled at the way the nodel races along and then rises to a steep climb. pertormance: but we prefer the lower power and that oldtime open cockpit type of tyring.

A leaflet giving the designers' full building instructions is supplicd tree with cach copy of the fullsize plang from the Aeromodeller Plans Service: but to whet your appetile for this out-ol-the-rut model, we give the trimming and flying advice here.

Porictble, otramidine, fangh gei
 when Ifulyima thin dealgh. The profnimpe. sem in the harais of dealgmor Wildmase in the handimy rietr, hay made rountleys fmuhle frac highin at fadrlop.

THIS IS A $\frac{1}{2}$ SCALE REPRODUCTION OF THE FULL SIZE PLANS WHICH ARE AVAILABLE PRICE 3/- POST FREE FROM THE AEROMODELLER PLANS SERVICE

TIE famous T.G. 30)f "swept " Hying wing that provided so nuch valuable information for the design of the Comet and subsequent de Haviltand jet fighter designs, is the sulbject chosen by scale expert D. P. Golding for scale Jetex free-fight. And for fast flying thrills, unique stability and absolute realism, this departure from the nomal Jetex type of job is very hard to beat.

The Fuselager is carved ifom a soft balsa block to the external contours given in the four cross-sections. The cockpit, jet access hatch and wing ront openings are then marked on. and the fuselage is cut into two identical halves by bisecting on the vertical centre line. Hollow out to the internal contours, give the insides a coat of clear dope and line the rear half with asbestos sleet or aluminium foil as a safety measure if you feel this is necessary; the oripinal had none. Then assemble the two halves and cut away the marked cockpit. etc. Save the jet access hatch, so that it can be hinger with a silk strip at a later stage, it is retained on the other opening side with Sellotape.

The Fin root is cut to plan and side views from suft block, fixed in place and carvell concave to fair in with the normal fin structure. Attach to fuselage, then add fin after building over plan. Cement the ront ribs accurately in position, add fairing blocks carved from in. soft balsa and build Wing over plan, starting with the 1,1 fith square lower mainspar. Add upper spar, lift the wing ofl the board to fit une piece rear spar, and then the tips and leading and trailing edges. Trimming tabs can be inset into the T.E.; but rudder correction is generally adequate.

The main spar (root) may now be cemented to the fuselage at the corroct angle, and the trailing edge curve added also. When set, add the wing panels to the fuselage, again checking the sweepback anglo and making good butt joiuts at each spar. The centre section is capped with $1 / 32$ nd sheet, leaving the duct open at the leading edge for cooling air to pass through to the jet mounting via the hole in the root rib.

Ater covering the whole model with lightweight Modelspan, making sure that the reflex tranhng edge is not warped out ot shape, the bubble cockpit can be added. and the $2+3 \times \frac{1}{2}$ ins. hardwood jet mounting block inserted through the access hatch and glued firmly to the fuselage boitum. Jet alupument is casily accomplisherd by attaching the clip with one screw only. then userting a wooden dowel uf about in. dia. chrough the fuselage from the rear and engaging it in the jet clips. Thus aligned, packing can be added and the second screw fitted to lock the chip in correct place. Now hinge the hatch in place and colour the model all silver with black lettering and national msignsa.

It se rudder trim for Flsimge lests, which should start in calm condithons over lung grass. Wing tabs can be used to correct warps but careful conseructions should elmanate this altogether.

A'ГソPF of question sometimes asked is. can Mr. As transmitter be used with Mr. B's receiver? In general any single value recejver can the used with any single valve transmittor, only the range wall be short if a sensitive receiver is not used with a low power transmitter. For instance, using the Dalton transmitter (June labo Sotes) the range to the expected with an XFGI receiver is about tow yards but with a Bulton No. I receiver (May losil Notes) it should lwe about Ron yards. While a range of fow yards will cover all nosmal flying, she yards gives greater feace of mind the transmitter here described will give a range of Noll yards with an XP(;) receiver

The basic idea lehind this transmitter, however, is to proside Kadio control equipment that can lwe carried without much trouble by a cyclist. An XPCi receiver complete with batteries and actuating geirr can be bult for a weight of about x ounces, and this can be carried by a model of 3 or 4 feet span with an engine of around I C.c. The heaviest part of the equipment is the transmitter batteries, but those used for testing this transmitter weighed no more than il pounds.

- Apromosieller " Vo. I 'ranmmiticr

The radio unit is shown in the photos Fig. 1 and 2. in which it has been built on "I'erspex" so that the layout can more easily be scen. Ihis is the ne

which is shuwn in diagram form in IPigs. 4 and 5 of the May 1952 Notes. The panel is shown in Fig. 3 and is made of Perspex or Paxolin 1;16 or $3 / 32$ in. thack. Besides the panel the following parts will be required.

```
Valvaholder. |iG. caramic or armophenol
fined cendenearm. l0e pA. I'% wilmarmica
Resintor, 10,000 ohms ; wete
Trimmar. 10 pf, ceramic Irectanigular
M.F.C. Eddyntene No. I.Oll or almilar
Solder engy
Screwi ím.A. Sy din. fone, wish nute
```

Wire. If anw. s. tinned copper mbout Ife
Slevini, Syitaflez or P.V.C.- I te
Sienvint, syitander or P.V.C.一 1 te
Yav, platic covaradmbout Mullard oce po or American type ing

Start by drilling the panel, the \mid in. hole can be made by drilling a number of smaller holes first in a ring just inside the in. diameter and then filing out to size. Fix the solder tags with eyelets or hollow rivets on top at ST and below at Sils. If in difficulties over eyelets. pieces of soft brass tube $\frac{1}{1}$ in. outside dianseter can be used. Full particulars of the method are given on page 553 of Sept. lytil Aeromonelier. Make the tuning coil by winding 9 turns of 18 s.w.g. wire on a in. diameter former. A piece of dowel, paxolin or cardboard tube or anything similar will do. Leave in. sticking straight out at each end. To make this coil neat it can be pulled out to about 3 ins. long and then squeezed up on the former again, pulling the turns tight, and repeating two or three times. A picce of sleeving it ins. long is put on another piece of 18 s.w.g. wire and wound 11 times round the middle of the tuning coil, and forms the link conl or aerial coupling coil. These coils with the former still inside are put on the panel, the tuning coil ends going through the pair of SB eyelets and the link coil ends being cut to length to fit the sll tags. All the ends are then soldered in place and the coil former removed. The R.F.C. has one end cut to length and soldered to the top centre of the tuning coil and the uther end is pushed through the odd Sbs cyelet and soldered to the tag. The tag end of the valveholder is put through the panel from the coil side and fixed with the 6 B.A. screws. Note that the centre tag faces straight towards the coil end. Trim the ends of the two fixed condensers to in. long, and put in. of sleeve on one end of each. The sleeved ends are then crossed

to form an \mathbb{X} and the right hand condenser end soldered to the left band tag nearest the centre on the valveholder, and the left hand condenser to the right hand tag. The other ends of the condensers are then solkereal to the tuning coil ends. A piece of wire is soldered to the nearest end of the link coil and the centre valve tag. and left one inch long with i in. sleeved. This becomes the common negative lead. The ends of the two resistors are trimmed to $\frac{i}{} \mathrm{in}$. long with $\frac{8}{8} \mathrm{in}$. of sleeve on each. One end of each is soldered to a valve tag that already has a fixed condenser attached, and the other ends are joined together on the common negative. The two valve tags that are wider apart thau any others are joined together and become low tension positive. The other two valve tags are connected to the tuning coil ends on the same side. The trimmer (or tuning condenser) is connected to the tuning coil ends. The battery leads can be connected to the common negative through a switch to H.T. and I..T. negative, the low tension positive straight to the hattery, and the tag end of the R.F.C. through a push button or key to H.T. positive. These leads should be of tlexible wire with distinctive colours. Lise black for the negative, yellow for L.T. positive, and red for 1I.T. positive. The aerial Icad can be green, and this can be connected from the odd end of the link

coil to the bottom of the aerial. All this wiring is identical with Fig. 5 of the May 1 sind Notes. $1 f$ the transmitter is housed in a metal box the aerial should be 8 ft . 4 in. long from box to tip. The transmatter could be slung on rubber bands in the end of the model box, and if this is wood or something similarly rigid, the aerial could be mounted on it. Another way is to make up a box to hold transmitter and batteries, with the aerial mounted in une corner as shown in the photo, Pig. 4. A consenient mounting for the aerial is made from two " stand-off" ceramic insulators, with clips holding a piece of tube into which the acrial will plug.

The best way of coupling the aerial is that described in Mr. F. C. Judd's article in the Jume 1951 Aeromodelleir, and Fig. 5 is a photo of this part. The only extra items required are a coil, and a pre-set condenser of \& 113 pf . The coil

Phote. laft
ehase madeup iramanillPer bar comipifte with traltprifa and conifol lemed. Hight: Claseup of anmial complimo tith teat bult in rifreilf.

is made by winding 9 turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamellerl copper wire closely on a $\frac{7}{7}$ in. diameter former, with tappings at 3 and 0 turns. A piece of paxolin tube about if in. long makes a good former. 1)rill a 1/1t in hole in. from one end, and two more i in. from the end. Poke one end of the wire down and up through these two holes, then wind on threc turns, twist a small loop, and wind another three turns, another loop and three nore turns. Push the wire down through the end bole and out of the tube, leaving it long enough to reach the condenser. This is monated in a convenient prosition between the coil and the bottom of the luox. On the outside of the boittom fix a tin or alumnnium plate, to which the other side of the condenser is connected, or take a lead from the condenser to a spike to stick in the ground. The coil is mounted on the side of the box near the bottom of the acrial mounting, and a link of two turns of flexible wire wound on the middle, with the ends taken to the link coil on the transmitter for mounting the tube, put a plug of wood in the plain end, with a hole thrumgh the middle for a screw. The bontom of the aerial is connected to at lapping on the coil. the best one being found by frial, after the transmitter has been tuned to the right frequency. This is best done by tuning it to a frequency meter such as that described in the AkRomonflat: for lecember, 1951. Every transmitter such as this should be checked for frequency by one of these mugters at frequent intervals, say every two or three journeys. The meter is set up two or three feet away from the transmitter aerial, and the screw on the transmitter tuning condenser rotated to give the highest reading on the meter. If a meter is not avatilable, it will be necessary to get a competent radio angineer to tune the transmitter to a frequency of $2 \overline{4} 12$ megacycles per second. Note that it may be necessary to have a hole in the box just underneath the screw of the tuning condenser.

To tune the aerial, and find the best tapping on the coil, the meter is set up three or four feet from the transmitter aerial and the 8115 pf condenser tuned to give maximum reading. Try this with the different taps on the coil, and leave it at the setting which gives the highest reading.

Another method of tuning the acrial is to use a bulb in the lead between the aerial and the conl as shown in Fig. i. This bulb should be © volts. 04 amps, and the tapping on the coil, and tuning of the condenser is adjusted for greatest brightness. The bulb is then removed and a lead takeustraight from tapping to aerial, or short circuiterl. The meter is, however, much better to use.

Various batteries are suitable for use with this transmitter, some combining II.T. and I..T. In Fver Ready there is the Portable fl giving 90 volts. Wimmer 108,108 volts, and 13103 of (m) volts and It In Inrydex there is the Hloti, lon volts, the Hloos, 100 voles, the H1157, 503 and 518 of (4) plus if volts. For seprarate L.T. the 1$) 18$ or UQ type can the used. The separate batteries are
usually the most economical as they are unlikely to run down at the same time.

For the acrial, the most convenient at present on the market is to use 8 plug in tubes each 12 in. long, available ex-(iovernment at 2 d . cach. At the time of writing, two firms are advertising suitable ex-(iovernment valves at less than $10 i-$ each. Sometsmes ex-Government batteries are available.

There is another type of valve, available exGovernment, that can be used, the 3137/1291 at 10: or less, but it requires a larger valveholder aud thecefore a slightly larger panel. It has 8 pins instead of 7. No. 5 not being userl, but otherwise it is connected up just the same.

Nhort incuitm

A few querics have been received regarding the transmitter in Fig. 1 of May 1951 Notes, asking for component values. This was a diagram only for the purpose of describing a transmitter, and a reference was given to a full description of a transmitter using this circuit. Mention of the D.I. Sl4 valve in the photo of parts of the diagram was merely to prevent someone wiring up a valveholder in the same way and using a different valve. For instance, if a 1).L. 92 valve was plugged in it would soon be destroyed without burning out the filament. Regarding Fig. 4 in the same " Notes" a misprint has got through. The L.T. : lead is shown short circuiting the filament. It should of course stop at the first filament connection. The photo shows things connected up correctly.

The term " short circuit" has been used, but a beginner may not understand this. It is a short, easy path for the current, between two points, along which the current will flow, instead of the path along which it wuld normally How. The oppusite to this is " open circuat " when the circuit is open or disconnected somewhere such as by a broken wire, or a switch not closed, so that there is not a complete path for the current.

Intermational Radio Controlled Modelm Nioclets

Some readers may not be aware of the new address of the Society's Hon. Secretary, which is as follows:
C. H. Lindsey Esy.,

VI 3rd Court,
Christ's College, Cambridge.
Also in connection with the I.R.C.M.S., we would nention that at the A.G.M. of this Suciety a new Pamiphlets Secretary was eloctod as follows:

> V. J. Howell, Fisq..
> ist Binton Croft, King's Heath, Birmingham, 14.

Pamphlets are available to non members und are issued periodically. They describe all types of radio control apparatus and full details can be obtained from the above gentleman.

W(DIBLID NEWN in IPictures

Aameralia, that vast country to which so many aeromodellers seem tos immigrate, often features in our columns, but mostly with news of activity in the Fastern States. This month we have gen from Vestern Australia. the largest and least populated part of the country. Hundreds of miles inland are the coldfields of KALGOORLIE, and from there we hear of P'erc W'cbb, founder and l'resident of the Kaly M.A.C., and builder of a series of multıengined scale controliners. The [3.24 Liberator in our heading is one of his larger efforts, using four Australian made G13 50 5 c.c. Klow plug motors, and generally flown by his son Ronald. Other photos indicate a predominauce of \mathbb{C} / L jobs, including smart team racers and indicating a fifteen member turn-out for a day's flying in the blazing sun.

Supplies are a great difliculty for these faraway clubs, for when things are short in the big cities, local relailers get lirst service and the boys outback get nothing at all.

Even in PERTI, where modellers can pop along to lireemantle and see modelling supplies long awaited from C.K. lying in ships cargo, they have to wait for the cargo to go on to the eastern ports, be unloaded and then returned back to Perth befure they can enjoy what they ordered anything up to six month's previously! How many bods in Hritain would stick at the game under those conditions we would not like to guess! Just the same, the Perth buys have, through the last two years persevered through ups and downs and formed an active group known as the Mercurians. At a rally held in lichruary, Kod Ashton of another club, the " Thermal Thumbers", seen leaning on his Senior stunt model, won the aerobatic event. Both Class A and B team races were run, and while on this point, the Mercurians request co-nperation from a comparative $3!$ member Hritish club for a challenge team race over ten miles with four models partaking. (iross times of all four to be sent to us, the fastest being the winner ... any takers? Ex-Geordic Irank Anderson will organize the Australian end.

From canamian we have news from J. Is. Kennedy concerning the 1052 Wakefield team, as decided by trials flown on May 11 th. Flown in cool weather, with gusty winds up to $25 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. prevailing through the day, it was a day for the high climbers capable of reaching thermal height.

Woods, fying the only geared model placed top with 13: 40 was in good company with McKay; Loates and Walter, all of whom have taken part in previous W'akefield finals. Two newcomers to the

1852 CaHadian Wateflaid tagm, Ramevarna, Wooda anal

Canadian team are I:isen and İosewarne who were flying in their first Wakeficld trial and put in sterling performances to gain the place of honour on the team. These models will be proxy flown.

IN MILLIMETRES.

From Nwitzprianil we learn that the GENEVA club, has been reorganized and the new secretary is our friend Rico Neidhart, Swiss r/c exponent. Among the members of this active Swiss club is Roger Peclet, Champion in Classes I and 11 for speed, and holder of the handsome plaques which have always been a most attractive feature of the Swiss prize lists. His 5 c.c. model (Dooling 29) set a record Swiss specd of 19459 k.p.h., which compares very favourably with our own best efforts in Britain. Also from Geneva is the unusual scale subject by Si. Manini, of the Curtis Ascender Canard Fighter, in this case litted with a Bonnier 5 c.c. diesel. Makes one wonder if Signor Manini has to give 'up' to go down, or vice versa with the olevator out front!

 licv urdmbimg models and the magraificent plaquan eimimiet nt
 Infl. Driun tis the Agrender by Nigmor Manini, alao of demera.

Very British, is, of course, the Prestwick 1'ioneer built from A.P.S. plans by L.A.C. T. A. Alder of the Phoenix M.A.C. at General H.Q., MIIDLE EAST LAND FORCES. The model has already made over fifty flights and by our rough calculation. should be just about due to hook one of those super-powerful Middle East thermals. Better fit a d/t Mr. Alder! The photo comes from Club Secretary, Cpl. L. F. Brambley.

Iair was always still, model flying would be considerably easier. As it is, our models must be able to cope with uplraughts, downdraughts, gusts, oddics, turbulence, and other pranks played by moving air, as well as the self-upsetting antics the models themselves indulge in. Not that any muvement of the air would be all that much of a nuisance, if only it were constant. It is the sudden, unexpected whirl that we have to guard against, for a model possesses INERTIA-broadly, the tendency to want to keep on with what it is already doing-and, instead of immediately reacting to a fresh arr direction, it resists the change and as a result gets upset. Fig. 1 shows some of the causes of turbulence and differing air directions, which can be further complicated by variations of temperature and humidity. The STA BILITY of a model may be gauged by the time taken to recover itself to a normal flight path.

In addition to the vagaries of the arr, models are subjocted to forces arising from the fact that they are unsupported by anything but air-in other words, they are not resting on anything solid, and so must possess inherent balance when flying. We have already seen how the tendency of the C.P. to move is controlled by the tailplane, and this

The Ups and Downs of STABILITY

automatic "balancing" has to be extended to cover any unwanted movement of the aeruplane. Movement can take place in three planes - pitch, roll, \& yaw (Fig. 2) ; to understand what happens in each we will examine them separately.

Mavenumitin Pitch

Any nose-up or nose-down motion of an aircraft is movement in pitch-climhing, diving, stalling. and oscillating and is affecterl by weight distribution and the angles of incidence of the wing and tailplane. We know that the talplane controls pitching, hut the efficiency with which it does so is governed by, largelv. the C.G. position and what is often termed the LUNGITUDINAL IJIHEDRAL of the aircraft. The latter is merely the difference in the angles of incirlence of the wing and tail (Fig. 3). A small difference means that the tallplane will stall at almost the same time as the wing and must then " unstall " before it can perform its function of unstalling the wing. This means a time-lag, during which time the model is heading earthwards. A lange difference causes the wing to assume a larger angle of attack than is desirable, and, while this can be a stable arrangement, the wing is working at an inefficient L/D and the sinking speed will be materially increased. A nomal longitudinal dihedral value is 2 degrees to 5 degrees depending on the best $L / 1$) angle of the acrofoil used, and the C.G. position should the moved to allow the wing and tail settings to approach this difference if necessary. Instability in pitch usually takes the form of late stall recovery or a tendency sharply to enter and remain in a

dive ; the curc for this is to move the C.G. forward and increase wing incidence. Morlels overstable in pitch usually sink fast and require less wing incidence and a rearward C.G. shift. A fault which occasionally arises, most often in rubber johs, is late stall recovery due to the inertia of the fusclage when its weight is distributed along its length rather thas being concentrated in one place. The best method of dealing with this is to use a larger tailplane and move the C.G. back slightly.

Movement in linil

Any tentency of an aircralt to bank, dip a wing. or turn on its back is movement in roll. Roll may bo induced by incorrect lateral halance, physical or aerodynamic- - that is, one wing heavier or one giveng more lift due to warps, etc... but the main trouble in the model world arises from torque. TOIRQUE is usually explained by talking about a dog wagging its tail-if you grab the tail, the dog's body wnll wag. An airscrew (propeller) in action proxluces a reaction from the air resistong its movement, and this reaction is transmitted to the model along the propeller shaft. Holding a fully-wound rubher jub only by the prop. will give you the idea. the only dillerence being that in this case the propeller is stopped completely rather than being anerely resisted. The tendency for the whole mondel to rotate in the opposite direction to the prop. produces bank in the air (Fig. 4). The slipstream (air thrown hack by the propeller) pursues a spiral path imparted to it by the prop. and an immediate effect is that it tends to strike the undersurface of one wing and the upper surface of the other. A rolling force in the opposite

direction to that of torque is thus applied to the model (Fig. 5).

The answer to roll is to provide an automatic compensating force as soon as the roll commences. and this is done by the simple but clever expedient of incorporating in the wings DIHEDRAL ANGLE (lig. 8). The explanation of how this produces the necessary compensating force is shown in Foigs. 6b and 6c. In normal fight the slight angle of the wings pernits a certain amount of ship in the airtlow, and the effective area of the wing is that which may be projected on to the horizontal plane. It wall be seen that when bankerl the projected area of the low wing increases, while the laigh wing's projected area decreases. This results in a difference in lift tending to right the model, and for many years was thought to be the full explana. tion of the effect of clihedral. However, when an aircraft banks in straight flight, a certain amount of sifleslip takes place, and instead of the airllow being parallel with the longitudinal axis of the machine, it tends to head slightly across this axis. If we look along the linc of the airflow we see the model as in Fig. Bc, and it is immediately apparent that the low wing (i.e., the nearer one) has a considerably greater angle of attack, with a reduction of angle in the higher wing. "The resulting difference in lift is greater and appears carlier than the difference arising from the change in projected arcas. The lift of each wing-half being uncyual, the low wing will rise until once more a state of balance is achieved.

When a constant rolling force such as torque is applied. the model banks until the difference between the lift of cach wing-half balances the applied force, and the model will fly in this attitude unless other measures are taken. A result of this will be a state of continual sirleslip, with its consequent difference in angles of attack; the drag of the low wing is increased because of its greater angle and this will turn the model to that side. The outer wing will gain lift from its increased speed, increasing the bank; the drag of the low wing pulls the model's nose down, and a spiral dive may result. ()ffsetting the motor or fin to turn the model in the opposite direction to

torque may be necessary to prevent this state of affars from arising. On the other hand, if a model is influencod more by slipstream ofloct than torque, it may be desirable to induce the model to turn " with torque" to prevent a similar occurrence in the other direction . . .

Dihedral is only one member of the Hedral family-Polly, Ann, Cath and Di. Anliedral and cathedral mean a reversed dihedral, the " V " being upside down: naturally, this arrangement is unstable and is not used in the model world except occasionally on tailplanes, where it has the effect of increasing side area and/or providing two points of contact with the ground for single-wheel take-offs. Yolyhedral means any arrangement wherein more than two dibedral breaks are employed, the main advantage of this being that most of the wing has a projected area nearly oqual to its actual area and 18 heucc more efficient, while the angle of attack change of the tip sections in a bank produces just as much of a righting couple as nornal dihedral. Tip dihedral consists of two breaks only, with a flat, extended centre-section ; this seems just as good as polyhedral does but only partway helps in the abuve conditions. There is alsu elliptical dihedral, though constructional difficultics and lack of data prevent this form from

becoming very popular. The idea behind all these variations is to increase lift efficiency while still retaining the correctse bencfits of dihedral, or in other words, a better lift distribution curvesmooth. unbroken lift over the whole of the wing. Fig. 7 gives an idea of the lift areas associated with various lay-outs and incidentally shows fuselage interference one reason why the high or parasol wing position ss the favourite for molel work.

Instability in roll usually takes the fonm of excessive sideslipping fom a bank (insuflicient dihedral), excessive bank from torque or slipstream effect (insufficient dihedral or use of sidethrust or opposite fin), wallowing, which often includes a pitching movement and is due to tos much dihedral, and Dutch Roll, which is a combination of roll, pitch, and yaw, and is usually caused by too much dihedral and or insufficient fin area. $10-12$ degrecs of straight dihedral is a safe average figure for normal models; less can be used for sailplanes and low-powered jobs, but more may le desirable with high power.

Movementin liaw

Any turning tendency of an aircraft, banked or not, is movement in yaw. Directional stability is influenced by roll (and hence torque), dihedral. slipstream, and disposition of side areas. Probably less is known about the detennining of correct fin area than any other factor in design-even the full-size designers find it a headache, as witnoss the Avro Manchester, a recent Martin flying buat, and the Wivern, to name three. As a gencral rule, WEATHERCOCK S'TAHILITY is aimed for, which means that the centre of all side area, known as the CENTRE OF LATERAL AREA, or C.L.A., must be behind the C.G. so that if the aircraft is pivoted about its C.G. (which, in effect, it is) it will always face into wind (Fig. 8). A large diference in the C.G./C.L A. prositions will cause the model to head into wind steadily the whole time, which is useful for slope-soaring sailplanes but undesirable for normal flying. A small difference will produce a model which wanders, heading first one way, then another, which is extremely good for normal thermal-hunting but can bo a little critical. Hetween these two extremes come the average models which will circle steadily. Placing the C.L.A. in front of the C.G. is undesirable and leads to spral diving or, if the model first stalls, spinning. Most of the leading designers will not commit themselves on fin areas, other than to say " Between 7 per cent. and 12 per cont. of the wing area ", and many uso a sheet balsa fin of the largest likely area and cut it down if necessary during flight tests. With a nommal model using average dihedral and fin moment with low or modium power, 12 per cont. would not be dangerous. A longer moment anm would allow loss area, more dihedral would require more area.

It is a good idea to err on the side of too much area and to reduce if necessary during the trimming stages.

THF rev. counter used in the experiments described in the previous article had to meet a number of rather stringent requirements :--

1. No load whalsoever could be imposed on the rotating propeller.
2. The instrument following the speed of the propelier had to be able to follow instantancous changes in r.p.m.
3. Readings to be direct, not interpolated
4. It was necessary to cover a range of sinerds between about 5 revs. per second at the lower end, and an extreme high speed of possibly 20 revs. per second.
5. If the instrument used batteries the readings had to be sensiblv independent of changes in voltage, which might readily occur.
The first requirement could be met fully by using a photo-electric cell as a means of counting the r.p.m. The second and third conditions were fultilled by using a three inch diameter moving coil micro-ammeter with a scale calibrated from 0 sen $\mu \mathrm{A}$. Thus a reading which was directly related to the r.p.m. could be taken at any instant by observation on the positiun of the ammeter needle relative tu its scale. In other words, over a test run. meter readings could be taken at set time intervals and the results ploted in the form of a graph showing variation of meter readinge with duration or time of power run. As far as possible a simple relationship between scale readings and actual r.p.m. was desirable, hut not essential. It would be instructive to know the actual r.p.m. at any particular point or points on the graph, but not strictly nccessary for the tests originally contemplated. These were concerned with comparative performances of motors under different condlitions.

As it so happened, the meter scale did turn out largely linear over the upper part of the working range and so plotting meter readngs against time did, in fact. proluce almost the same curve as would have been obtained by plotting actual r.p.m. against time. The latter was subsequently checked by calibrating the meter by practical tests, whence a relationship letween meter readings and actual r.p.m. was ohtained, as in Fig. 1.

The calibration graph also shows how the fourth of the original requirements was met. Between meter readings of $\quad(6)$ and $5(\%)$-corresponding to

speeds of approximately 2 to 25 revs. per secondthe meter scale is sulustantially linear. Below a meter reading of 2(ou, i, e. a rev. per second figure of tive it is not. Since such low speed figures were not required, this was unimportant.

The fifth basic requirement listed was accommexlated within the design of the circuit.

The instrument finally developed for the purpose utilised a light source of any convenient size, an interrupting vane on the propeller, and the photo-electric counter unit. The two former were external features, quite independent. lhe effect of the small vane on the propeller was negliguble as regards performance of the propeller and was. in any case, used mainly as a convenience.

The interruption to the light source given by the blades of the propeller alone did not give satisfactory operation of the relay since the duration of time that each blade interrupts the light beam is only a few milli-seconds and the particular relay used would not respond satisfactorily to a

Moter is 0-520 MA . not MA as stated in figz. 2 and 5 .

LIGHT SOURCE

pulse of less than about is milli-seconds. As a matter of interest, results could be achieved, but for satisfactory working was dependent on an almost exact value of the strength and positioning of the light source. A different type of relay would have overcome this difliculty, but rather than going to the trouble of rebuilding part of the circuit, the simple modification to the propeller was adopted and proved entirely satisfactory. The whole set-up was then almost completely noncritical, requiring only that the interrupting vane on the propeller cast a shadow on the photocell " window" in the case of the counter unit over roughly one half a revolution. A 100 watt lamp was used as the light source, stationed roughly two feet away from the instrument, which would then operate satisfactorily in normal room lighting, either daylight or artificial light. Variations in external illumination of this kind had no effect on the working of the counter. The photocell unit counts only the interruptions to the light beam from its near source, interrupted at the same rate as the speed of the propeller at any given instant.

The complete circuit is shown in liig. 2. The light falling on the photocell increases its effective conductivity and thus raises the grid of the relay valve to a potential high enough to cause the consequent increase in anode current to operate the relay. The relay points then complete the battery circuit throught the primary of the transformer and cause a pulse of current in the secondary.

Now when the vane cuts off the light from the photucell the current through the valve drops and the relay points open again. When the points open a somewhat larger pulse of current appears in the transformer secondary. The two pulses, one on the making and the other on the breaking of the relay points, are of opposite polarity. i.e. one is positive and the other is negative. Only one is used to operate the meter and so the output of the transformer is fed into a bridge rectifier. This leaves us with only a negative output which consists of a train of very narrow pulses of constant amplitude-narrow, that is, in time. All that remains to do is to count them, since one pulse occurs for every revolution of the propeller.

Counting is done quite simply with the resistance and condenser smoothing circuit immediately following the rectifier. The time constant of this circuit is arranged to be long enough to smooth out the pulses at above five pulses per second and give a steady uni-directional voltage which, in turn, gives a steady meter rearling as long as that pulse rate is held constant. At the same time the time constant of the smoothing circuit must be short enough to allow the rueter to follow any sudden speed change, i.c., any sudden fluctuations in propeller r.p.m. In effect, this solution is a compromise, but one which was quite satisfactory for the purpose.

Possibly ton, this simple description of the electronic circuit may appear unintelligible to the non-radio minded modeller. In that case Fis. 3 showing the " physical " working of the unit in diagrammatic form should show what goes on.

Actually the principle used is exactly the same as the principle of the ignition system used with a spark-ignition motor for those enthusiasts who can remember when this was the only form of miniature acromotor available! Replace the relay points in the counter circuit by the contact breaker and the transformer by the ignition coil and the two basic circuits are identicall The ignition circuit subsequently uses the resulting pulse as the contact hreaker points open to spark the plug; the counter circuit rectifics the pulses, takes one set and counts them-counting, if you
like, the rate at which the plug would have been firing had it been an ignition circuit.

The description of the circuit will also show that the meter readiing. besides leing a steady reading corresponding directly to test r.p.m., is quite independent of the amoun of light reaching the photocell, and of the high tension battery voltage. as leng as there is sufficient of both available to operate the relay with reliability. The only factor which really governs the stability of the readings is the low tension battery voltaye, which means that this mast be derived from an accumulator if drift is to be avoided.

Thus tests taken at different times, and possibly under slightly different conditions, can be compared directly withont correction. About the only criterion likely to affect the result-apart from the low tension accumulator going flat --is the physical dispossition of the counter unit itself. It should always be used the same way up as there is the possibility of obtaining slightly different scale readings for the same specels with the unit, say. upright and laid down flat.

Calibrating the finishen! instrument was quite a simple matter. It was consutered adwisable to do this by practical means rather than attempt to analyse the mathematics of the circuit.
A gramophone turntable was used for the calibration tests, fitted with an overlapping card disc cut with a number of segments. The apparatus was positioned as shown in Fig. 4 so that as the gramophone tarntable rotated, and carried with it the card dise, a known rate of interruption of the light beam coukd be established. Actually tests were made at four different turntable speeds between 85 and 91 r.p.m.-speed at 78 r.p.m. checked by at strobosmpic disc and the other test speeds counted ayainst a stopwatch-and with two discs-one with four and the other with eight segments. Segments and intervening spaces were of equal length so that the ratio of " light on " to " light off" (as far as the photocell was concerned) was unity. The murror was used se that the counter unit could be calibrated in the same attitude as used for incasuring propelter speeds in the previous tests described.

With very little modification the same unit could be used to "count " propeller speeds up to about 10.000 r.p.m. -and thus be applied duectly to power morlel r.p.m. tests. Above a speed of about $10,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$ however, the relay may begin the " skip " some of the counts.

In any case, the relay used would have to be of the high speed type (e.g., Siemens) and possibly the use of a 11L : 44 valve would be better than the $3 \mathrm{S4}$. It would also the an advantage to increase the high tension voltage in 9 volts and the grid bias voltage to 9 volts. Apart from a slight modification of some of the resistance values the same circuit would then hold valid.

The man attraction of such a counter unit, of course, is that it is entirely independent of the apparatus or machine whose speed is being measured. It relues simply on that machine or apparatus intermpting a light beam at a frequency related to its shaft speed, when the shaft speed can readily le cletermined by the "count " afforded of the frequency of interruption. Unlike so many other speed-measuring instruments it requires no adjustment. In other words, it does not have to be " tumed in " or adjusied to the observed speed. It reads this observed speed direct, and. if the speed varies. follows such variations instantaneously. Nor is it a complicated electronic project. No competent modeller should have any difficulty in

Join 14p threp perges for fullsize ploms of as spoure mondel

TITCH

By RON WARRING

DESIGNED FOR ALL BEAM
MOUNTED - 5 c.c. ENGINES

oung .Wichant ltarting poses erith

 the protatupe Titeh during trapla.THE fuselage is built up on the shect box principle -accurate, rugged and yet extremely simple. Start by cutting two ielentical sheet sides from $1 / 16$ sheel balsa stock of medium or light medium grade. Now cut accurately a set of formers 8 to 16 inclusive from light \downarrow in. sheet balsa and check that all these are square.

The fuselage is assimbled on a $1: 18$ in. sheet balsa crutch in the inverted position. For the crutch a piece of 1.16 in . sheet 18$\}$ ins. long and at least 18 ins. wide is required. Mark a centre line on this sheet and then cement on all the furmers in their respective positions. Centre lines should be marked on these formers as a guide.

When the formers have set, cement on the two sheet sides, pinning in place to each former until set. Trim down as necessary. (ut the two motor bearers from ${ }^{3} \mathrm{~m} . x$ in. hardwood. chamfering the top edges at 3 degrees for downthrust, and also cement in place. Then cement on the boftom planking of $1 / 16 \mathrm{in}$. sheet.

Cut the vertical keel from $1 / 10 \mathrm{in}$. sheet to the exact shape shown un the plan and cement this in place. Support accurately by adding all the other formers, two off each, cemented either side of the vertical keel. The cabin top is cut from a single piece of A in. sheet and cemented on top of the vertical 1 keel and formers 1 and 2.

Cut the fircwall from 1 if in. ply, lead the undercarriage from $1 / 16 \mathrm{in}$. ($16 \mathrm{~s} . \mathrm{w.g}$.) piano wire and bind in place. This former can then be: cemented to the front of the assembled fuselage. Add the soft balsa block immediately behmed this former and carve and sand to shape. The fuselage is then virtually complete, ready for covering wilh tissuc. The front or cabin portion is, of course, covered with this celluluid. Note, too, the addition of the dowels to take the wing rubber bands.

Tailplane construction is quite straight-fonward. The wing is built in three panels a starboard panel, a port panel and a small centre section. I'ly wing joiners built in with the centre section
align the final assembly at ten degrees dihedral angle and also reinforce the dihedral joints. Add small sheet gussets.

The fin is cut from soft 3 !32 shert halsa. Join two pieces to build up the required width and let in a key piecre which will both strengthen the assembly and prevent it warping. The grain in the key piece is horizontal ; in the main fin sheeting it is vertical. Sand the fin down to a nice stream. lines section and shape the base to conlorm to the acrofuil section of the tailplane. After the tail. plane has been covered the fin as cemented in place.

After all the components have been tinished and covered and doped, bolt the motor in place on its bearers. The sloted mounting holes of the E.Il. " Baby" make sidethmost adjustment easy, but initially set the motor straight. 'lhe downthrust angle given by the tapered leaters should be more than sutficient tos keep the nose down under power dight and excessive sidethrust may be dangerous during mitial tests. As llight tests proceed sidethrust can be added, a little at a time, to turn the model in one direction or another, if desired.

Balance will probably vary with different models owing to the difference in weight of the wood used. IBalance point should come out 2 ins. behind the leading edge of the wing. Provided it is in this region you can adjust the glide trim as necessary by increasing the tailplane incidence (positive) to cure any stallimg tendency or increasing the wing incidence tu cure a dive.

Climbon a powerful motor will le quite spectacufar whalst the relatively low weight will ensure a goxsl glide.

If you have built your model well, and chosen good. light wood, you should have weight to spare which can be taken up with more elaborate paint trim. Built normally, the weight, with motur, should not come out at much more than four to four and a half nunces, a figure which could quite easily be increased to six or seven ounces without serifus effect on the flying rjualities.

1N excellent photograph of a well-built model is our choice of the smonth and the subject is W. Kitchings' Mills Mk. 1 powered A.I'S. Nieuport 17c. Nready a veteran of three seasons' hard flying, this fathful reproduction of the fanous World War 1 fighter boasts a leather clad pilot to match. complete with traditional fur collar, leather helmet and glazed goggles. A very fine effort, Hr. Kitchings; we wonder how many more of our readers could produce a three year-old in such tine fettle.

Built from an American " Stirling " kut, the scale Howarsl " Pete" racer shown in picture 1 was made ly (amadian moteller I)ave Mackay and photograplitd by his pal Alec lzurns. Beautifully finisheal with no less than twelve separate coats of white dope, rubbed down in between, the moxlel started life with a McCoy 29 up front: but now has a lox 35 for even greater flying speted. As photograpler Burns states, this scale model makes an ideal tean racer ; but, alas, there is a surprising lack of enthusiasm for thas type of flying in his part of Ontario.

Number z has speciall interest for radio fans. It is H. I'. Holman's photo of W. Manuel's radiocontrolled 11-foot (one-piece, too! I) span sailplane about to go up on test at Chobham Common. liquipment is E.D. Mk. I, total weight 71 lbs., and total area 2.280 sq. ins. An interesting feature is the two-part rudder for climbing to the left or turning right to lose height.

Displaying the feathering prop to full advantage is the Themis Nakefield by liric Smith in No. 3. This diamond fusclage, high efficiency model was leric's design for carly 'ol, and boasts a light airframe weight with many " knock-off " features.

The unusually large scale of 2 ins. to one foot was necessary when I'eter Donavour-Hickie made a scale motel of the " World's Smallest", the American Stits Jr. I'sing spark ignition for its Onlsson 29 engine, all-up weight is $17 \frac{1}{2}$ ozs and wing area, the handy Leam racer size of 125 sq . ins. With its petrol engine and the known economy of such motors, the Stits should be quite a novelty in any team event.

A scale specialist, with preference for the smaller motors, is Hoh O'Brien of Goring-hy-Sea in Sussex. Friend R. A. Figg took photo 5 which shows Mr. O'llrien with his latest effort, an Fi.l). Hee powered Westland Wizard with a very sporty performance. Once voted one of the twelve most beautiful aeroplanes, the wizard is a perfect subject for free-flight scale, if one has the patience to evolve a suitable parasol wing mounting.

Streamlined fusclage. swept leading edge and tea-tray mounted tail are all novel fatures in E. Fearnley's " Mills Homb" design No. 6. Huilt to check theories on wetted area, parasite drag and suchlike, this all silver semi-scalo joh with Mills Mk. 1 has a contest performance with fast climb and sailplane-like glide, all of which should be well in keeping with its fighter-like appearance.

The pretty little sport cabin monoplane in No. 7 is an A.P.S. Wren, built by W. J. Porter of Alfreton in Derbyshire, and usingy an Elfin I 49 diesel. For the man who likes to have a few curves in his general sport models, the Wren is the right choice.

For contrast. No. \& shows a " square " morlel in the shape of Keith Donald's S. Fiastern Area H.L. A:2 record-holding "Thermal I orlger". The record Hight of 545 was made o.n.s. and we presume that the model was doing its best to contradict its name. Span is 50 ins. and tail area a diminutive 16 per cent. of the wing.

And so to the smallest of the month, and like the Nieuport, a veteran of three seasons, and a model of a '14-'18 fighter. V. King is the proud builder of this Albatros D.IV, built to solid scale plans and made for rubber power. Weight is but a mere one-and-a-half ounces!

We shall be back next issue with more photos of interesting moxlels, and don't forget there is always room for that picture of goug model.

T IR A II E IE EVIEW

TIIl: growth of interest in Jetex power continues to llourigh even more each season, and we have no doubt that with the introduction of the new Jetmaster unit, the number of Jetex fans will really go up with a bump.

The accepted thrust yuota of a standard ' 100 ' unit has always been one ounce. For the Jet-master ' 100 ' there is a clain for one and threequarter ounces, an increase by 75 per cent.. and furthermore, when used with the new augmenter tube inside a hollow fusclage, the thrust increases by 125 per cent. to $2 \downarrow$ ozs. We carried out practical tests, using the new 'Red-Spot' fuel, and can fully contirm all that the makers claim.

A contest duration model for the standard ' 100 ' showed commendable increase in rate of clinh using the Jetmaster alone, and did on one test accelerate off grass for a sliding unassisted take-off that was not possible with the standard unit. The Jetmaster is simpler than its forerumer with just one easy to roll on locking spring, and every part designed by Joe Mansour to be practical and handy to the acromodeller. With each unit, igniter wick and six pellets of fuel, a cleaning reamer, spare washers and complete instructions are provided. the latter including some belpful advice on how to increase the duration. Cost of the Jetmaster. which is $1 \nmid$ ins. longer than the standard ' 100^{\prime} and requires more fuselage space for fitting, is 29/4d., including purchase tax.

An additional accessory for scale jets is the augmenter tube. Made of very light gauge alumnnium, and weighing only half an ounce, this has its best application in a fuselage of the MıG 15 or Thund rjet type, where a straight-through tiow is possible. The Jetmaster is mounted centrally in the neck of the augmenter tube, and thrust is automatically increased by a further half ounce. Application of the tube for general contest tlying might also bave possibilites, it would rertainly bring in a new era in free-lance design. We tested the tube on an extema! mounting just to satisfy ond curiosity, but of course no material advantage can be gained with the tube stuck on Buzz-bomb fashion.

Structurally, the tube can be used to advantage as the basic structure of the fusclage, it is surprisingly strong, and with a former and stringered
the cost is $6 / 1 \mathrm{~d}$. per tube, complete in well-packed bex.

Frog Vantage T.R. $17 \mathrm{~F}^{2}$ (plus 3 :10P.'T.)

Wing span 27 ins. Iengeth 21 ins. Fiffective Wing Area 139.6 sq . ins. Our weight with Frog 500 (i). 21 nzs.
Packaging of this kit is tightly effected with every square inch used to accommoxlate the myriad parts. We would ask buyers to disregard the illustration since this is a temporary pack.
Quality of the wood rates high, all die-cut wood is completely pierced and ready to pop out blocks have reasouable tolerance, and strip word is hard. Obechi is used extensively for major structural components. The supplied tank parts were lengthened by 9 mm . to add a permissible $4 \frac{1}{\mathrm{c}} \mathrm{c} . \mathrm{c}$. bringing the capacity up to 30 c.c. Fresh paper tubes were also made, those in the kit being too small for engine retention bands.
Completeness. Except for cement and dope, the builder need buy no extras other than those mentioned above. "his is a kit complete to the last wordscrew, washer or bolt, including a smart plastic spinner, correct size wheels and even a few elastic bands. For this reason, and also for its rather long construction time, we especially recommend the Vantage to hospitalised or bedbome modellers.
Assembly is aided by an excellent four-page instruction leaflet, which although it has one or two minor errors, is a perfect guide to stage by
stage assembly. Dicecut parts are a great aid but the average builder will find up to $4 \times$ hours work necessary, in spite of prefabrication.
Value of this kit is well above average; we dombt very much whether the same model could be built from stock at anywhere near as low as a gunea.
Flying. The manufacturers wisely make no clams for astounding prefformance, for team racer operation depents entirely on the moxeller concerned. The Vantage looks nice, and handles beautifully. If the tank is increased to $30 \mathrm{c} . \mathrm{c}$. it should give stiff competition in any Class I race. Oversize wing area makes it also suitable as a sport Glier and gives a generons safety margin for manuourahility. Airspeed of the test medel - averaped 76 m.p.h.

To protert the clastic bands and to Iet some air out of the power department, we recommend that air louves be cut in the metal cowl behind the plug hole, exhaust and on the starthard side. The projecting louvre behind the exhaust will then battle oil off the vital wing bands.

Jenco Nronst in

- rmady-made all balea job of Famarhabla performashere. mone arodiablo at $8 / B$ and ω good bery far in yourndifer.

Fase Sabre in runde to fy for defer 50 ar as alider. For omit 2/e f"a a colowrfel preamifor flue begtin wer

Vprairy tinnme. zitit (Including P.T.).
Wongepan 32 ins. Jength $2 \boldsymbol{H}$ d ins.. wing area 157 sq. ins. Weight. covered and including ballast, $3 \frac{1}{2}$ ous. Packagind. The contents werc comfortably enclosed in a sturdy cardluoard box attractively printed in red. yellow and black, with a large photographic illustration of the model itself, for the benerit of prospective buyers.
Quality of Contents was first-rate.
Completeness. This 1 s , of course. a "dry" kit, so that no cement or dope is included. hut is abrolutely complete otherwise. We found no deficiencies. there being ample wood, cte., for the job.
Ease of Assembly. The usual clear and well-drawn Mercury plan, plus separate printed buiding instructions. made construction as umple as could le wished. The beginnerg, for whom this kit is primarily intended, should experience no difficulty. Wing ribes. dihedral keepers. etc., are all on printed sheet.

We particularly admired the sturdy construction of this mudel. whicli is capable uf taking drastic punishiment. Revicure's small son abged six has repeatedly " pulled the model m " on a hundred feet of line without so much as splitting tissue.

It took two evenings" bullding time for an experienced mokeller frem opening the box to final doping The average tyro should be able to start building on a Monday, with the model all ready Friday night.
Flying. Very little trimming was necessary on the review model. just 1 /thth under the leading edge of the tailplane. Morel had a natural left-hand turn and was simple to handle on the towline. Third tow launch from only in feet of line resulted in an o.o.s. tlight. and subsequent tly aways were numerous. In fact. our only craticism is the amission of advace regarding a dethermaliser. This can very easily be accommodated hy attaching the rubber band holding down the tall in the rear fusclage slot by means of a loop of cotton. Thread vour fuse through the loup and the job is dune. Another addition we would suggest for those intending the model for content work is the fitting of an extra tow hook in behind the one shown on the plan. Thas fur calm weather towing; our old legs became a hittle weary from having to run so hard!
Value at $7 / 4$ including I ${ }^{\prime}$.T. is very good. For this the beganer gets a simple to build, easy to fly glider. capable: of contest performance.

BOWDEN

In presenting the following
are fully aure that the precision
programme. Neverheless, habits s'ast majority of aeromodellers Boinden's viewpoint for their

W'HAl' are the ofticial minds doing to cater for, and encourage. the large band of aeromodellers, who are not contest duration men, and not natural club men? In my submission, not nearly enough. This is one of the underlying secrets of the falling off in popularity of model aircraft activity uver the past year or two. Fiven if the organizers of the movement are self-satislied at their efforts, the model trade can tell you that there has been a marked decline in popularity. I maintain that, through our one-track competition trend towards duration only. we are developing a type of aircraft that does damage to itself and the movement.
" The average contest is a dismal sight of damaged power units and unstable crashing aircraft, with banlky motors in far too many instances, when easy and immediate starting should be the order of the modern day, followed by stable flight and safe landings. The sight of a radio competition, with its major marks for so-called stunts, is even more depressing. Inending twiddling with radio tuning, perhaps followed by falling about in the sky, called stunting, follawed if lucky by (but almost unrewarded by marks) an occasional landing near the starting point.
"Through owr present compelition trend, we are developing a type of aircraft that is far from what the public wants to see, and far from ewat the man ontside the club requires as his ideal.
" We can only think in terms of duration, which demands a very high climb at great speed, which in turn develops an unstable design, with an over" hot" motor with its emphasis on high power/ weight ratio, rather than moderate power and easy starting
" Let there be no mistake-there are a number of people who don't give a damn about contest work. who are not interested in leing a club member, but want to fly a model acroplane just for fun and stable flight, with the knowledge that they can
start their motor with ease and rapid certainty. This also goes for radio, where st unting is a minor consideration, and where the "experts" are often not too clever at quick get-away and control back to base withort flyauay !
" These people would be lured into flying their stable fiying craft in an occasional competition, if the model journals publicised suitable competstions well ahead, so that they could make their arrangements in good time, with a reminder just before the event. and chear directions where the fying ground is and how to get to at! (We would if we were told !-Ed.)
" All that the chap outside a club contact gets at present is a brief mention in an events calendar, sometimes stating a place somewhere in İngland.'
" Let us face the fact that the present duration contests are most excellent for the experienced club man, but they do develop the rocketing unstable model with its involuntary crash flying on grand scale for the average modeller, whether he is in a club or outside, and they are frightfully bad propaganda for the parents who are often the deciding factor in paying for their young hopeful's hobbies. The gereral public has the impression that model aircraft are unstable crashing toys. So often have I seen the look of polite disbelief on the faces of parents when I have remarked that a model aeroplane can be made to come back to earth undamaged with almost unfailing certainty, if you choose the right design.
" Belicve me, if we want to widen, instead of narrow our movement, we must dispel this general disbelicf of the G.P. We can only do it by encouraging the stable model, the quick starting motor, and the reliable, stable, radio receiver. The stupid thing about this problem is, that such models and equipment all exist on the model market today, but many people do not know of it, because we have over emphasised the wrong type of flying.
' I .et me here say, without any possibility of being mistaken by the biased, that I do not
discourse from our old friend Colonel Bouden, us sype of contest has mever proved popular in a . . ational and tremils are aliurds chamging, and as umenobtedly a are not competifinn minded, we are presenting Colonel inlerest, and umuld appreciate readers comments.
condems pure duration at all costs for experienced clubmen who know what they want for themselves, and are able to control their models, and don't let us forget that these clubmen are the backbone of the model movement.
" But what we must do is to realise that these come under the heading of 'experts 'for the sake of argument. The average man must be shown how stable and easily trimmed a model can be made, and it is the large contests that come under the public cye, as our most effective propaganda medium.
" If we look more deeply into the matter, the organisers of competitions under the public eye are not blameless. They view the matter from the narrower confines of club interests, failing to see the interests of the movement as a whole. like many a politician, they give way to the immediate clamour of the contest club man on the spot, who they feel elected them. The answer is invariably a rut of duration contests, with little or no relicf.

These men must realise, in my opinion, that it's the gencral public's opinion of model aeroplanes that malfers, and widens their hobby, and that it is only the stable flying model of great reliability that will do this.

It is always easy to be destructive and full of criticism, like the Opposition in each Parliament, but it Lakes sumething to produce a better 'sle to go to! "Therefore let us imagine for a moment what would happen for the good of our movement if we were to divide our conteats into hall for the duration ' boys of the clubs, and half for the " stable " fight boys in the clubs and also for those outside the clubs also keen on sport gencral purpose Aying:-
(a) We should concentrate on stable movemeuts in the air, quick starting, and landings without damage ufter a given time. Any instability. or boggle starting, or bad landings would be heavily penalized.
(b) Radio contests would demand, on penalty of disqualification for that tlight, that the competitor had to be in the air after 4 , or if you want to be generous, 5 minutes: that marks would be lost unless the competitor could control his model within a radius of $\frac{1}{}$ mile. ANY STRAYING from that would be called lack of control and mean loss of marks. Any vinlent dives, spiralling on turns, over-climbing, or diving, would be lack of control, and penalized, and any competitor who could not control his model back to base into a 30-yd. circle nould lose all marks, for it cannot be called radio control if you are unable to get the thing back!

- Instead we give all the worthwhile marks to a lucky fall-over called a loop, even if the man doing it cannot get his model in to a spot landing!
" The above sort of flying would be pleasant to watch, have excellent propaganda effect, and develop reliable equipment. The unreliable designs and equipment would go into well-deserved oblivion. We should still satisfy the duration and radio stunt experts with their remaining half of the contests. (Incidentally, some of them might find quite a struggle, as things are torlay, to show up well in our stable flight contests!)
" I think of my own ' Bowden Trophy ', which I gave for stable flight above all other considerations, for its history is a valuable pointer, and a case in point. For a number of years it was very well attended by reliable Hying models of all types and great interest, with a large number of spectators. Certain 'duration' men, and certain members of the press, began to agitate for modification of the miles, until last year when we went all pay-load duration, the greatest mistake we ever made. As soon as the original stressing of stability was departed from. this one remaining bulwark of stability flying began to fade, until last year it hecame a farce, tucked in with another contest on the same day, and providing pay-luad duration as the motive. Fintries and interest outside were almost nil. All we gathered was a handful of the " expert class '.
" We have got to change this outlook, if we are to expand and widen the model aircraft movement. instead of losing ground. There is a hig revival of interest in stable free flight, now that control line has faded in paramount importance as a novelty. ladio control that is quite reliable is there for the asking if the right equipment is used, and all it wants is the belief by the general public that fying model aireraft can look like the real thing, and is reliable and crash-free."

Tailpiece!

As wo go to press we hear that the Council of the S.M.A.E, have decided to reinstate the well known • lkowden "rophy" for 1952. It is intended that the contest shall take place on a date when no other contests are being held and we shall be interested to sec the response, which we sincerely hope will vindicate Colonel Howden's comments,

THE tailplane of a model is usually a relatively simple component - but most important in many respects. The Americans call it a stabiliser and it is, in fact. just that. It stabilisers the morfel in flight and automatically compensates an involuntary dive or stall, when correctly rigged. Being at one end of the model, distant from the point of balance, it needs to be light-which is where simple construction comes in-but this introduces a conflicting requirement. It must also be true and remain true. If it warps when completed it may affect the stability of the machinenot so much in an "up-and-down" direction as sideways or in turning flight. for a tailplanc can have quite a powerful turning action.

Many modellers use this effect in trimming for turn. Two such methods are shown in Yig. 1. If the talplane ss tilted as shown in the direction of the raised tip--tilt the right tip of the tailplane up for a turn to the right, and vice versa. This turning action is quite moderate and relatively " safe"- better in many cases than ofisetting the rudder or trim tab.

TTAL TRMMANG' FOR TURN USEO TO ADJUST GLNE CIACLE

OAGOAMS ARE EXAGGERATEO

pight rip SLEwEO FOPMARO MOOEL TURNS TO THE RAGHT.

A more powerful turning action is given by slewing the whole tailplane. In this case the model turns towards the side with the furemust tip. Slew the tail out of line with the fuselage so that the right tip is furward, the model turns to the right.

A tailplane slewed through an angle of 10 degrees - 5 degrees either side of its true position can make a difference between a. right and left hand glide circle on some moricls.

These effects, of course, do not directly concern construction. They are mainly a matter of rigging and trim. But as far as construction is concerned a true tailplane is the ideal to aim at, so that warps may not produce accidental changes in trim and the tailplanc itself is so constructed that it is automatically re-assembled each time in its correct prosition:

As far as warps are concerned, these are likely to be one of three main types (Fig. 2). The dirst. and most common, is where the whole tailplane bows upwards into a curved dihedrat. Gencrally this also results in the trailing edge washing out towards each tip. If both the dihedral and washout imluced are equal on both sides, such is warp is not harmful. It may even be beneficial. Quite a number of contest thiers do, in fact, deliberately Wash out the tips of the tailplane for improved stability. The only danger is that a tailplane which warps readily in this fashion may change its setting during the course of a day's llying and thus upset the trim of the model.

The second type of warp is a bad one. Here the trasling edge warps downwards towards each tip and gives wash-in to the tailplane. Generally this is the result of faulty constructional design. The apar system is unbalanced, tending to stress the structure downwards when the covering tautens.

The third warp is also bad and may put the model into a spiral dive. Here one side of the taulplane warps up and the other down. One side has wash-out and the other wash-in. Generally this is due to faulty construction rather than design. With these pussible faults in mind we can then go on to discuss the actual construction of tailplanes.

The tailplane is really a smaller edition of the wings, but usually that without dihedral breaks. It is built in a similar manner to the wings. One of the main requirements is to select suitably stiff spars so that the resulting structure will be ripid without being too weighty.

Wand Naleation

[ig. 3 shows the type of wood you might use. The leading edge and main spar are of straight grained stock, whilst the thinner trailing edge will Le lest cut from quarter grain. This is not essential, but is goonl practice. A common fault is to make the luarling edge ton small in section. so that hard wool has to le used for sulficient strength. A wikler, decper trailnge edge is usually better-stronger overall, giving a better entry, and quite as light if light medium or medium stuck wood is selecteri. 1) not, however, use brittle wood for the leading erge.

Usually the tailplane incorporates an aerofoil section with a that undersurface. The leading and trailing edges and the spars are pinned down, as in the case of wing construction previously described in detail. and the ribs then cemented in place. No harm will result from using thin pins through both the leading edge and the trailing edge, but the spar should only be pinned through outside the tip. Iocate with pins either side within the outliue of the structure (Fig. 4).

Micep Exarsthing Flat

The most common fault at this stage is to have the underlying plan slightly wrinkled or creased so that the spar is not resting absolutely flat. In other words, you are actually laying out the tailplane wirh an inhuift warp. Obvously this must be avoided, so take care to ensure that all the spar members are pinned down Hat with the building surface and that the ribs are also properly bedded down when cemented in place.

It is a definite advantage to slot in the ribs to both leading and trailing edge if possible, but using only very shallow slots, otherwise the sirength of these spar nembers will be reduced (Iig. 5). If the leading edge is of particularly narrow section. then do nut slut it. Always slot the ribs into the trailing edge if possible, huwever.

The trailing edge itself will not be very decp and if the end of the rib is cut to exact deptl may, through a little inaccuracy in cutting, actually be less than the depth of the trailing edge at this point. This may spoil the appearance of the covering joh later, but what is far more important it will reduce the strenglt of the ril)-trailing edge joint. When working with thin trailing edges it is better to cut the ribs slightly oversize at the trailing edge, that $1 s$, slightly two high. and then sand down tush with the trailing edge later. Small fiflets of cement between the rib and the trailing edge will also improve the strength of the joint.

Now a word about preparing the spars. The same rules apply as for wing construction. Shape the trailing edge before assembly and form the leading edge to section after assembly. However. a thin, finely finished trailing elge warps readily -i.e. it has little resistance to bending-and

sometimes it is better not to finish this member to a true trailing edge section．This is a good tip when dealng with small tailplanes where the actual dimensions of the trailing edge are small （Fig．6）．The section is shaped by rounding ofl the top edge rather than tapering to a wedge shape， greatly increasing the effective depth of the trailing edge and its resistance to warping．

Flat Tailplanes

This is often done to all the outline members where a simple that plate tailplane is called for－ Fig．7．＇lhis enables relatively small outline spars to be used to suve weight and at the same time increase bending strength．In tailplanes of this type all the bending strength comes from the outline spars．A mainspar is very seldom used and，even if it were，would not be very effective． Such tailplanes are more prone to warp than built－ up structures with a deeper aerofoil section．They are generally tissue covered on one side only and not doped．Their application is mainly limited to very small models，although similar construction is used on lightweight contest models，Flimsiness， in this case．is tolerated as the price that has to be paid for extremely light weight．for obviously such a tailplane can be built using the minimum volume of wool．

One of the main points in favour of a flat tail－ plane－flat plate，or built－up with a flat under－ surface－is that it can be built flat，readily checked for trueness by laying on a Hat surface，and easily pinned down to that same surface whilst drying after doping and covering．Where a symmetrical section is called for few of these advantages can be realised．

The importance of ensuring that the building board is perfectly fiat and that the plan is pinned taut and flat over it，has already been emphasised． But we repeat this point again，for the flat－plate tail and its natural tendency to wander from the true line with warps at the extremities is not quite as casy to make as its structure would have us believe．Always keep the flat section tail pinned down whilst water shrinking and doping．If this precaution is not observed，the result will be some－ what like that indicated in fiig．8．Even after the dope is thoroughly dry，changes in atmospheric temperature，particularly exposure to hot sun，will have the same effect．It is advisable，therefore， to keep a scrap piece of thick balsa sheet handy， and to keep the tail pinned that between Hying days， using large－head drawing pins to get a good grip over the leading and trailing edges without damage．

One of the best ways of building a true sym－ metrical section tailplane is to do the job in two stages．The tailplane is virtually split along a line as indicated in Fig．9，and the main part of it built flat，just like an ordinary tailplane．When com－ pleted it is turved over and the remaining part

ribs added to produce the required symmetrical section．This method is generally eavier，and more accurate，than building the same tailplane with full symmetrical ribs，propping up the leading and trailing edge members as required with scrap wood between them and the flat surface of the plan．

Abin＇k Hulliling Meilhosict

There are also quick and simple methods of tailplane construction which at one time found considerable favour for power models．No rith cutting is involved．Strips of wood of the required depth are cemented in place and sanded down to section after assembly is completed．The main spar is the sume depth as the rib section，but thicker．

Mainspar leading and trailing edges are pimed down as shown in Fig．10．All the rib＂rectangles＂ are then cemented in place．When set，the whole lot is sanded dowin to aerufuil section．

Generally the results do not compare with orthodox construction using pre－cut ribs．It needs very great care to reduce all the ribs to the same section．It is very casy to sand＂flats＂in the tops of the ribs and unless the cement joints between
ribs and spar we particularly gond, these may fail when the tailplane is covered and let the section warp. After sanding, if this method is used all thesie joints should be checked over and possibly reinforcel with a fillet of cement on each side.

Elliptiral Shapes

With large power model tailplanes of this and smilar construction elliptic outlines are often formed from laminated leading and trailing edges, using narrow strips for the leading edge and square section for the trailing edge, moderate curves can be negotiated with ease Fig. 11. A row of pins is erected around the inside outline. the strips cemented and then pinned down in place. Ribs and spars are added in the normal way, but the whole assembly should be left pinned down for several hours before removing to give the cement joints between the laminations adequate time to set. The laminated outlines are then carved and sanded down to cunform to the rib sections to complete the tailplane ready for covering.

Since the design of the tailplane itself is a major factor in subsequent warping. it is as well to have a

lattle knowledge on this particular subject. Whatever form of construction is used. the frame should the perfectly true before covering. If not, then that is just bad building. Bad covering can induce warps- a subject which will be dealt with in a article in this series - but even the best of covering and doping jobs cannot be expected to correct in-built warps. All tailplanes will be subjected to a considerable amount of stress when covered and rloped the covering would not stay taut if it were not pulling on the points where it is attached-and it is how the structure reacts to these stresses that determines what warps, if any, will subsequently develop.

Barp-radintant Structure

It is possible to make the structure stiff enough to resist warping under the action of normal covering tension if ennugh volume of wood is used in the construction, and really hard, rigid wood at that. Vinfortunately such a tailplane would also be too heavy. The designer has either to cornpromise by using small section spars intelligently to get adequate strength at an acceptable weight, or resort to more advanced types of construction such as geodetic rib spacing, built-up hollow torsion box leading and trailing edges, and so on.

The most popular, and one of the simplest, types of tailplane structure used a monespar of reasonable depth (Fig. 12). This is quite strong and reasonably light, as well as being easy to build. It usually gives a satisfactory structure, hut one which is prone to flow upwards into a curved dihedral the type of warp described in Fig. 1, which is not really harmful.

Huilt-up 'r.E.

()n larger tailplanes the same type of construction may be employed, only this time with two separate mainspans. This is more warp-resistant. but proportionately heavier. Used, for example. in a power model tailplane, a more ngid structure at about the same weight but more difficult to build - would retain the two spars. although of smaller section, have a built-up " V' "trailung edge and sheet covering on the top surface of the aerofoil back to the mainspar. This is a very satisfactory design for most large dailplanes, particularly those of rectangular plan form. Careful workmauship is called for in assembly of the finel trailing edge. The tailplane is first built flat on the plan with just the lower than sheet member of the trailing edge pinned down. Previously this has been chamfered off as shown in Fig. I3. The ribs overlap this member.

When the main assembly has been completed. the upper trailing edge member is cemented in place and pinned down accurately. A final sanding down when set reduces the built-up trailing edge to the required section, as shown. Sheet $1 / 10$ in. thick is invariably employed for

built-up construction of this kind on power models. Similar construction has bern duplicated in stmaller sizes for Wakerield-, but here the work is more tricky as it is all tox easy to sand right through thin sheet in the timal stages.

In general. rigidity of the structure is only ohtained at the expense of increased weaght. increased complexity of building, or both. Possibly the simplest of all " rigid " structures is the monospar, where a large number of small section spars are used, as in Fig. 14. These spars are roughly balanced along the top and buttom of the section and the resulting structure is extremely rigid. Its main failing is that, to keep the weight to comparable figures, each of the individual spars is of

extremely small section-1 16 in. square, for example-and thus locally weak. It is easy, in other words, for a single spar to be bruken and thus weaken the whole structure. 'Two such small breaks might even warp the whole assembly.

The types of tailplane structures to be avoided are those which are unbalanced, such as the two lanal examples. liere the bulk of the spar strength is concentrated in the upper part of the section in the hope that since tailplanes usually tend to warp upwards, adding rigidity to the upper surface will obviate warping. What dues happen in such cases is that the structure warps downwards or produces a tailplane with negative dihedral. A tailplane with negative dihedral may not be bad in itself-some designers deliberately employ such a feature-but produced as it is by warping, almost certainly wash-in will be induced in the tips, which is bad.

IFar better, in fact, to have a tailplane which warps upwards.

Dihedralled Thaflplanes

Tin conclude with a further comment on dihedral, where this is deliberately employed as a design feature. There is still little evidence to show that this is necessary. In other words, what advantages

might be gained by a dihedralled, or anhedralled. tailplane can generally be obtained, perhaps more effectively. by other means. To introduce a dihedral break into what has lwen built as a tlat structure when it is not strictly necessary is bad practice. It must inevitably add weight, introduces a point of possible inaccuracy and ior weakness and makes the tailplane more difficult to mount on the fuselage. From purely structural considerations a flat tailplane is undoubtedly best.

A Super Detailed SPITFIRE Mk. Vb

VFFRY occasionally we receive news of outstanding individual efrort that has gone into a "one off" model. Such an instance was the South African radio controlled semni-scale design which we fentured in the May issuc. Now. we have pleasure in giving news of a superbly detailed scale controf-line model of the famous Spithre Vb, which is exactly reproduced, complete with working undercarriage and coupled engine cut-out, by Z. Wojda who served with the Polish Air Force as a Battle of Britain fighter pilut.
The undercarriage mochanism is particularly interesting and although we have seen a similar arrangement installed in another experimental model, Mr. Wojda's simple scheme for tripping cither "up" " or "down" at the slight pull of a third line, is the result of careful thought and ingenious workuanship. Without wishing to put at damper on this magnificent effort, we would point out, from our own practical experience, that in the case of a retracting undercarriage whatever comes " down " must certaunly go "up" in the same place whence it came, every time. I smart blow, as often suftered in quite normal landings. can easily affect the relatively small diameter pivot at the top of cach undercart leg, and even though sprung as in this case, the leyg pivot remains the weakest link of a most intricate chain.

Brief details of the construction are given by Mr. Wojda as follows : -
Numelage. The hist and second bulkhead, control plate and first wing rib on each side are made in plywood and connpuse a strong box. which incorporates the undercarriage automatic mechan-

Whitat thw huading photo merall .Wfr. It ajda'算 close Adhermire to male and attention to delelf, the ricur af right bhouca the romplex vierhanism bemeath the courlimga.

The undercarriage mechanism in perspectice.
ism and controls. Engane compartment is built as a self contained "Tower Egg" ". Held to the first ply bulkhead with three 6 13.A. Irolts and nuts. It incorporates an Amco 3 万b c.c. diesel, K. K. cut-rout connected to the undercarriage mechanism. pressure feed fuel tank and rubber motor which gives

the driving power for the undercarriage operation. Cockpit compartment is equipped with all the instruments and control detail exactly as fitted on that mark of actual aircraft. Hasic construction consists of bulkheads and four main longerons, four secondary ones ($\frac{1}{2} \times \frac{1}{1}$ in.) and planked with $1 / 32 \mathrm{in}$. and $1 / 16 \mathrm{in}$. balsa. Finally covered with tissuo and after three coats of clear dope, sprayed with camouflage colours.

Winge are built in the same way, planked and tissued and are attached to the fuselage with two dowels and one 6 B.A. bolt and nut each.
'real Uilit is of the same construction. The elevator is of scale size and may have to be enlarged after preliminary tests.

Antomntic Undercerrigge. This took the biggest portion of building time and designing. It has been made in aluminium, some parts turned on a watchmaker's lathe. The system oparates by
pistol lever on the control handle and a third line. After take-off a short pull on the lever causes the undercarriage to retract into the wings. The second pull lowers the undercarriage down, which in its turn cuts the engine off in about $7-10$ secs. Details of the system are enclosed on the separate drawings
Markincw. This model carries, for sentimental reasons, all the original markings of my squadron and actually my machine, which I flew for nearly 18 months. "RF " was the 303 Fighter squadron. based at Northolt Aerodrome during and after the Battle of Britain.

Readers' Letters

Gronnd Loop Control

Drar Sir,
In the article on Ground Loop Control by Mr Holt in the May Aeromodeller, he gives the impression that the use of solid wheels will prevent this unwanted manceuvre. This has not been so in my case in which two models have been cured, by moving the wheels aft, as described in my "Notes" in the February, 1952, Aeromoneller. One model had soft pneumatic wheels with very small hubs, and the other had solid wheels. The trouble recurred on the solid wheeled model, after modifications had increased the weight and extended the take-off run. The model is 44 ins. span, 30 ozs. weight, and Mills 13 c.c. powered with Dexible prop. After moving the wheels further aft again, the model can be safely taken off even though the run has extended to 50 yards or more on some occasions, and the model no more than 4 feet above the ground 200 yards away.

During take-off there is a critical period between
the tail wheel (or skid) leaving the ground, and speed becoming sufficient for the fin and rudder to become effective. This period can be shortened by having the ground angle as flat as possible. In other words, the main legs as short, and the tail leg as long as possible. A low power model with a slow take-off is the most difficult to deal with and any tendency to swing must be corrected in the carly stages.

There is one difficulty. A model is needed that will respond quickly to the control. Some notes on obtaining this appeared in the Afromoneller for April, 1951.

IRugby.
H. Boys

()n Tineberping

Dear Sir,
I have read with great interest your article " A New System of Timekeeping ", based on ideas put forward by the Leeds M.F.C. I ann however, rather doubtful of its practicability. The system mentioned only gives justice to modellers lucky enough to obtain a strong-sighted timekoeper, but the poor fellow who is credited with a low time owing to the bad sight of the timekeeper does not benefit in the least under the suggestion put fonward in last month's article. Me would be given exactly the same time as he would have
received under the present system owing to his flight being under the average maximum.

Surely this means that the whole object of this idea is set at nought, or at least as far as the chap it is meant to help is concerned.

Some years ago I remember hearing a suggestion that the dight time in secs. should be multiplied together by the use of logarithms (to the base 10). For our purpose this entails one unnecessary step, which to save time, may be omitted. The final time would then be the sum of the logarithms of each flight.

1 sec . scores 0.
10 secs. scores 1.
10 secs. scores 2.
300 secs. (a maximum) scores only 24771 .
ly using this method consistent flights would always triumph over inconsistent flights, as shown bclow:

Three flights of 200 secs. scores $3 \times 2 \mathbf{3 0 1}=6 \mathbf{9 0 3}$.
Three inconsistent flights of the same total aggregate such as $100,300,200$ score $20000 \times 24771 \times 23010=67781$.
It does, however, entail more work, but for such comps. as the Wakefield and A. 2 trials, upon which so much depends, it is an ideal method.

Hooley.
P. Gasson.

. . . and Tlimers

Dear Sir,

With reference to your comments on the F.A.I. Report contained in the January. 1952, issue of the Aeromodeller, I should like to express an opinion on the subject of engine run.

I have always felt rather strongly on this point. as I consider that it is defnitely the responsibility of the entrant to ensure that his engine run is within the time limit specified. I felt so strongly on this that at the A.G.M. of the R.A.F. Models Association I expounded my theories, and, together with S/Ldr. Greenhow, was responsible for the ferocious (?) rule that in R.A.F. contests for every second over the limit 20 seconds will be deducted from the flight time.

Under the present rule of 5 seconds deduction (or even 10) it pays to let the engine run over the limit as a definite gain results. Not so with the new rule. (I don't think you saw many engines run over $\mathbf{2 0}$ seconds at the R.A.F. Championships!

It improves the breed, and makes the modeller take as much care over his timer and cut-off arrangements as any other part of the model, and l'll go as far as to say that I consider an accurate and reliable timer and cut-off is worth two or three ounces of weight, for the engine can be run to the limit. I have suffered from timer trouble in the past, and timers I find are not a fit-and-forget item. They need servicing and regular examination and calibration.
R.A.F. Linton-on-Ouse.
C. W. Beasley (F/Lt.)

That Infallible Glider

Dear Sir,
I have just received the copies of your Aero. MODELLER from December 1051 till March 1952 and read with much interest the article " Infallible Glider " by Julian Allen in the January issue.

For the real oldtimer (I have been a modeller for 44 years) the Zannonia model is a well-known thing. Mr. Ahlborn from Hamburg, Germany, Professor of Botanics, who had lived for a long time in Java, was the first in 1909 or 1910 to advise the Tannonia seed as a model for a real perfect stable glider. He inspired the Austrian engineer Wels to build his gliders (10 m . span. 38 qm , $14-15 \mathrm{~m} . \mathrm{p} . \mathrm{sec}$. and 164 kg .), with which he started by gliding down a platform like the ones used for ski-jumping. In the " Bohmerwald " he made flights of $200-300$ metres. Afterwards he worked together with the industrialist Etrich from Vienna and they built the first motor-driven plane with Zannonia form. Later they added a tailplane. Rumpler, Berlin. got a building license and developed the Etrich-Rumpler "Taube", which became famous by its pilot Helmuth Hirth and during the First World War by its flight over Paris.

1911/12 I myself built dozens of them in all dimensions, and I can only confirm Mr. Allen's statements. Such a model is perfectly stable, you can throw it in the air as you like it. It will dive and stall, but after gaining the right flying speed it will glide down at a beautiful shallow angle.

The ideal material for such a single surface glider is bamboo and stiff parchment paper. The trailng edge and spars must taper in thickness from the middle to both ends, the ribs (strips of bamboo) from the fore-end to the rear. Glue the ribs to the underside of the paper, the leading eelge and the spars to the upper side. Reinforce the connection points, leading edge to both ends of the spars, and to the ribs, with strips of stiff writing paper. When perfectly dry, bend the ribs between the fingers to the required very shallow ' S ' shape. Add a bit of modelling clay to the centre of the leading edge. Start gliding and trim by adding or reducing clay and bending the tips more or less up or down. No dihedral!

Tel-Aviv.
Dr. M. Sultan.

The AUSTEIR B. 4 Ambulance/Freighter

Irecent years the increasing use of aircraft for freight carsying has given rise to specialised designs. wherein the nonmal rear fuselage is replaced by a raised boom to enable unobstructed loading from the rear. The latest British machine of this layout is the Auster B.4.

First flown in September, 1951 , the 13.4 has demonstrated its versatility, which may also appeal to civilian operators. With a far bigger cabin than usual for a machine of its size, the H.4 can be quickly adapted for many jobs. Normal seating is for one next to the pilot, and two on a two-part bench type seat. To accommodate two stretcher cascs, one part of the rear seat is removed together with that next to the pilot, to allow the stretchers to be stowed one above the other, on the starboard side. For easy handling of all the loads the rear plywood fairing hinges to starboard but will fold on the other side on future machines. Much flying has been done without the rear fairing for supply dropping and the carriage of lengthy items which project out under the tail boom. A pair of wing spars have flown in this way. The floor is a sandwich of balsa between light alloy, and is quickly detachable so that alternative floorings fitted for air to-ground loudspeaking gear or telephone cable laying (11 miles may be laid) can be substituted as noeded. While the B. 4 is a new aeroplane, much of the airframe, such as wings and struts, tail unit, wheels and engine mounting, is interchangeable with the Auster Model "S ".

The engine is a six cylinder Blackburn Cirrus 1 hombardier 702 . which for the take-off. delivers $180 \mathrm{~h} . \mathrm{p}$. to a Farrey Reed fixed pitch metal airscrew. Cartridge starting and direct fuel injection are enployed, and the smart throttle response is a goud proint for Anny flying. Cooling air cicapes from the engine bay through flush side uutlets, and another neat feature is the metal faired undercarriage which has Dowty liquid springing. The prototype has bungee-sprung tailwheels which originally castored frecly, but now the port whecl
is steerable and this design is shown on the drawing. It is intended to fit liquid springs on any later aircraft, which will also dispense with the protutype's wing mounted generator in favour of an engine driven unit.
Colour. Very light glomy trey all over, with registration and all

Construction. Fiuslage of wrbled sterl tube as th lail umat, which
 wooden spars with abmet alloy J..E. and open girder ribs of alloy stmp. Metal-aovered ronnval split daps. 53 sallon tank in each tring root.
 8 1s. Al ins. Nas. rrussing aperd $105 \mathrm{mm.p.h}$. Inilial clloub: 750 it. per min. Kange : $\quad 100$ miles. Werght empry: $1,6 \pm 4$ it., allo

CUTE゙RE contest dates in the SCOTTISH ASSOCIA'IION and AYRSHIRE AEROMODELLERS

ASSOCIATION are as follows :-

4th August: The Edinburgh Rally
10th August: The Scottish Aemmodellers Assn. National Control-Line Stunt, at Stirling.
24th August: Inter Scottish S.M.A.E. Areas Eliminator Contost for l".K. Trophy Scottish Team, at Balado.
7th September: K.I.M. Trophy (F.A.I. Power) and the C.M.D. Trophy (rubber) at Ibbotsend.
21 st September: The Scottish Aeromolellers Assn. National Glider (Alison Trophy), at lieathficld.
4th and áth October: Aytshire Aeromodellers Assn. Cala days, for Ayshire aeromodellens only. 'ream racing on the th. Glidet, Power. Rubber and Flying Scale on the 5th (Trophies for cach).
Included in the above is the S.M.A.E. contest at Balado when the best there is in Soattish Acromodelling will be fighting it out for a place in the Scotersh team for the United Kingdom Challenge Mateh, the fonals of which will be held in lingland this year.

The WES' OF SCOTLAND ARHA'S prower merchants are still in georl forn, and this Area should provide a major portion of the 1952 Scottish Team for the U.K. Trophy. Joe McMaster of Glasgow M.A.C. is still going to be way up top, but he's being closely run by leading flying men from the Prestwick and Kilmarnock Clubs. Joo is still llying his 1951 "Toreador ", and in spite of a few battle scars, she's one of the best finished models to be scen on the contest field, and the "Frog 500 " power plant seems to be hauling it up there better than ever. I notice he's changed his "straight up" tactics now, and has a bit of a spiral incorperated in the climbing trim of the job, consequently he doesn't lose so much height when switehing from power to glide.

So far this year, in the West Scottish Areal anyway, performances haven't been particularly high. Our usual wind has been rough, and models just fade out of sight quicker than the proverbial snowball.

PRESTWICK MODEL AERO CLUB have been hitting out lately, with Bobb Farsons and Brian Harris front and centre. 【3rian's got an Elfin powered "Powavan". and a " Norseman" $A / 2$ on the Geld these days, both planes flying well. For real spectacle Bob Parion's variation on the "Highball" theme really burns the air. Bob's mutel packs an Elfin, too, and after a very unusual flight pattern on releaso, it goes cloud chewing but fast.

The LANARK M.F.C. have had a bit of hard luck recently, having to move out of de luxe class premises. Howover, they are still in the same bulding, which is
only about five minutes walk from their first class flying field, and although the new room is smaller than the old, the lanark boys are faring a great deal better than most other clubs.

In the recent decentralised lilcher Cup event, J. Hall (Junior) surprised visiting clubs and his own club by clocking 10 mans. 23 secs, 0.0.s. in seeming non-thermal and very windy conditions. The model was found 11 miles away and is one of his designs popularly known as "Halls Horror" scrics. Another thy-away was made from the club tying ground, when K. Owston (Glasgow M.A.C.) flying in the Astral Trophy Hew o.o.s. His model was picked up 20 miles away at West Linton. 12. S. Spiers has shown the way, by qualifying for the first Mcrit Certificate of the season.

STEWARTON M.A.C. seem to be working mostly on scale models currently, with club chairman Bob Hurns setting the pace.
Up (ilasgow way again, Alec Clark of the " BARNSTORMERS" has an interesting new Amco 3.5 power mulel. This pylon job features a neat line in gadgetry for cutting the motor and applyng right trim simultanerrisily. At time of unting Alec was engrossed in thme tentative first trials and if its ultimate performance is any match for its finish and sppearance it'll be grade one.

Jown to the seaside now, or in local dialect " Doon the Watter," we have John Lindsay of IRVINE DISTRIC'T M.A.C. stalwartly carrying the banner for said club. He could be doing with more support from his fellow members at the contest though, the same applyink to S.A.S.M.A.C.'s Jım Miller. Talking of S.A.S.M.A.C. this club has what constitutos a really keen aeromodeller. Tom I'ark of the said club, recently swam about 150 yards into the sub zero temperature Firth of Clyde, to rescue his brand new A/2 Sailplane which had landed thercin.

To organise flying meetings and competitions, INVFRNESS \& D.S.A.E. have set up a special sub-section. Contests will be run in conjunetion with other local bodies, including the Dalcross (R.A.F.) M.A.C., and to stimulate interest Major MacI.cay laa offered special prizes. Any enthusiast not yet a member is urged to get in touch with Mr. C. J. Cresswell, Ballifeary Lanc, without delay.

At the first glider contest this year held by the HAWICK M.A.C. first place and the "Murray" Cup went to W. Armstrong, flying an A.P.S. "Satu". Weather, as usual, was very gusty, and times well below average. A team-race affair is planned this year, but as nearly every member will be flying, rules have had to be modified-pilut will have to re-fuel and start his own motor, the planes using release gear.

CLUB NEWS

Menter sot. C. H. Croure of U-S.A.P. man a sreliome compelfor at the recent cill eliminatore. Nase a member of Hartoer MAC, M Ngt Croire and his uct/a have been modeling in many parta of the ecorid. His flame and ehrorm wellour minmier in McCoy 60 pounered.

AREMARKABLE featuro of the 1952 contest seawn to date is the high standard of durations being set up in all parts of the country-despite weatner conditions that are not alrays of the best. Following the extraordinary situation of four "possibles" in the Pilcher Cup. two competiturs scored treble maximums in the "Wenton Cup", Jolenny O'Donnell of Whitefied being unalste to make a fourth Hight to decide the tie with Ray Monks. In addition, the Gamage, Halfax. S.M.A.E. and Astral events were all won with scores little below the 15 minute mark.

Even more outstanding are the repeat performances being set this year. Grahamo Gates retained his title to the Pilcher Cup in March, and this frat has been followed by the even more astonishing feat of Ron Lucas of Port Talbot, the Lady Shelley Cup returning to his credit with a win three years on the run. It will therefore be extrenncly interesting to see the recults of the 195: Wakefield and $A / 8$ Trials, for the known names are still appoaring in the top scores with unfailing regularity.

Ireland

The BFLFAST M.F.G. has got well anto its stride for the summer flying programme, Saturday, Aprill 12 h boing a really terrific day with plenty of thermals and a light breeze. Many power duration jobs were flying. and Norman Osborne lost his Nordic on an o.o.s. Hight of $\overline{0}$ minutes plus, being fortunate enough to recover the model the following Monday. The second Ulster Nationals will be held at Maydown Aerodrome, Iondonderry, on the 2lst and 22nd June. Contest for Wakefields and Gliders will take place on the first day. with Duration and Precision Power and C/L on the Sunday.

South Midland Irea

The second Area meeting was held in fine, sumy conditions at Kidlington. the Weston Cup producing two maximums in the first round. Bunny White, of Icarians, lost his model through having nod/t, the olher loser being Freser, of Hatfield. Recovering the job, Fraser kept his lead in the second round, and Jeffrey came up into third position with a flight of $4: 22$. In the final round, the leaders kept their margin. wnth Fraser increasing the lead slightly with a light of

2 : 40, the conditions having changed to dull, windy and cold. The Astral showed quite an mprovement in power flying to that of the previus mecting with a number of maximums scored. Waldron of Henley finally placing top, with leernett (Chorleywood) and Stone (Reading) following for the other placings. Best man for the International Elims. was Stott, who also won the first trials. Full scores were:-

Weaton:	Fraser. J. Cooln, A. W. M. Jefrey, R.	Hatfiold Menley Reading	$\begin{aligned} & 9: 31 \\ & 8: 21 \\ & 7: 41 \end{aligned}$
解eral:	Waldron. J. G. Stane, L. M.	Henlay Chorleywood Roadina	$\begin{aligned} & 11: 31 \\ & 11 \\ & 1 \\ & 102 \\ & 1: 31 \end{aligned}$
F.A.1.	Stote, 6 . Hown, L. F.	Luton Berkhamstead	$\begin{aligned} & 7: 57 \\ & 5: 20 \end{aligned}$

The frone weather on Easter Sunday saw three members of the HENLFY M.C. out flying for their "H" certsi, and two, K. F. sandy and P. S. Pengilley, put in the necessary flights. Sandy, flying his WakeGeld, had successive rog. tlights of $3: 4 \bar{J}_{3} 5: 09$ (new club recold) and $4: 30$, whilst Pengilley clocked $4: 58$, $3: 14$ and $4:+0$ with his $8-\mathrm{ft}$. Span lightweight glider. Conke was the unlucky member for he pranged his large glider after tights of $7: 05$ and $4: 42$.

The SOCIFI'Y OF BFIDFORI AERO-

 MODELLERS has just entered its second year of existence, and though not claiming many contest successes reporsts the unqualified success of four exhibitions. three of which included C/L demonstrations. A C/L B-3U with six E.D. 3-46's aboard has been nearly tinished by P.C. Cirant, and will probably have flown by the time this appears in print.The various Elimmators down otf, the LUTON \& D.M.A.S. are concentrating on the club comps. The " Brown Trophy " was Hown off under ideal conditions on the 18th May. when R. Brown, fying a Warring Lightweight, came first, another Warring deagn, the "'Zombie". placing second, Hlown by I'. Sullivan. Brown has flown his lightweight over since it first appeared in the A.P.S. range, and has proved it a most consustent performer over the past three seatons. Scale models are on the increase. J. Symmonds' 13 Mills powered "Swordtish" being most impressive. with its long. slow take-off. Sid (IR/C) Miller had his beautiful radio-control job out, but after onc or two Hyaways can be excused when he called it "Qun Vadis"

North-Whentern Area

The KNU'TSFORD \& D.M.F.C. frec-fight season opened with a practice ron for the glider cup, during which I). F. Marmenter lows hus o.d. 10-I A/R johonits second fight from a 90 -ft. line. In the contest proper, he managed to retam the trophy lie won last year, Hying a completely new job in which the A / R was reduced to B-1 and was to Nordic specofication. I'armenter's times were $\hbar: 31,1: 46$ and 2: 12, runner-up) being G. W. Ciranger, nearly four minutes less in tutal Thure: are now only two members without thear Merat Certs. and it is hoped to remedy the mamediately

The WHITLFLl:LD M.A.C. regret to announce the sudden death of their chairman, Mr. K. Lawton, as announced in our last issuc. A member of the club since ity foundation, he was a great helper and organiser in all it. actuvities, and will be greatly massed. The club has done well in recent conterts. J. U'Donnell being unlucky in nut being able to record a fourth flight in the Woston, his model being badly damaged

```
    1.5 %
CONTHSTTCHELNHANE
Juns lSth. Wast Esiax Gala. (Furfop.)
    21/22 Second Ulater Nationale. Nl Clagses. (Maydown
        Aarodrome, Londonderry.)
    22nd FLIGHT CUP. Unr, Rubber., (Deceneralired.)
        C.M.A. CUP. Unr.Glider. (Decaneraluad.)
        Outlin'a Consenta. Al Clames. (Filey, Stepnes
        Ayr and Pwllhall.)
    29th.f Clwyd Slapa Soaring Conteat. (Clwyd, N. Walos.)
        Northern Heighte Cala. (Langtey.)
July S/G. INISH NATIONALS. (Baldonnell.)
    6th. [MAMLEY TROPHY. Unr. Power Duration
        FROG JUNIOR CUP. Unr. Rubber/Glider.
        (Dacentrajised.)
    20%h. JETEX CHALLENGE CUP. Jutex.
        PARROW SMIELO. Taam Unf. Rubber.
        WOMEN'S CHALLENGE CUP. Unr. Rubber
        Glider. (Aran.)
Aug. 3/4, (NATIONALS. (Gosport)
        THURSTON CUP. Unr,Glider.
        MODEL AIRCRAFY TROPMY. Unr. Rubber.
        " COLD" TROPHY. C.Line Seune
        CONTHOL LINE (SPEED) All Spaed Clames
        S.M.A.E. A.C TROPHY. Radlo Control
        SIR JOHN SHELLEY TROPHY. Unr. Power.
    IOth Narsh Ease Coset Contente (Town Moor,
        Nawcantla-an-Tyn@).
    l7eh. International Madei Aireraft Content. (Black.
        pool.)
23rd/24th. Ifith International Meeting- (Baldonneil.)
    24th. fAlf Herta. Nally. (Radlast.)
    Bolean M.A.S. Rally, (Edreworth.)
    3lrt. (Centralised. (Cranfald)
        BRITISH CHAMPS. Rubber;Glider;Power.
        TAPLIN TROPHY. Radio Canerol.
        Daily Dlapaceh Nally. (Woodiord.)
Sapt, 7th, Yorkuhire Evanine Nawe Nolly. (Sherburn In
        Elmes.)
    14th. U.K. CHALLENGE MATCH. (Centrallsad.)
    2lst. Butin'e Conteste. All clagses. (Fliey. Skegnoss,
        Ayr and Pwllheli.)
```



```
    2grh. fFROG SENIOR CUP. Power, (Arem.)
        MODEL ENGINEER CUP. Glider. (Aree)
        Soueh Midland Area Rally. (R.A.F. Halron.)
Oct. l2th. (Ceneralhed
        OAVIES TROPHY, A and B Toam Raco
        RIPMAX TROPHY. Radla Control
        E/L SPEED. All Spatd Classet
Clubi are invimed to send in detads of Special Galas ar Open Days far
        inclusion ja thir regular Calendar
```

by cows after the second fight. Aftar moch repairing and the substitution of new wings, the managed a third maximum, but the jub was lost. On combined results of the twe powere climinators, the club has three out of the five Area qualifiers. At Tilsterk on the the May, for the Area Open Day. A. I). Bemutt wis top) in the Keil Trophy (and on collated results the National winner), hus Ames 3.5 pewered design having a better
 Hugh O'Donnell was the only member tomanage three flights and ageregated $3: \mathbf{1 0}$. Much test flying wacarried out, and several sete of thights for A. H and (Certs. made. All told, the club scored 20 maximums during the day, the only lost model being A. Bagnall's 7-ft. lung Nordic owng to a dit failure

During the next few weeks the OLDHAM \& D.M.A.C. are competing in an Anglu-American contest with the Minncapolis boys. Power, ghider and rubber events will be run on separate Sundays, tuams of six flying in each event. This is a nother club to have a thoruughly good time at the Area open day, an impromptu club comp. organised on the spot going to the lucky member totalling 27 : 42 in four succesisve fights, all terminating on the acroxirome boundary

Northern Aren

The Third Annual Exlubition of Hobbies and Craftheld at Easter by the SHEFFIELD SOCIE'TY OF AFROMODHLLERS was a great succes in all rospects. G. H. Mellar won the rubber and glider sections. another double win being by J. D. McHard in the solid and fiying scale classes. The latter mondel, a Vought SBC-1 (carrier-based biplane) powered with an Allion Dart was also adjudged the loest model at thr show. Other winnery were K. Thackrav (power) and J. A. Seymour (c/line). Mellar was until Feloruary a junior member, and is a very up-and-coming young man, not only in concours events but also in the field

The S'TOCK'rON \& D.M.F.G. held a contest for rubler moxlels on April $27 t h$, when, dexpite the rain, Tom Chambers won top place with atn aggregate in excess of eight minutes, one tlight being over 4 : 00. C. Plant and M. Kobson were runners-up, and it is gratifying to note that at last the top three places in a club comp. wore taken by original mexdels.

Midland Area

Rubber and sailplane models are most prupular n the J.F.ICFSTER M.A.C. at present, many "Ace" jobs being trommed for the final round of thas stage-by-stage contest. A small band of members visitod the A/2 elims. at l'erxhore but with no success, though a considerable amount of crashery was experienced. In the Midland Area knock-out affair, they were well and truly K.O'd by the Loughborvugh College lads, all flying $A / 2^{\prime} s$.

Hallor control receives a lot of atrention from the BER'TON ON TRENT M.A.C., C. Smith's Ruderbug' being a good performer after many engine changes. He is now engaged on a "Colath" fitted with a Magpie 15 c.c. A glider comp. resulted in a win for J. Vannam (7:34), ['G. Pellis being only 4 seconds behind for second place. Club records to date are glider, 12: 40, by 1). Clarke, rubber, 10: 110, by F. Vale, and power, $6: 18$, by M. Honton's Mallard.

Camage Cup day coincided with the SOIIHCLL M.F.C. dly-ofl against West Coventry in the Arca knock-out, the Solilull boys again coming out on top. Having had plenty of practice with $A / 2$'s the club was disappointed with thear showing at the first Ellminator. the unly members doing well bring \}. kogers and

Maune Manson. who placed 3rd and 5 th in the Area re-ulte., both flying models developed from Hanson's original $1 / 2$. In the first Wakefield Films the only two long-fucelage joh came to grief, one foul:nk as tuwline in nid-arr, and the other being struck in light by a power jobl And I suppove the owners politely anked the other thiers on kindly keep thers modeli in cheok 1! Or words to that effect.

The FORESTERE (Nottingham) M.F.C.. rluh hut is resonating long into the night with horeles of "Quickies " on the go. and it is tantamount to heresy" to suggest there are other $A / 2$'s. Pete Ball's vermion concistently does \downarrow minutes in still arr: nevertheless. the breat Hight recently' wa* Cytil Powell's 14 : MM n.o.s. with his uwn design high A / R job. Bill Ward has built an interenting swept-forward tailless moxdel powered with a Mills $\mathbf{7 5}$, a few hectic tights showing great promuse. Jadio control is prensing on. Douggie folton's latest job sounding like a tube train, but produces proportional non-sequence rudder and independent cut-oft. The snag sof far is that the cutenfl is too mad keen!

Coullo-Wiestern Irea

The second Area Rally was hell all ("hagford) Common in fine weather, though the wind increased during the afternoon. The site proved that maximums are possible, and several machines were lost- n three cases before thear unfortunate owners could make oftheial flighas I Ah. those test flights. R.A.F. type Peter Royle of the Midland Area put up the bert limes in both Wakefield and Power clasnes, the trip Area timen being : -

Walkefield	Moyle, P. 1. Tancorle, D. Tabine, W. I.	R.A.F. St. Mawer Pymouth Plymouth	$\begin{aligned} & 11: 4 \\ & 6: 47 \\ & 6: 42 \end{aligned}$
Aerrali	Moyla. P. J. Gibbant,由onern, 6	员A.F.St. Mawtan Execar Exater	$\begin{aligned} & 6: 01 \\ & 5: 13 \\ & 410 \end{aligned}$

In the open rublur and glider eontests sponsored by the Area, H. A. Stillings (Fxeter) was top glider man with 10:02, while Γ^{3}. J. . wh (${ }^{\text {Mymouth }}$) clocked 5:51 with his rubber machine.

May Ithth saw an inter-club meeting between the SALCOMBE M.A.C. and boys from the l)artimouth club, resulting in a win for the horne lads by 18 points to 3 . Inclement weather restricted Hying in the morning, but fine Hying was witnessed as conditions improved through the day. Outstanding event of the day was a demonstration of K/C flying by S/Ldr. Sholto-1) ouglas and H. O'Hefferman.

The PLYMOUTH M.F.C. held the first round of its rubber, glider. power and Jetex champunships on April 27th, the affair rumning over six rounds. Conditions were ideal, and thermals were about for the 2 ? competitors who marle the most of the unusual fine weather. One of the non-competing members made best tlight of the day with a tlip of $7: 13$ with ag glider. What a waste of energy I! Junor member G. I'arlshouse was top man in the comp., his A. Fs. "' Satu" aggregnting 7: \%5, the I-1 individual comp. Highe being by another junior. A. M. Shipman. with a time of $5: 21$. In the rubber event is juaior was again top, 1). Brock scoring $\mathrm{x}: \mathrm{st}$, and the story was completed when junior A. Thomas carried prower honours with $9: 10$. Only in the Jetex event did the seniors have a look-in when M. D. Kichard. returned ane thight of 7: $\mathbf{3 8}$. Thren club records were broken, and it is ewdent that the cluh policy of encuuraging juniors is faying dividends.
S.M.A.E. CONTEST MESULTS

Nouthern Area

Fintry for the Area $A / 2$ and $\mathbb{F} A .1$. Power events was much better than last year. nine clubs being represented. Weather was far from good, but it improved as the day wurean, and one or two manimums were recorded. E. J. John of (rrange did farticularly well during the Halfax, returning a tutal of $11: 21$. For the second Area "do" the weather improved, as also did the number of entrica, and Wabeteld tlying showed much improvement. but the same cannot be said for the pawer boyw. Ancother (irange man, J. Blackmore, topped the: Wakefield times with $1 \mathrm{f}: 08$: and Jolsm repeated his performance in the power section. Blackmure won the Area open glider event beld on the same day with a cone of II th. Ilying his oun devigned 10n-inch spun " Truant

Chuck gliden are recenving a lot of attention from many clubs these days, and the WINCHESTER M.A.S. report a hectic day of comp. work with this type of model following which the entrants had stiff arms, arhug torsos and much patched models I Times were not ligh. being largely duc to unhelpful weather. lut Bill Childs made a utal of o-1 seconds for threc flights, which isn't at all beal. A vailplane contest held
a week later resulted in a win for R. II. Lewis who aggregated 11: 06, including a max. on his second flight, this chap being in the lead for the Society"s championship with a two-point lead over Childs.

In addition to the successes at the Area meetings reported above, members of the GRANGE M.A.C. did well on May fth. Tony Brookes wound up his Class C Irec-fighter (Fox 35) for a total ratio of 51-1 in the Keil Trophy, and Dave Waters' 5 - ft . span tailless flew a $5: 39$ total in the Lady Shelley. Wicather was overcast, wath a slight drizzle.

Tluree SWINDON M.A.C. club records were broken on the occasion of the Swindon/Trowbridge challenge match held recently at Keevil Aerodronic. K. Smith, flying his A.P.S. "Nord 11" in the open glider event clocked 9:15, thus serting up new open and $A / 2$ record for swindon. The power ratio figure was pushed up by D. Turtel when his "Mallard" turned in a Hight of $9: 17$ on a 20 secs, enginerum. Trowbridge collected 27 points in the match, but lost out to Swindun who aggregated 30 , and it was a keen fight and a grand day's flyang- full points going to G. Waldron for his motor-cycle recovery service, appreciated bv others as well as the " middie-age spread " members.

BRISTOL \& WEST M.A.C. secm to be making a slow start this reason, probably owing to unkinder weather than experienced in mont other parts, accurding to general reports. Andy Wilson and George Woolls were the only representatives in the Waketicld Elims. Wilson's 48 -inch span with a 00 -inch single bladed folder appearing happiest in fairly stlll air, when it put up good times. Woolls lost his " Wizard II" on a test flight before the Weston (d/t failure), and his second string of a different design faled to get away in the second round, smashing the centre section. Ace speed wallah Λ. V. Coles is getting good times from his Dart powered high-thrust pylon free-flighter, but highlight is Gcorge Woolls' successful attenipt on his own rubber-powered talless British Recurd, which he has raised to ower the two-minute mark.

London Area

The recently affiliated WAL.JHAMS'TOW M.F.C. celebrated its first anniversary with a control-line rally in the playground of the local school. cups being won by D. Mason and T . Holbrook. Highlight of the meeting occurred when an " Elion " powered " Horneq " broke off the lines, and after a hectic climb was found two roads away I

The PARK M.A.I. has now got back on its fect after itn orgy of motur cycles (wot a pun!) and a grand day was spent on Epsoin Downs on the 97th May when they few against Surbiton for the first round of the L.A. Cup. Although they lont the round, some good times were put by boht teams, leat Park members beng W. Hinks in rubber, with 11): (11, and (9. D). Crable, 11 : 43, in glider.

south Walen Area

The Area was out in great strength at Fairwood for the Haliax and A/2 trials. It was a grand day, though a very high wind blew across the 'drome, and the Area welcomed a strong contingent from the K.A.F. St. Athan club, who gave a good account of themsclves. H. Savage of the Croydon club was another very welcome visitur. Irea results were:-

Haltar:	Eartar, P. Vernuy, M. North, P.	R.A.F. Se Athan R.A.F. Se. Athan Cardiff	$\begin{aligned} & 1: 19 \\ & 1: 06 \\ & 1: 95 \end{aligned}$
Gllder:	Phillips, d. Holland, f. Vermey, M.	Cardif Swantea R.A.P. St Arhan	$\begin{array}{r} 10: 52 \\ : 32 \\ : 18 \end{array}$

Frank IIolland lost his $A / 2$ in the first round after a fight of $3: 35$, and we learn that his Wakefield efforts have been dogged by 11 luck. Verney put up a new Fairwood " record" by breaking his tow-line five times. in one contest ! However, this did not prevent him making best times in the K.M.M.A. as the following list show:

K.M.M.A. $\%$	Vernay, M. ■oulear, D. 0. Devies, A.	A.A.F. St. Athan Part Taltat Port Talbot	$\begin{aligned} & 7139 \\ & 6151 \\ & 6158 \end{aligned}$
Gutteridea 1	Vickery, P. M Crumplin, E. C. Evans, B. J.	Swarmas Swaniea Swansea	$\begin{array}{r} 10: 30 \\ 5: 42 \\ 3: 51 \end{array}$

The CARDIFF MODEL RAILWAY GUILD has been invited to sponsor an exhibition of modely at the Welsh Ideal Homes Exbibition to be held at the Sophia Gardens Pavilion, Cardiff, in November, and it is hopeal to have as many local clubs as possible participating. Will secretaries of all model clubs and societies who are interested please communicate with Mr. L. C. Humphries, 8 , Vaughan Ave., Llandaff.

Snulh Einstern Area

Conclusive proof of some acromodellers' insanity was shown by the arrival of two coach-hads and several motor cycles and cars at the snow-covered Epsom Downs for the Surbiton Glider Galal However, the day was not wasted, and much energy was expended practising for the hard game of chuck gliding.
"Marsh Mutterings", the gen sheet frum the EASTBOURNE M.F.G., reports that a wonderful day was spent at the Ciamage comp. when Tom Underdown's glider broke the club record with a fine flip of $0: 50$.

A nominated timo comp. staged by the SOUTHERN CROSS M.A.C. was more furtunate than its predecesoor, and the unusual happened when the organiser, comp. sec. F. C. Smith, won the affarr with an error of only 11.5 seconds in a $4: 285$ nominated total. Grahame Gates seems well set to carry off the club championship, his announced total of 14:50 for fout flights being well ahead of K . Jonald's 12 : 28 for seven ditto. The Worthing section of the club has been wound up.
A new club for this Area is the LEWES M.F.C. which announces that thoy have followed the Henley club lead by making the very nominal charge of $2 / 6$ per annum for mombership, and mombership is steadily rising.
Finally, David O'Leary of 059, Hawthorn Road, E. Brighton, Melbourne, Victoria, Australia (age 15) wrould like to correspond with an Englash modeller about his own age, and interested in small powered free flight and C / L jobs.

The CIUIBMAN.

NEW CLUBS

LEWES M.F.C.
R. A. Ockenden, 45, Routhover IIIgh Stroct. Lowee, Sqasex. WALTHAMETOW Jik.C.
I). Pontle. 79, Heacronafield Rond. Wnithamatow, E. 1 \%.

ALI)FNIIAM SCIIOOL M.F.R. (forminly M.A.C.).
J. A. A. Carter, Mcuilis House, Aldonham School, near Elstree, Hertn.

GRCRETARIAL CHANGES

WHST BROMWICH M.A. ©C.S.
N. A. Groucutt. 29, Nicholl gtreet, Weat Hromwicb, Stafle.

GIRANTHAD S.M.E.
1R. (iorard, \&2, Hongtion Road. Grantham. Linca SOCIFTY OF BFIIF゙OHD AKROMOINLLERU.
J. R. Mathers, 8y, Potnoe Lane, Hedford.

WALIAREY M.A.C.
12. A. Alexander, 32, Grange Rond Weat, Birlenhead, Ches.

THE OUTSTANDING EVENT OF 1952 YORKSHIRE EVENING NEWS 2nd National MODEL FLYING FESTIVAL

at SHERBURN-IN-ELMET, YORKSHIRE on 7th SEPTEMBER, 1952

PRIZES. Will be more extensive than at any meetung held before in thls country, gtulng the maximum number of modellers a chance to win something usaful.

CONTESTS. - To suir all popular pastes.

I-OPEN GLIDER. IV-CHUCK GLIDER
II-OPEN POWER. V-CONCOURS, free-lance.
III-OPEN RUBBER.
VI-CONCOURS, scale.

VII-TEAM RACE, elass A.
VIII-TEAM RACE, class B. IX-NOVELTY.

RULES. -Will be kept to a minimum with no unnecessary restrictions. The accent is on pleasing the modellers, for instance. there will be no fixed "rounds" for the contests.

You cannot afford to miss the most outstanding model flying event of post-war years. The meeting devised for the average modeller, not the experts. Organised by the Northern Area Committee of the S.M.A.E., sponsored by the Yorkshire Evening News, Trinity Spreet. Leeds, 1.

JETEX OUALITY KITS

 -for the diseriminating model builder Desigh based an ucthenilc creation In Nm "When Worldr Collide".

Avro 707 (Jetex 50) $7 /-$ The firtt jet oropelled Delea Wing tit in the world. Eary to burild, and s fine frer !

Hove you got your now
JETMASTER?
Thle wique motar oflere tha parfect toramelrin power lor mill fre fliche modela. It in mefe and engy to load and aperate.

Mereor (Twin Jetare 50) 10 7 Scale modal of the famous iet firhter. A beautiful model that joake and fies like the real thing.

JETMASTEA

AUGMENTER TUBE

Thls tubs, which boote the
$\begin{aligned} & \text { This tubd. Which bodets the } \\ & \text { thruat of the detmaneer from }\end{aligned}$
If ozs. up lo 2_{i} ose. mas
developed in co-operation whith
the Low Speed Amrodynamle
Assodation.
Price (linc. Itiniter wire in $D /$
funce).

Jetex kits, a few of which are illusirated here, are high quality productions designed by model jet experts.
Your model dealer will be pleased to show you the complete range.

Nececer. For Jetez 100 or 200. No sofdering revpuired. Kit includer plenty of mararleth and rubber tyred matal whede.

Kiodly mention . IERO.MODELILER when roplying to rederrtisprs

E．LAW \＆SON（timber）LTD． 272－274 High Street，Sutton，Surrey
 Phone Vigilant 8291
 LARGEST SELECTION OF
 BALSA OBTAINABLE

Some popular sizes．

Note the Price ！！！

Sheet in 3 in ．Langthy

Sheet in 36 in ．Lengths			Strigin 3 in．Lentict		
12 $\times 3$	9 d.	each	tas sq．		1／－doz．
1 $\times 3^{\prime \prime}$	9 d.	＂	$1 \times 1{ }^{\prime \prime}$		1／－ 1
1 $\times{ }^{\text {² }}$	10¢d．		$3_{32}{ }^{\prime \prime} \mathrm{sq}$ ．		／－
$\frac{1}{2} \times{ }^{3}$	1／－		$j^{\prime \prime} s q$		$1!$
起 $\times 3$－	$1 / 2$	－＊	$]^{\prime \prime} \mathrm{sq}$		2／－
1×3^{2}	$1 / 3$	＂	t^{*} saj．		2／6

Our 1952 Price List，containing full details of all BALSA．OBECHE，and SPRUCE sizes，also DOPES， CEMENTS，etc．，Is now ready．Send 6d．stamp for your copy．

TRADE ENQUIRIES WELCOMED

IBUD MDIRGAN

the model aircraft specialist

All orders over 30，post frae．Under 30．end I J for pontage and packing．C．O D．and PHONE ORDE日S WELCOME Joinmy Savinga club N OW．Sand for full particulars．Overseas Orders Free From Purchase Tax．My now 1952 Price Lite Ad

IT＇S NEW，the VERON＂LAVOCHKIN 17＂a model of the latest Russian flghter driven by an entirely new duct impeller，powered by any small t to t c．c．motor；the Allbon Dart，Frog 50，Elfin -5 or Mills 75.
Kit includes ready－made impeller and starting pulley and all materials to complete model．Price 30 post free．

SECOND－HANDENGINE BARGAINS
 E．O．Bee I c．c．
 D．C． 350 Dlesal
 free 500 Glowplus
 EO Mk． 2 （Rugingl $24 \mathrm{c} . \mathrm{c}$
 EIfn｜ 49 ce
 Elfin 249 c．c．
 Allbon Javelin I 49 c．c．
 O．K．Cub
 Baby Spicfire
 SEND FOR FULL LIST $55 /=$
 Second－hat OF MY
 CONTMOL LINE KITS
 Fros Vantage d． 8
 fros Vamdiver
 Fros Vanfre．40
 Varon Panther． 41^{-1} Minibuter， 19°
 Fock Wulf．33ł＊
 Horner， 20°
 Auser． $27^{\text {² }}$
 K．K．Pacer， $30{ }^{\circ}$
 K．K．Ranger

ENGINES

E．D．Beel c．c．
D．Comg． 2 c．c．
ED．Ricer 246 c．c
Elfin 149 c．c．
Elfin 2－49 c．c．
Frog 150 Diesel
Fros 500 Glowplus
Mille 75 c．e．
Mill 13 c．c．Mk II
OC． 350 Diasel
D．C． 350 Glow plus

57！

GLIDERS

frog falry． 30°（new）
Gnome， 32^{*} Mercupr
Mareury Marin． 40°
Kell Cades．36 ${ }^{\circ}$
Kell Invader， 40°
Grebe
Frog Fostura．48
Frog Diana． 36°
Mereury Marauder，64＊
Vapan Vopten， 86 K．K．Chilf． 641°

48

 $59: 6$ 51：／ 49 75 ！ 6 6． 91 668Full range of X－ACTO cutcina knives and rools in mock from 1／－ to A y sind for llfustated prica lust free．

20 \＆2Ua，CASTLE ARCADE，（URDIFF

 PIONF： 29095

How-ta-da-it Magazine of U.S. Madeldam

Read flying models, the only American magazine devoted exclusively to model aviation! Every issue Includes how-tobuild data on new model airplanes of varlous types (with full-size plans wherever possible) . . . worth-while hints . . . photographs . . . how. to-do-it information . . . and features for sport aplenty !

> Published every ocher month.

$$
\text { Annual (6-issue) subscription: } 12 / 6 .
$$

Mail your order and remittance to-day to
atlas publishing \& distributing co., lid. (Depr. A).
18 Bride Lane, Fleet Street, London, E.C. 4

WE DO NOT OFFER

but we DO Offer you

The best HIRE PURCHASE TERMS on Engines, Kits and Radio Control Units, Hobbles Fretmachines and Lathes. Trix, Rovex, Gaiety Locos. X-Acto Tool Chests.
NO DEPOSIT SCHEME for all customers who have compleced a purchase in a satisfactory manner.

HIRE PURCHASESPECIALISTS
5 VILLAGE WAYEAST
ПAYNERSLANE HARHOW. MIDOX
(2 mins. Rayners Lane Slotion. I
Tel. Pinner 0459
S.A.E. ior enquiries please.

Enginar run for Parsonal Callars

MEMO

TO ALL WHOLESALERS AND MODEL SHOPS

Have you heard about the new range of finishes now in production at our factory in Chesterfield? Drop us a Ilne and we shall be pleased to forward you full detalls, samples will be ready shortly.

> Yours faithfully.

BARRON INDUSTRIES (chesterfield) LTD. WHEATBRIDGE ROAD, CHESTERFIELD

[^0]
FOR
 Quality, Reliability and Maximum Power

Choose the best in its class

AEROMODELLER Engine Analysis shows the Mark II D.C. 350 to be the most powerful 35 c.c. diesel they have yet tested.

```
DAVIES-CHARLTON \& CO RAINHALL ROAD. BARNOLDSWICK Via COLNE Tumbin: BRN 3310 _LANCS
```


It's done in a TICK with Scotch boy'

THE ORIGINAL

Just the thing for hundreds of sealing and mending jots. Invaluable to the modelmaker and handyman - a miracie of usefulness.

Whan buying, loak for the Scoteh Boy Trade Marh and the handy red plaetic Dispenser.

Shops showing this sign
sell the best value, -- WE STOCK ETHOROUGHIY RECOMMEND lowest priced and highest quality handy home products.

EIf any darsulty in obeaunino a pwand

TWO NEW SHELL FUELS

SHELL dovote

 much care and re search to producing fuels for model air. craft as to the evolution of specialised grades for glant aero engines. Two new specially developed Shell fuels are now available - the result of close co-operation with the Frog enginecrs of International Model Aircraft Ltd.:-
SHELL POWA-MIX tor model diesee

 alrcrate engines
SHELL RED GLOW

for hot coll on-
gines and for spark ignition engines with too high a cumpression ratio for gavollne mixtures.
Sold in malf.pont gressura luel packs for eatar, awifter re fuelling. by International Model Aircrate Lida TrrAng Work, Morden Road. S.W.I9.

FLUXITE QUINS AT WORK
Crind EH "With the greates? delight We award yeur the first prize an sight. O deor, dear me A cotostrophe 1 But FUXITE"Il pur that loe pight."

See that FLUXITE is always by you-in the housegarage - workshop - wherever speedy soldering is needed. Used for over 40 years in Government works and by leading Engineeri and manufacturers. OF ALL IRONMONGERS, IN TINS I/ upwards

TO CYCLISTS! Your wheels will not keep round and true unless the spokes are tied with fina wire at the crossing AND SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE -but IMPORTANT!

A1. MECR ANCS WTLE HAVE

With finish, endurance, rellability and performance comparable to previous Eifln designs Price 67,6 inc. P. Tax t SOME 195ICOMPETITION WINNERS: Gald Trophy-las: Aan Hawite Shellay Cup-lat Petaiwyart. Gowdem Ineernadonal Trophy-Is1 R Ward. Apromodellar h/C Trophy-lis: W. H. Taylor Krobke-surmar Opan Seunt-let: Alan Hewitc. as Schipol" Amaterdam-lat: Clas III-Spaed: E. K. Reulin sind L. K. Suls Swedish Consent Record-3rd MayModel Race Car "Alla Romeo" powered by Elfin 249. Spaed $104 \mathrm{km} /$.hr .

Made by AEROL ENGINEERING. LIVERPOOL 3 Home Trade distribution through
E. KEIL \& COMPANY LTD. London E. 2

YOUR COPY ". moltim for you at our. nual model shop or newsegent. If in ony dificulty send P.O. for $\mathbf{2} /=$ and secure the cupreat number direct from the publishers. MODEL MAKEA if the same size as AEROMODELCER and cantdins 68 foct-packed pages for your fireside of workthep reading'

MODEL MAKER

 38, CLARENDON ROAD, WATFORD, HERTS.- The NEW MODEL MAKER catery for ll who make models or make the rools to make models. Every phuse of model making excape aenomodelling is covared month by month. Whether your interence lia in miniarura railway of 00 or 0 gauge. largar phstanger carrylagtralms. model cara, solld, raeling or scale. modal zallont erafe. raclng yaches. powar boave, crulsers, or exhlbelon craft, steam englnes, there is something there aech monch for you. Other aspects Include photographle gadgers you can makemodellers are marly all photographere ! - Improvamanen so your homa workshop. In face eay and everything so which she man - or waman - with che urge te malie models will eurn - hand. Abova all. ramember MODEL MAKER la a compenion jurnal ea AEROMODELLER with the eame bright approach, the zame fine diegenme, and halfene tillustrations.

CLASSIFIED ADVERTINEMENTS

PNESS DATE for Auguit, 1952 ivict. dune I9eh. 1952
ADVEATISEMENT RATES:
Privete Minimum 18 warde is., and Ad. per word for
Trode aach aubsequent word.
box numberis are permisgibla-to count as 6 worde when costing the advarticament
COPY and Box No. replies should be tent to tha Classified Advertiement Deparemene. Tha "A momodeller." 34. Clarendon Road. Wacford. Herts

FOn SALE
 GP. 110/-. C. W. Uraper. "Loy and Rabilt"Ien, Warsop. nr. Manstiald, Notes.

Fight (ontrol Tranamitter and Batterlea, 60 '- rileht (ontrol Renolver, $35 /-$ Iry Roceiver, $40 /-$, F.C.C. Kecolvor nnd Hifape. mont, $45 /-$, F.C.C. Rexoiver, 30 ,-, S iv. M.S. Alrwhouls, $10 /-$
 $40 /-$ Two Gryb Aoros, anch 30, Allbon $2 \cdot 8.25$;- Now Supor Orclone Plus Eloctrich. 120, Len' Wobl, 30 Sutton Court Rond. Hutton, surres. Tel. V1G. 0709.

IIot RTA 29, 95/-, Frog 500, 35/- R.D. Comn, Filnn 1.8. Varley Ury Acrumulator, 10 /-carh, b.l). Bee, $25 /-$. Hoyce Reel, $25 /-$ Jarkin, 10, Grango Road, Kothorhom.

Brund Now E.D. Mk. II Dioeel Compertition Special, prrffoct condr tion, $00 /$-or newrest offer. Herd, Vhetorla House, 1’ourth. Cumborland.
 Ronlc apinner. $35 /$-. Pothe, 31 Rodney Ituhl, (inumork, Henfrew. sbite.
Dynajet, with mare salrea, runtigg rondition. wh or offer. N. Longr, 1 Quexnborough (iardens. ilford.

 used, all typer, $30 /$ lot. Box No. 16.5

TAADE

Solocthon of first claps und motors. All teated. Alm part ox harree or purchase. S.A.E. for particulars. Model Suppllen. if Bath Raed. Bristol 4.

Amerlcal Mayozloca, une year'm aupply, fust free. "A Model Aimbane Newn ", 25/-: " Popular Mer"hakn", 32 /-: "F'lying" 28/9. F'or full liat and etamp to Willen Lid. (Dept. 1), 101, Fleet Streot, London, E.C.í

Now muchinery from atuek. Ilall-inch Moturised Drlling Mechinew, \&20; Wvod Manlag Marbinon from 29. 10s, 0d.; Sanding Mechinem from E7. 10. Od.; Forye Mlower, Palnt Sinces Plonta, Electric Mulars, Urindert. atc. Defermal tornio avallable. Catalumue from manufacturers. Jobn A. Steel. Nept. 74. Hinuley, Yorka,

WANTED

Stentor \boldsymbol{A} cumponenth, in gartloular. crankcase, blaft housina ; up complete englne. J. (ilen, if, Merchiston (jardens. Ndiuhurgh io.

HOLIDAY COURSES

learn to fyy. 7 day aliding Coursea for beginners with the Scutcult Gilidiny Uulon at Kinrona. Inatruction to $\&$ (eiftificate htandard. All-fa fee of 2lı, 12s., Including Hatel Accommodiation aud Moals. Write: The Coune Socrotary. 2y, Bemony Terrace, Kdmburyh 12.

AEROMODELLER SUBSCRIPTIONS

All subscription enquiries should now be directed to the

ARGUS PRESS LTD.
44, HOPTON ST., LONDON, S.E.I

HIVAC

THE STMENTIFIC VAEVE BRTISH = MADE

Including
XFGI-a subminiature gas-filled triode for the most efficient single valve circuits.

> PRICE 17 '6 EACH
> Hua Purchase Tax

Hivac Lld

CAESCENT, HARROW-ON-THE.HILL, MIDDX Telephane: HARrow 2655

The Howrenth Tepe ther alvoys 9Hes
WIN 1250 SENO AN ORGNAL USA WITH AMPNT CORA TO

ALLBON DART
 - THE IDEAL POWER
 UNIT FON SMALL
 PGEE FLIGHT MODELS
 - EXCEPTIONAL POWER WEIGHT RATIO
 - EASY STAMTING

 - PRICE 65/2
 0.5 c.c. DIESEL

L.S.A.R.A. Report

"Our tast report (of the Dort) sives a deak power of $0053 \mathrm{~h} . \mathrm{p}$. as $14.500 \mathrm{rp.m}$. We first gor results of this order same montha apo. but have checked them by three different methods as we found them unbelievable, and recheching has been the saute of the deloy."
allbon engineering co.

Ltd.

THE FORGE, COPLE, BEDFORD

Sole Distributars

DAVIES-CHARLTON a CO. Mainhall Rd., Barnoldswick, via COLNE, LANCS.

The Shop with the Stock

FULL RANGE OF ACCESSORIES

Emdea Engina Bearern 1/10 par pair. Emdee Timors 6il. Fuel renkiff 3 IC/L 13 TR IS e.c. $3 / 430$ c.c. 1 a Adusialyne C I Mandlas © K K. Cil wira 26 Tajmracer pilats 2531.

 Hub caps $14 G 1$ op. 10 \& 12 Gd. pr Fiat rubber specasl ofler

JONES BROS of CHISWICK
 (1) min. Irom Turnham Graen Station)

 Phomom fiff mNGN

And 1H!

It's VIW! It's REST! Its POWEBFLL!

Anmountions

The "(A) (D)

 '1HE LATEST $2 \cdot 19$ ec DHESELA Real Competitinn Winner for the 1452 Flying Sicason
ine. P.T.
REEVESMOIDII. POW IIR I NITS
VICTURIA KOAD, SHIFNAL, SALOP

Comalitionss of Saler

This periodical is mold subjuce to the following conditions:-
That te shall not, without the writeen consene of ehe publishers, be lent, resold, hired-aut or otherwise disposed of by way of Trade encepr at the full recall price of 16 and that it shall mas be lenk. resold. hired-avk or otherwise disposed of In mutilated condicion or in any unaushorised cover by way of Trada: or affixed to of as part of any publication or advertiang. literary or pictorial master whatioever.

THE *AEROMODFLLEFR ". 28. (LAKENIMON ROAD.
WATFURD, HERTS.
Talephone: WATFORD S4es

[^1]
FOR QUALITY • VALUE

These are the kits that outsell all others. They are easy to build and can be depended upon to have good performance and long life. Find they look good too-models that you will be proud to show your friends!

Beginners duraeson
k.k. firsit iles ol 7,4

Skystreak 25 spas Fuf stunt model for E.D. Bee or simi- ||
lar mocors

TWO GREAT

TEAM RACERS

The 30° span PACER class B ratan racer at tary so build, and aas 80 fly . Although desigred to comply with S.M.A.E. ream racimg rules. it is also an excellent model for getracal poort flying- Plan given full. sle installation drawing for seven popular $\begin{aligned} & \text { engines. Irom } 25 \text { c.e. upwards } \\ & \text { Prica } 8 / 4\end{aligned}$

The RAHGER 24- span class A team racer for amall engine awnars. A rugted racer whth installaflon deawings lor five gopular angines ud to 25 cc. Price 1210

Both of these $T \cdot R$ kils are monderfus value. The bozes are simply epamoned with ist clay maternals !

[^0]: Telephone: Chesterfield $\mathbf{4 0 4 2}$

[^1]:

