AEBD MODELLEB

BRITISH NATIONALS
FULL SIZE PLANS OF
SIPA 200 MINIJET

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

SPITFIRE 1 c.c. $64^{\prime 2}$ INC. TAX

Designed espegally for the boginnor with easy starting the koynote, $l t$ is. at the same time, the most powertul I c.c. motor on the marker. Needle valve assombly has now been modified, as can be seen in mocempanying photograph.

For they denote quality, performance and reliability. Characteristics enjoyed by every motor In our range. Go into your local model shop and examine any one of our motors. Note the excellent finish both internal and external ; feel the solid resiseance of really sound cylinder compression, made possible by individual honing and lapping in our modern engineering works. Thousands of pounds worth of precision equipment operated by first elass engineers is your guarantee when purchasing a Davies Charlton Allbon engine. Note too that you can purchase them anywhere. Supplies of every motor in our range are readily available, our pollcy being never to advertise goods that are not in stock.

II atch thest advertisements
 ditions foome ramer matabile is the worn fotwre.

Manufactured by: DAVIES CHARLTON LTD. Barnoldswick, via Colne, Lancs. Tel. 3310

Sole Trade Distributors: E. KEIL \& CO. LTD. 195 Hackney Rd., E.2. Tel. Shoreditch 5336

RAOIO CONTROL

COMPLETE OUYFITS
E.D. Mk. II, 3-valve unit. Complete eranamieter and rectiver ondy

194 0- 556 P. T.
E.D. Mk. IV Tuned Reed 3 channels unit. Including control box.

Complete 4000 75:0 P.T. E.D. Boomereng. 100, 0. 359 P.T.

TRANSMITTERS
ED. Ill and aerial 02, 4-16/5 P.T E.D. It and serial 1120 O 18 P.T. E.O. IV, control box and aerial
$160 / 0 \quad 10$ OP.T. E.C.C. Transmitter Unit

50,0.9/44 P.T. E.C.C. $1061 \quad 700$ 13/2P.T.
E.D. II RECEIVERS 1840 31/6 P.T E.D.IV 240;0-15/0 P.T. E.C.C. $511 \mathrm{~A} \quad 1010 \cdot 13 / 2$ P.T. E.O. Boomerang Receiver Pack (incl. sicapement) 109 :' , 17/2P.T. E.D. Boomerang Receiving Set only 890 i $13 / 5$ P.T.

COMPONENTS

E.D. escapemants, compacs and normal eype it.6-3/i P.T. E.D. polarized relay \quad 10/0 E.C.C. 5A relay $25 / 0$ E.D. Seandafd relay. E.D. Reed Unle (hizh or low frequency, state which) 100
 O. Iy Conseol Box
 Venner Accum
available (free).

OADERING
 INSTRUCTIONS

HOME CUSTOMERS. Cash with ordar or C.O.D
POSTALINSTRUCTIONS.
All ordars under 10/-add Sd. $25 /-$ add $1 ; 1$, $40 / \mathrm{m}$ add $1 / 6$. $25 /-2 d d$
over 40 ;- post iree. for overseal according to possal service requested and destinacion. Postal information concerning dispatch to any country flyen on request. Gash with order or C.O.D. Soe previous lesues for lise of countries.
NOTE. Will all cureomers requiring information pleate include a S.A.E. or if overseas International Reply Coudons. Customeri rasidant outtid United Kinedom, including H.M. Forees, buy frat of Purchase Taz.
Correct rates of exchange given.
FORORES CLUBS, Recon. nised Clubs can buy on a credit account. Detaile on Maquast.
Madel shops averieas supplied, write for termm,

ENGINES
The supply position varies from day to day, hnd apart from E.D. and Allbon products le is imposible to forecast stocks as ablication dee.
Pmeo 8 B 35 O2 17. Allton Dart. I 5 c.c. Il Albon Dart. 15 c.c. It $540 \quad 17 / 3$ Allbon Spitirg $\quad 540.10 / 2$ Allbon davelia $\quad 55,0-10 / 2$
D.C. 350
E.O. 46 Hornat \quad is \quad 45.0: 72,3
E.O. Bee le.c 45:0:7\%3
E. 246 e.c.
E.D. Mk. Iv 346 c.c.

Munser
E.D. 146
D. $\quad 52.644 .6$
.D. 246 Watercooled $18.5+10.9$ E.D. 3 4t Watarcooled Fros 50.5 c.e.
roi 500 Red Glow
$616-100$
fros 500 Petral …
Mills P. 75 … $\ldots . .300180$
Millis 5.75 … \ldots.

Elfin 5 c.c.	\ldots	\ldots
Elfin $1 \cdot 49$ e.c.	$47 / 6=10 / 2$	

Elifin $1 \cdot 49$ e.c.	$47 / 6: 88$	
Elfin 249 c.c.		

XACTO TOOLS. From ${ }^{3} 0$
No. 86 rool Chent, 440 . No. 82
Tool Chast, 300 : No. 78 Wood Carring Sac. 176 : No. 77 Wood Carving Sot. 230: Na. 1 Knile (with No. II blade) 30 : No. 2 Knilo (wizh No. 22 blade). 3 E: No. 5 Knifo (with No. 19 blade).
 and 6 blades). 5 $6:$ No. S2 Knifo Sas (No. 2 knife and 6 blades), 6/s No. 62 Knife Sec (No. 1 and 2 innivai with 12 assorted blados) $12 / 3$; Na. 50 Planc, $5 / 6$; No. SS Spokeshave, $3 / 6$; No. 58 Serippor, $5: 0$ An X-ACTO illustrated leafict will be sent on receipe of S.A.E. Containa full renge, prices and contents of tool chests, etc.

BOAT KITS

ENGINES (continued) E.D. Milar Spacial E.D. ${ }^{5}$ Milos ${ }^{\text {² }}$ Special Sc.c. Watercooled 1400 30/0

Fras

Vanfire

Vandiver

Yaneage
Rangar
Pacar
Stunt Queen
Skystean 26°
Skystouk 26
Shysereak
Phantorn
Scout Biplano
Phantam Mise
Berron
Panther
Minibuatel
Philibustor
Midger Musrang
Focke Wulf 190
Soa Fury Mk. IX
Soitfira Mk. XXII
Wruern
c.L K1Ts

040 . All ppare bladel in veock.

Marlin. 36° Ions 10° beam. Balsa and ply con1 ifuction. designed oxpressly for $R \cdot C$. For

Taycol Eleceric Motor
P.T. for above

- Suipsble for radio.

15, 2-2-2,6
Flywheels, marine units, universal couplings for E.D. ensineg.
Your E.O. Conip., Mt. 111 or iv can be converted to watercooling.

P. E. GREGORY \& SON (ALTON) LTD., ALTON TEL. 3376 HANTS
 AN UNEQUALLED RETURN POST SERVICE, 3d. STAMP FOR LISTS.

JETEX
Please note thas thast goods marked art not available for immedise delavery. All emest "Inserceptor Fiehecr" hava been promised wishin 3-5 wieks al publication date. Ordor now and bat publicationdata. of early davery.
mssured MOTOR OUTFITS P.T. Arom 35 $\quad \cdots \quad . . .8$ 8,01. $1 / 4$ 50 Outfix
508 Outfe wish Augmenter Tube $\quad 1011+1 / 10$ 200 Outft … ... $318 \quad 5 / 3$ Jotmascer Outfit $\quad . \quad 24.0 \quad 1,0$ Scorpion Ourfir with

Augmener Tubu 39,
demaster Augmencer
Tube 50 lod . Tube
sob Augmenter Tube*
$2.4+5 \mathrm{~d}$. Arom 35 Fuel \quad ($54-31 \mathrm{~d}$. 50 Funl … 1 告 4 d. 100 Red Sporfual ... $2!6+514$. Scorpion Red Spot Furel $4,3+9$. Wicks, Gauzer. Discs, oec., ofc.

Yoodoo (SO) … 6.4 $1 / 1$
Hawker Hunter (d) $15,2,7$

Supermarine Swife" (1) 18, 3/0
Sperrow (35) … Ji3. 6d.
M7 Kicionly $\quad 41+8 d$.
Swate (50)
Iavelin (SO)
READY-TO-FLY MODELS
All complete with Mator(i), Ful. Wicks. ette.
 Incerceptor Ficheer (50)*
Wran (35)" $\begin{array}{r}270-1 / 6 \\ 100 \\ \text { (} 0 \text { - }\end{array}$
$\begin{array}{lll}\text { Jeticopter } 50 \\ \text { Jaticapter } 100 & 5 & 5+1,0 \\ 1 / 5\end{array}$

laticapier 100	8	$1 / 5$
Flying Wing 50	5	$1 / 0$

Hat Dos $50 \ldots \quad 3 \quad \ldots+7 d$.
$\begin{array}{llll}\text { Consest } 200 \ldots & \cdots & 1 / 5 \\ \text { Avro } 707 \mathrm{~b} 50 & \cdots & 5 . & 10\end{array}$
Avro 707b 50
Zyra Space Ship kis 5% g. 10
gita. $1 / 0$

Vampire 100 … \quad get- $1 / 5$
Meceor S0
Saunders Roe Flying
Saunders Roe Flying a a $1 / 5$
Boat
All K.K. Scale Jer Kirs as advertised
K.K. Skyiet 50 3/0+ 3 6d. K.K. Skyjor $100 \quad$... $\quad 5 / 4+11 \mathrm{~d}$. K.K. Skyiet $200 \quad \ldots \quad 7,6+1 / 3$ 5Ayleada llor 501:-
Arro Mig.is. Avro 707A 3,0 0 6d.
Skyleada (for Jatmaster
Comer and Vulesn... 7 3) $41 / 24$
GLIOER WINCH
Ingxpensive and stronty constructed. Wooden pistol grip fitted wish Iree running meral drum and line tuide. Drum moseures 5° diemeter. 1° wide. havine ample line capacily. Finished in alossy red and
s 1 -1,0 P.T.

VERON are extremely vorsatile in the vast range which they offer, not only do we manufacture the well known VERON Aircraft Kirs but we have also incroduced-with pride-powered boass such as the "MARLIN" MARINE CRUISER and its companion the London River "POLICE LAUNCH", The "MARLIN ". a newcomer, Is designed to meet the needs of those whose interests are focussed on Radio Control, while the Police Launch-its predecessor-has found its popularity by the ever increasing demand of model makers everywhere.
iwo super kits VERON GIVES YOU THE BEST IN VALUE!

TO MAKE AND FLY
DURING SUMMER MONTHS

IB- span supor quality kit af tho well-known swepr wing jor which is so much in tho nows and has arrived in larse numbers at R.A.F. reations in this counery. KIs inclade: a perfectly laid out plan togother with cockpit coveri all materials and insignia transfers. 6'5 Ideal for letax 50 molors. Inc. P. Tax

Wing span 37', langth 27". Arma 188 sq. in. Moderniscie In appearance and a " good looker", This is the ideal kit for all those who wish to make Itart in powored flighs. Simpla parts. Waght less engine, 6ifors. Inc P Tax

DIESIGNED EXPRESSLY FOR RADIO CONTROL
Veran aro proud to present ehls suparb free-lance datgen of a Cabin Cruiser for 1 to S c.e. powne unles or electric motars (12 vales).
The cabin eop can be built as a completoly removable unie for access so tho commodious radio well. Stage-by-staga constructional devalopmant is shown on a wonderlully complese 30°, 40° plan with iully detcriptive instruction leaflos. Kit has almast completely prefabricated balsa. ply and hardwood parts using tha " basic-bax " sysecm.

POLICE LAUNCH

Here we have the ideal companion for tha "MARLIN ". This is a 26° replisa of the famous prototype used by London's River Police. Ideally suitabla for small Diasel or Electric Morors. No shafe or propellar is provided, thus enabling you to fit the progulsion of your choice.

Like the "MARLIN " this boat is of unsinkable construction.

42'-

ASK YOUR DEALER
FOR THE "VERON " POCKET FOLDER

The last word for the control of all models which demand progressive, personal and accurate following of multiple orders.
In weight and size the complete receiver and battery assembly can be used for model planes of down to 66 -inch wing span and boats of 30 -inch length. It is also the anly type of equipment capable of operating both salls and rudder of model sailing boats.

A self-contained transmitter housing all batteries and with 8 -foot sectlonal monopole aerial is supplied with a general purpose hand control box for three channel operation.

The receiver uses standard hard valves throughout with an average life of 3,000 hours. Receivers are pretuned to the transmitter and once installed there is no necessity for any further adjustment.

The receiver outpur will operate either escapements or electric motors.
Receiver sizo: $5 \times 3 \times 2$ inches. Receiver weight: $8 \frac{1}{2}$ ounces. Recoiver battery weight
Range exceeds: 1,000 yards.
PRICES

E.D. Mk. IV. Tuned Reed 3 channel Unit completo
Separately
Receiver 14 . 5 . 0
Transmitter, Control Box and Aerial, 69 . 10.0

All leading mokes stocked，in－ cluding full E．D．range os odvertised． Allben Mk．II Javalin
Allbon Spisfire í c．c．＂ $54,0+10.2$ E．D Baby 46 c．c．．．． $45: 0+7,3$ Mills 0.75 cec．．．． $50.0+8,0$ Milss 0.75 c．c．，with cut
E．D．Beol cer $550+9 / 10$ Mills 1．3 c．c．$. . . \quad 750-12,6$ E．D． 1.46 c．c．．．．\quad 52，6 $+4,6$ Froz 1501.5 c．c．$\quad-\quad 40: 6=6 / 9$ E．D．Comp． 2 c．c．$\quad \cdots \quad 51 / 6+1 / 3$ E．D．2－46 c．c．Rzeer ．．． $72: 6$ 5／0 Elfin 249 c．c．．．．．．． $560+10,6$ E．D．Hunser 3.46 c．c．．． $72.6+6.0$ D．C． $3503 \cdot 5$ c．c．$\quad . . \quad 66 \cdot 0+12 / 5$ Amco 3.5 B．B．
 A 29－Sarios 30 5 c．c．Racing Motor Freom Stock．
．19．6 ， 11.25 fros 500 frog $5005_{\text {park }}$ D．C． 350 （G） fual Cur－atf Yalye Al lemdilar fuelm whocked JITHAX

Jetex 50 motor $7611 / 3$

 terax 50 Outic $1011+1 / 10$ jermaser … $240141 / 0$ ermaseer $3401.1 / 0$ $\begin{array}{ll}\text { Jerex } 200 \text { Oulfie } & 31: 8!5!3 \\ \text { Jerex } 350 \text { Outfie } & 132: 7 / 4\end{array}$ $\begin{array}{lll}\text { Jetex } 350 \text { Outfic } & 13 & 2: 7 / 4 \\ \text { Ausmenter Tube } & 5,0: 10 \mathrm{~d} .\end{array}$ Hawker Hunter，withJotmaster．Augmen．
cor，camplete
fuels ond soares in slock
Jotex Kits as adyertised by tho leading makors

IDEAL IN DESIGN AND FUNCTION
Tho Am．Pull marks che firse soriou deparsure for yeara in handles，and its ad－ vanced dosign is winning convares every whero． Once you have experiencod the oxtra deeree of fine adiustment the＂AM－Pull＂offers， parcicularly In contest flight，you will mever ant to fy withoue is
ARTHUR MULLETT＇S
＂AM－PULL＂
CL HANDLE

 Complats ossembics of kils，motors ond props selected specially ty A，M．for maximum performance．
Veron Ducted－Fan Sabre wieh Allbon Mk．II
Dart and correce pran

K，K．Bandie with Allbon Spitfire and correct prop 2 E

Flyine Scale Sorios 30 P． F ． ＂Sunanvind．＂Availablo equin－ famad sailolgan ．． 10.6 BARRY WHEELER World－champion Eliminitor kix

Froe Plight Powe
Slicker Mive，32＂ $9,6+1.7$ Soucherner Mice， $32^{\circ} 10 / 6+1$ 19 Skyian，38 $\ldots \quad$ 10，6 1／9 $\begin{array}{llll}\text { Skyian，} 38^{-} & \cdots & 10,0 \\ \text { Pirate．} 34^{-} & \cdots & 12.0+2 / 0\end{array}$ $\begin{array}{lll}\text { Pirder } 14 & \cdots & 12.0+2 / 0 \\ \text { Slicker，} 42 & \cdots & \text { ．．．} 17: 6+2 / 11\end{array}$ $\begin{array}{lr}\text { Slicker，} 22^{\circ} & \text { ．．．} 17: 6+2 / 11 \\ \text { Slicker，} 50^{\circ} \ldots & 25: 0+42\end{array}$ Slicker， $60^{\circ} \quad 35,0+5 / 10$ Soucherner， 60° in $400+6,8$

Junior， 60 Bandic， 44^{*}
Outlaw， 50° Outlaw， 50
… $18.6+3!$ Flyine Scale Power
Piper Super Cruiser $10 ; 6+3 / 1$
Cosuna $170,36 \quad \ldots 18: 6=31$ Luicambe， 40^{2} … 18：6－3il Control
Phantom， 21 ＂ 11：6－7－1：11 Shantem， 210 － 1863.1 $\begin{array}{ll}\text { Scour 8ipe，20 } & -22,6-3 / 9 \\ \text { Rencer } 24^{-} & 10: 6+1 / 9\end{array}$ Ranger， 24 Pacer， 30° Skystroak 26 Shystralk 40 Stuns Queen
\qquad

39；6 P．T

Ace． 30° Rubber Powered Sanator． $32^{-\cdots} \quad \cdots \quad 5 / 0+10 d$ Suntor， 32 Ajax． 30 Compericor 32 Gipsy， $\left.40^{\circ}(\mathrm{W}) \mathrm{M}\right) \quad \cdots \quad 10$ ． 2 Concescor． $45^{\circ}(W) \quad 23 / 6 \div 3 / 11$

PONENTS

4－pin Plut and Socker ．．． 2,4
2－pin ditco（polarited）．．． $2 / 3$
2－pole Switeh ．．．．．． $1 / 0$
On－off Single Pote Switch $3 / 0$
On－att Doubla Polo Swicch $3 / 9$
3／9
Potentiometer
E．D．COMPONENT
5% P．T．
Mk．I Clackwork E：
capermant．．．．．47／6＋9／6
Mk．III Escapemont．．．IR：6 \＆ $3 / 3$
Compact Escapemens 18 8． $3 / 3$ Polarisad Relay ．．．so $0-1$
＊HIRNE
Conerol Line

Control Line	
Bee Bug	二．．120．2／0
Midet Mustang	12：6，3／9
Sea Fury	236311
Wyvern	23．6 311
Philibuster	23，6＋3／11
Spitfiro	，27 6－4，7
Foeke Wulf	21．0 3：6
Minibuster	1502.6
Pancher	25．0 4，
Gliders	
Verosonle， 46	$106 \quad 1,9$
Vorrex． 66°	18631
Rubber Powered	
Raucal．24＊	－ 56 11d．
Sencinal，34＊	$106-1.9$
Hi Climber，30＊	25042
Fladgoling． $24{ }^{\text {c }}$	$74+1 ; 3$
Frae Flight Power	
Sabre Ducced Fan	$250 \cdot 4,2$
Sercaker，32＊	17：9－3．3

Skyskoorer， 48
Cerdinal， 37^{2}
 WHEDAS． 1 D． Gllderl Thre Footcr $5 / 0+10 \mathrm{~d}$ ． Auseer， 26° Flying Seale

Auscor． $26^{\circ} \ldots$	3.0	3.0
Grasshopper		

Grasshopper $\quad . \quad . \quad 3.0$ 6．66
Tizer Mash－ $3: 0.60$
Agor Marh ．．．．．．3：0 6．
M．I．G．15 \cdots ．．． 30 6d

M．l．G．is			3.0	6
Vulcan	＊＊＊	＋7	310.	

For detmater Units
Comot， 24 icale i．．7／3 1／3
\qquadAuser Conerol LineAuster … ．．．7is． 12

Hornas $\quad . .15 .6$ itw 26 Froe Flighe
 SE．S．
$14 i 5+2,3$

Mk．II．Transmicear and Aerial
MK．III．Transmitter and Aerial

 Mk．II．Recsiver
Mk．III．Receiver complate
M\＆，iV．Three Channcl Receiver
Mk．II．Miniaeura J－valve Ourfis，complez Mk．III．Miniarure Outfis，compleso Mk．II，Miniarure Outfis，complese

FLIGHT CONTROL．Absorpion Yype Waveme．0；［3，15．0 E．C C．Equipmant，Batiorlai．Falvan，ite．

ARILIUR MUIITII 16 MEETING HOUSE LANE BRIGHTON－SUSSEX－ENG．

VERON MARLIN MARINE CRUISER KIT Another first－class cornpiestaly profabricated tha damous name ie bears Y ofy aitabricked kit warthy of for Radio Control．

From seock．62／6
 suitable for twin Alibon Spirfire DESIGN（Cobyright） span．Scale $3 / \mathrm{s}$ in 10 Spirfire or E．D．Bee encinos． 65 in span．Scale $3 / \mathrm{S}$ in． 10 I ft．Designed．buit and fiown by 7．J．Towner．The perfect R／C iob．Instructions and list of parts with plan．All pafts in stock for buildine this masterpitce．Recommended ondy for speciofists diticid 2 gns ．
full rance of kits by leading makers INCLUDING MERCURY，
FROG．ETC． Carelul stady of the linest，the modes and now products before， Chat far from standing with now dexigas my shop，and 1 do my best
 corning along．in my advertasernico so that onco mey modelling 1 include them ins reliable servico agoin for
to giva customars rek again and 10 Arthar Multelf．
mo，thoy comp zoquiromenia io OF FULL RANGE
AND CEMENTS IN DOPES
Teleghone ：GAJGHTON STOCK

VOLUME XVIII
NUMBER
211
AUGUST 1953

Editar :

```
C. S. RUSHEROOKE
            Awhiant Editor:
H.G. HUN D L E B Y
```

 Pubtic Relations Officap:
 D.J. LAIDLAW DICKSON
Publivised monthly on the 15th of the
previous month by the Propriotors:
THE MODEL AERONAUTICAL
PRESS LTD.
30, Clarendon Road, Watford, Heres.
Subseription rate 21/- per ennum propaid
(including Special Chrisemay Number).

Contents

SPECIAR FEATURES Pago

" VAMPIRE V "	\ldots	\ldots	\ldots	459	
" FIFTEEN "	\ldots	\ldots	\ldots	\ldots	460
WORLD SPEED	CHAMPIONSHIPS	462			
DAILY DISPATCH RALLY	\ldots	\ldots	466		
SIPA 200 MINIJET	\ldots	\ldots	\ldots	467	
BRITISH NATIONALS	\ldots	\ldots	472		
BIRD FLIGHT. PART $I I$	\ldots	\ldots	485		
INTERNATIONAL POWER	AND				
WAKEFIELD TEAM TRIAL	\ldots	493			
SHOW THAT WAS WORTHWHILE	495				

REGULAR FEATURES

Editorial and Adyertiament Officel: 38. CLARENDON ROAD, WATFORD, HERTS.

Tel. : 5445

T11f. 1053 British Nationals, held at R.A.J. Waterbeach, near Cambridge, goes duwn in history as perhays the most successful of the series since their inception way back in 1047, when the fairly well-attended meeting at Gravesend Airport initiated an attempt at duplicating the ever popular American "Nats.".

Since then the meeting has gone around the country in the following sequence: Midlands (Sywell), London (lairlop). Nortlı (York), West (Swansea), and South (Gosport), but experience has proved that a meeting of this type must be held fairly near to a heavily populated contre if general support is to te adequate.

Thus there is a logical clatim that London, with its culmination of main line traffic and uther facilities, should be the future base for such mectings, but with the loss of Fairlop to the modelling fraternity. there stems no other spacc on which to stage such an important meeting with any assurance that the gates will be open when the crowd turns up.

What then is tho answer? A close sturly of the factors that go to make a successful model meeting indicates that a first consideration is that the organising gromp shall have experience of staging an all-round mecting such as the Nationals, and the continued success of certain of tho larger frallies emphasises this point. No less important is the suitability of the airfield selected, for the comfort of fliers in both takeoff and retricving should be a top priority consideration.

With the above in mind, it is our considered opinion that this most important annual affair should-as far as possible- he established at one centre, under tho authority of a special organising group whose continued experience should rapidly remove the irksme failures that cannot fail to recur when the responsibility is passed from one group to another each year.

For this roason we strongly support any move to hold the lobs Nationals again at Waterbeach, for in few clirections did this venuc fail to receive full marks from all who were fortunate cnough to attend the 1953 event. Just as important was the sterling effort fortheoning from the Jiast Anglian Area, and particularly the Cambridge club, in carrying out the bulk of the organisation-a factor that has since proved by comparison prohably even more important than actual field selection.

Last, but by nomeans least, is tho sympathetic co-operation received from the K.A.F. staif, who, under the authority of Group Captaill A. H. Donaldsom, D.S.O., D.F.C., A. F.C., made the modetlers most welonme, and, we gather, would like to see the mecting beld thero again next year.

Finally, we would make it clear that the foregoing does not indicate that we budge in the slightest from our frequently stated policy of urging thate the S.M.A.F. shall conduct its affairs on a proper National basis, but sufficient experience has now been gained relative to the conduct of a successful British Nationals that would justify any future centralisation of the meeting as fair and logical.

Cover Picture

[^0]

"Adantic'" Aeromadeliar

Probably the most revolutionary aircrait project to date is the recently anmoneed Arro "Atlantic ". the logical civil development of the highly successful delta-winged " Vulcan",

It gives us great pleasure to learn that the Project Einginecr on this important undertaking is none other than Geoff Monk, for many years a stalwart member of the prewar lancashire M.A.C., and well remembered as an enthusiastic scale model "fan" in line with our liditor. Manchester readers will recall many hard fought contests for the Hart Trophy, the mecea of scale moxelling in the pre-1940 period.
Geoff. joined A. V. Roe's in 103n, served a sixyear apprenticeship before entering the llesign Office, and was eventually promoted to Section leader in charge of all repairs and maintenance for keeping the famous Lancs. aịborne. Further promotion in 1944 to Assistant Designer was followed by clevation to Project Engineer in 1947 on the "Tudor II" series, thence to "Ashtons", and last September he was given the "Atlantic" for preliminary investigation.

Avm's at Manchester numbers a loost of keen acromodellers in its vast works, the late Roy Chadwick being also a very kepn modeller in his young days. Truly, acromoletling is the ideal tratining ground for the manning of our worldrenowned aircraft industry.

Heand ant the

Gien from the F.I.I.

A report just to hand from the Paris offices of the F.A.I. indicates that the Models Commission is one of the most active groups in session at these important aeronautical affairs.

At the last conference, held at the Hague from the 14th to the 22nd May. 1853, the Moxlels Committee spent much of its time in polishing up the rules and regulations for records and contests in an altempt to avoid further modincations for at least two years. The number of model records at present in the official list was thought to be too great (an opinion we heartily endorse), and the list has been reduced in number to 4 World Records and 30 Jnternational Class records in three gronps, instead of having 170 records as at present.

Mr. A. Ir, Houlberg was the recipient of one of the new F.A.l. diplomas, awarded to persons in the different countries who, for many years, have done much to help forward the cause of aviation in one or other of its branches, but who so far have receiverd no recognition either nationally or internationally for their work. (Other Irritish recipients were Mr. C. G. Grey and Caph, J. L. Pritchard, C.B.E.).

It is apparently the ambition of the I.A.I. to institute a form of "decentralised" World Championship, in which countries will hold contests in each category of model aircraft, the results to be forwarled to the F.A.I. for tabulation and collation. In our opinion, such a scheme cannot hope to succeed, for the widely varying conditions to be found even in one country almost completely negatives any form of fair competition, and this would be greatly amplified in any form of international event on the lines suggested.

llevival of atoll

Vintage enthusiasts will gladden when they learn that one of the three remanining Avro jot's is being rebuit for permanent exhibiton at the Science Museum, london. Fwice battered by bombs, once shot down, and for many of its 30 years expused to the elements, 1).7660, which is a $1 e$ Rhone version, will be a constant source of interest in its new home. We take the liberty of reproxiucing a view in lighter vein, at left, to remind readers of an aeroplane that remained in production from 1913 to 1931.

Planming far Prizes

We rarely introduce " commercialism " to these particular columns, hut readers will agree that we are justified in feeling proud of recent contest successes with standard A.P.S. designs. "Corsair". "Tadpole" and "Surcerer's Apprentice" and innmmerable " Quickics" all did very well for themselves in the Nationals, and at this pre-

Manganr Doors

eminently original design meeting it was gratifying to obscrve that nearly all the commercially available designs present were from the A.P.S. range.

In a letter from J. R. Abbot of Grahamstown. discussing the South Aricin Nationals, the following also provites fool for thought: " A.P.S. designs were very prominent first three places in A Glider Junior, lirst in B Giliter Junior, first and second in A Rubber Junior, second and third in Jetex Junior, second in A Gas Senior, first, second, third and fourth in λ (Gas Junior, first and second in Irecision Junior, second and third in Nordic, and second in A Tean Race."

© 'urrerit sthaly

A novel course is being arranged by the Southdown Gliding Club (see classilied advertisements) to cater especially for the aeromodelling fraternity. Many aeromodellers have some gliting experience, and many mere are keenly interested; the course offers the opportunity of learning points from fullsize saipplane construction and operation, as well as getting first-hand knowledge of thermal and slope lift. Interested modellers can be sure of loads of space for any models they care to take along, and the club cheerfully offers free hangarage.

1母5: M.E. Tixhibition

Model aircraft will again be an outstanding feature of the "Morlel Engineer" Exhibition, to be held at the New Royal Horticultural Hall from August Igth to the 29th. In all, eleven classes are scheduled, four of which are for junior entries only. and judges A. IF. Houlberg, R. 1". L. Gosling and Capt. S. 1). Taylor will have ther jub cut out selecting the winning models. We understand that in addition to the usual indoor attractions, negotiations are under way for a separate demonstration of control-line flying at a site near the main hall.

ta Team Hacing

There seems to be a fair amount of dentand for smaller-sized team racing, in addition to the existing classes, and it will be interesting to see how much practical response there will ise at the Cambridge M.A.C.'s Tcam Kace Rally on August 9th. Rules were summarised in June's "Club News", but, briefly recapitulated, they inclucle minimum area 35 sy. ins., up to 99 c.c. motors, 30 ft . lines, min. cockpit depth $2 \frac{1}{}$ ins., max. tank 7.5 c.c., $\frac{1}{2}$ in. pilot's head, no wheel restrictions. 50 lap heats and 100 lap finals are scheduled, and, where applicable, normal team race rules apply. Also in the programme is a combat event, unrestricted except that models must R.O.G. and fly on 42 ft . lines: 8 ft . paper streamers on 2 ft . of thread will be used, two competitors at a time flying for five minutes, scoring being 4 points per foot cut from opponent's streamer. Details from A. Jurdan, 23 Iferbert Street, Cambridge.

 Ifenm Hiflonils, icha tormall affendm, mel the A merimm Varw is tha forsu of a large tarmy rather fomelbly jusi bofore the juarty

 mifh merera cufn and britines.

From dim Honimemonth VIA.N. Vens

"The Editors of the B.M.A.S. News loudly acclaim the decision of the Aeromobell. ík to sponsor, in conjunction with Pan American Airways, a design competition for 1 c.c. P.A.A. load motels and to hold competitions for this class next year.
"The decision of the Alerumodeller will be instrumental in bringing not only something new to aeromodelling, but will result in many enjoyable hours of hying for both Seniors and Juniors."

- ... which reminds us-to remind you: did you use your eatry form last month? Clusing date is now four weeks nearer, but you still have plenty of time before September 30th in which to design and build your mokfel for the contest.

Heminaler to ©ipatters

Now's the time for full-size aircraft recognition enthusiasts to get together and start swotting for the All-England Aircraft Recognition competition of 1934. Tast time we mentioned the dircralt Recognition Society in these columns, we discovered quite a wealth of enthusiasm among aeromodeliers -so how about it clubs? Why not write for particulars from the Secretary of this Society at: 30 Bedford St., London, W.C. 2.

Whilst on the recognition subject, we take this opportunity of bringing to your attention "The Observers Book of Aircmatt", published at $5 /$-by Frederick Warne \& Co. Ltd., and which we feel is the most comprehensive and accurate record of modern aircraft available in this price range. Already a best seller, and rivalling "The Cruel Sea " in print figures, this Observers handbook is pocket size, describes 104 aircraft in silhouette, photo and fact. includes noless than 278 illustrations.

ALL BRITAIN RALLY (Radlett) postponed to September 20th. Full details in next issue.

NEW ZEALAND'S
 CHAMPION STUNTER
 WITH NEW CONTROL

A stumt monlel with differenurs: mem VAIPIIRE Me.v

SYSTEM \& DUCTED
WING - FOR 3.5-5 c.c.

> by

TREVOR \& DICK OLIVER

of Tourango. New Zeoland.

WHAT can there be new to a control-line stunter? Convention has settled upon the plain monoplane with faps coupled to elevators and a mighty powerful engine mounted up front. Trevor Oliver and brother Dick in New Zealand had other ideas, and after developing a serics of models, settled upon the unique Vampire Mk. V-a policy which won the N.Z. National stant contest in 1952.
lirst and foremost, this is a special design for tight lines. Unorthodox wing ducts are arranged in an offset manner to pull the model outwards in just the same way as haval paravanes were kept: away from parent ships in wartime. 'Then a roller form of control is installed to provide an almost unlimited, unrestricted clevator/flap movement, and this, coupled with a slowish airspeed and the duct effect, enable some spectacular inanoeuvres to be executed.

The " Sabre Dauce "', originated by Jim Walker, can easily be cmulated as the elevaturs are flapped vigorously with the Vampire hanging on its prop. Square turns are an actual possibility with this design, and its reasonable turn of speed gives both added satisfaction in control, and added time for the contest juelge to follow each manoeuvre.

Two essentials must be added before these aerobatics are possible. The one is a good engine. the other a reliable fecding tank. On the original. a lirog ion was coupled to a Walker pressure feed tank, which can of coursc be replaced by any of the commercial metal stunt tanks.

Since this is obviously not the kind of model we would expect a novice to tackle, we shall not go as far as basic facts in the building instructions. Anyone with at least two models' experience should, with a little thought, and plain common-
sense, be able to go ahead without undue dificulty. Close adherence to the part sizes on the accurate full-size Als plan will play an important part in the assembly of the ducted portion of the wing. The wing is in fact the first part to tackle and work begins with all the laminated parts shown in the front view. A slight variance in curve for the T.E. should be noted. Each of the " bridge-form" duct panels is built over the phan, the top one with bisected outer wing portions attached, so that we have a flat bottomed wing. The fuselage is then made up with roller pulleys installed and llexible cable lead outs and clevator wires locked in place.

Asymmetric fuselage sides netd special care, vertical grain making the task more easy and smoother curves possible. Then sheet centre wing pancls inside the duct, and cover with silk. Lising F .2 as a key, assmble the top winghalf onto the fusclage after fitting the tank, celluloid wipers, etc. Then complete onter panel ribs and add lower duct prortion and outer duct contours.
flap detail, booms, and tail unit are relatively simple, carc being needed to see that the tailbooms are secure and in perfect line. Now connect up the control system, run the elevator wires over the rear pulley, through and round to oppesite sides and tie or solder at T.IE.. so that there is no slackness in control and ceverything lines np with the lead-out wires. Flap wires are crossed to get correct operation, then solder joined.

Study the layout of the Vampire, and you'll agree that in its complete breakaway from convention it combines all the attributes of the best in slunt design and though slightly more complicated to build, is one of the tightest looping, most adaptable designs in the A.I'S. range.

HIGH PERFORMANCE CONTEST DESIGN FOR THE INTERNATIONAL POWER CLASS FROM CANADA

Fiftem

by ALEC G. BURNS

25 sears ald . . . Topogiaphical drauzhisman by profexsion. . . resident of Mimico. Onfario ... spectally keen on fraeflight noner . . . ather interectes are radio control poner . 'ciother incercits are radio conirol, team racian, mhotogerphy and the young
lady on the lelt. Mise Gilndy Davidson, shortly to be Mrs. Burits.

I- my opinion." says Alec Burns, " it is the gadget-free morlel which is the consistent contest wimer." and in this viewpoint he has the support of most competition fliers. "Fifteen" (the 2.5 c.c. class is -15 cu . ins. in the $\mathbb{I}^{\circ} . \mathrm{S} . \mathrm{A}$. and Canadat, hence the name:) certainly retlects this opinion, for a simpler or more straightforward contest job woukd be hard to lime. The "Hogan" influence is apparent, and the only gadgets employed are the gravity tab, the imer, and the metal engine mount, which uffers advantages for simple thrust adjustments. In flight, the model has a vertical climb to the right and left glide circles, and has proved particularly safe in windy weather. flicking out at the top of the climb without loss of height. With a motor of up to 2 c.c. it would be a trouble-free introluction to contest-style flying. and, with a good $2 \cdot 5$ in experienced hands, a threat at any contest.

Building procelure is normal, the box fuselage being built in the usual way. Side shecting (except in tank bay) should be fitted in before remosal from plan and the pylon added after being constructed separately. The front former is laminated and the dural motor mount bolted in place, together with the undercarriage, before cementing the former to the fuselage. After installation of tank and timer the front former should be reinforced with liberally-cemented strips of silk. Wing and tail monnts are self explanatory. The pylon and entire fuselage are silk-covered and given seven or eight coats of thin clear dope.

Construction of the flying surfaces is also

[^1]perfectly conventional, but the positive rudder tab is worthy of mention. After attaching the tab to the rudder (left flat at the appropriate place) with a silk hinge, a 10 IB.A. bult is passed through both tab and rudder; packing placed between the iwo is varied for the right trim, the loolt being tightened to retain the packing. L'se Modelspan for covering the wing and tail.

After assembly and alignment check, balance the model as indicated, using ballast if necessary. Up to $1 / 10$ in. packing may be used under the L.E. or T.E. of wing and tailplane to obtain a slightly stalling left-hand alide. Use a 01×6 prop. for windy weather and a $10 \times 3 \frac{1}{2}$ in llat calm, and make initial power liights with reduced revs. A right-hand climb is required, and sidethrust should not be necessary. If a left turn is crident, fit washers behind the port engine mount. Increase power and aim for a 100 ft . power turn. Slight left rudder may be needed for the glide. but clay added to the gravity tab should remove stalliness. Excess left rudder will call for additional right thrust. The buitt-in downthrust should take care of any lonping tendencies; increase if necessary.

Itrinding phato, shoura flying rivele, completer inith typical witinenc backpround of fountainn and ntatuen. thoin, the Britinh tedm enfon the comfartn en route of

 and Craptatin W'. IT, Momn, tha pilet.

THORSDAY: Illt Junc, saw normal routine at London Aipport slightly disturbed by the appearance of the British Speed T'eam en youte to Nilitn for the Wirld Speed Championships. Porters, degk clearks. and even these phleginatic characters in H. M. Customs, all gathered round lo view with interest a collection of assorted speed models.

The team :llonte was suthcient to raise many an cyelrow-Kon Davenport, llarry Timms and Brian Skinner all being over six foot, so much so that your unfortunate scribe, as team manager, felt dwarfed.

Soon we were climbing steadily over the Chanmel in all the haxurious comfort of one of the new Elizabethan Class Ambassiders, and crossing the Nps it 17,500 feet were teathed to the unforgettable sight of Mont llanc and lake beneva.

Slowly the nose of our Ambassador tilted downwards as we commenced our approach to Nlalpensa Airport, and barely threc hours flying time frem lenden we touched down in brilliant sunshine and intonse heat. An hour later we were in the oflices of the Milan Acra Club to be greeted by an old friend, Ing. Nino Frachetti. From there an adventurous journoy by Milan taxi (almest as bad as the Paris variety) brouglit us to the headquarters of the Ist Italian Air Force, where we were accommodated for the duration of the contest. All of the contestants were grouped in the same barrack room, a scheme that has many advantages, but not in the very late and very early hours

Vopacking proviced an unpleasant shock for Ron Davenport, who discovered that a quart botile of his favourite fued brew hat broken in his case with dirs. results to personal effects. You should just see a shirt or a toothbrush that has lveen likerilly dosed with a 10 per cent. Nitro Methane mixture 1 In point of fac: the situation was not so humerous, as this bottle held the bulk of his fuel and we were a little alarmed as to whether the renainder woukl suffice. Fortunately Timms antl skinner had fairly ample supplies, which saw us through.

Considering the event was a world championship the number of competing nations was a great disapmontment. They consisted of Prance, (ireat Britain, Italy and Sweden. Entries had been intimated from Switzerland and Spain but failed to materialise.

The writer has always felt that confining the Worlel Championship to one class was a hig mistake and sincerely hopes that the poor support at Milan on this

occasion will convince the F.A.I. that a change of policy is called for.

However, although the entries were few in number, both the quality of tlying and the organisation were first class. So too was the flying site, which was laid out in the square or "piazza" in front of the main building of the famous Milan Fair.

The first day of the meeting saw test flying, processing and the 2.5 c.c., 5 c.c. and Jet classes.

First of the magnificent flying surface on a test hop were Timms and Skinner with their Dooling 29 jobs and they quickly found that atmospheric conditions gave different characteristics to their motor settings. During the whole run of the contest it was hot and dry, which prevented really high speeds being attained.

In class A ($2.5 \mathrm{c} . \mathrm{c}$.) entries were entirely Italian, with no less than nine teams from all parts of that country. Fastest of these " babies " was a G20 Super Tigre job of Amato Prati's at $162 \cdot 162 \mathrm{k} . \mathrm{p} . \mathrm{h}$. The same contestant also placed first in class B (5 c.c.), again with Super Tigre, this time a G21.

The familiar figure of Robert Labarde, attired in his customary white, was well to the fore in the 5 c.c. class, where he placed third, followed by our own Ron Davenport, who flew a spinnerless Dooling 29 model.

From conversation with the French boys we discovered that the famous "Docteur Volante" was unable to attend owing to pressure of work. Somehow, no International speed contest seems complete without Doc Millet, and we sincerely hope he is back in action again next season.

And so passed the Friday, which served as a warmingup session for bigger things on the morrow; meantime your scribe and his giants, not forgetting the Swedish boys Ericson and Elliason, set forth to explore the Milanese delights of spaghetti, ravioli and a few bottles of the inevitable chianti!

Saturday saw the same hot sun, which, reflecting relentlessly off the white buildings surrounding the flying circle, raised the sales of sun specs., particularly amongst we Britishers. Flying order was drawn for amongst the nations and each contestant entitled to two official flights with two attempts at each flight.

Davenport having the fastest model in the team, it was decided that he should fly first in order to gain the slight advantage of an early flight before the full heat of the day. His first attempt at getting away was

1. Amato Prati, wimner of both the 2.5 c.e and 5 c.e. classes showen here with his s c.c. Super Tigre G21 modet. 2. Franco Marcenaro with an asymmetrical Dynajel job flown by Rudi Sctmeider. 3. Brian Skinner's Dooling 61 job is weighed-in at the processing table. 4. Ing. Y rachetti, on right, makes an accurate check of the line length markers. of Theam from Venice at their pit table with Battistella on the right. ${ }^{6}$. Otello Vita of Pisa starts a Dooting 29 model assisted by Marcenaro. 7. Brian Skinner expresses cloulat uhilst euturing the pull tewt of tzcenty fimes the velght of the model.

August, 1953
unsuccessful and investipation showed that the neoprene tubing connecting the tank vents had been left disconnected. This was quickly put right, the motor restarted, and the model was away for a shaky take-nff, running very rich. So rich in fact that the prop clipped tha ground after dropping the undercart. loning nearly an meh oft each blache. The resultant noise bad to be heard to lee believed, and what was even more increvlible was the fact that the model flew the tank out at what appeared to be at very fast speed!

After this bad start'Indecopurt made an almost perfect run on his fimal attempe at the first tlight. reaching a speed of 241's9 k.p.h. This was disappointing compared with his speed at the Nationals (20.b. 1 ? k.p.h.). but it diel give him a lead of one kilometer encer laatistella, whe was flyiug tol his usual excellent form. The other bovs. Timims and Skinner, although starting casily and getting airbornc without any ditticulty. just couldn't get their motors to behave dead right and finally Brian Skinner landed with his mexlel on fire! This indicated a motor that was overheating badly, ard çate pussibly insuflicient cooling was the causc of his trouble.

After lunch the second remund commenced and we held high hopes that Ron rhavenp ert woul improve on his lirst rownd speed and attain an byger lead.

Away again to an impecable start, with the Carter motor giving forth that beautiful hard note that distinguishes is from the McCoy or Doseling. Then down went his wrist in the pylon for what looked like being a very last run, but to our chagrin the tank failed to last the fimal lap and this did, of course, count as his second official light. It was now up to another completior to best Divenport's leading time, and we all knew that if anyone was going to do it, J batiostella woula be the man. Sure enough he mate at maknifacent tun, fimally beatimg Javenport by just over 5k.p.h.

Summing up the linal placing shows an interesting variety of engines. Hattistella, Doohng b1, havenport. Carler Speciat. Fanoli, McCoj Series 20, Fiorimi, Super Tigre Profotype ciel. Which all goes to prove that there ase some fast engires ahout and a healthy manufacturing interest in the bargatn.

Thus finished the Workd Speed Championship for 1953. and there only remained the stunt contest at lorlanisa Airport the following day, where the prizegiving for the whole meeting texok place.

Tiwo swiss lats turned ug this lawd day to fly in the stumt and logether whth Malfait of lirance they formed the only foreign entries, all others being Italiam.

Generally, flying wat good, the limal pasition bering clasely contanded before going to Cellini

Cimide Mittintella of Yonicen Itaty, becomman the first 10 e.e. World Spend rhearyplon. Hha modet in almoat the mome on ho fleum ut Itionmeda in 10.52, anith tha slight ndalition of a fin. Thas faesling 61 etandared in a tuitor ja in the cosrling ertieh has no renta other than the exhusest port. Helowe. Нон Ihorenporf. teho placed mectind, hande in hin mordel for ecelghing.

IRAIN NTOPS IPIAY A'I MANCHES'TEIE

R11.J: 8 in the Daily Dispatch National Really programme stated that "all thights shall be wer by ; 5 m m." but few, especially the organisers, couled jussibly have expected feeming rain to shate the diedd free of spectaters and all bont the team racing com. petitorsiat this carly hour. With good warning of the impending torrents, all and sundry moved smartly for home and shelter we alinose heard the gateman say. "We:ll, that's got rid of that lot! "---vet thosugh the dewnpurer the " A " and " B" racers stove to splash their way to decisive tinals. Only the imprompta Stunt Combat remamed undinisherl, and that due to decomposition of streamers in the we:!

The Jacksons of l.ittleover, father and son. cach topped ten minutes to take senior and jusior rublien prives from the nine who collected donthe max's in better conslitions, whilst power men, Hickerstalte, boughty and Monks torsk one leok at the weather, widid no thanks, and tossed up for their prizes insteat of making a fly-uff. Notable indeed sas the absence of double max's in Clider, the 16.4 ft . line playimg its part, but still not stopping young Wendy Bennett from taking the junior prize even from Kally Juniur Champion Ihahise O'Jonnell, whose Whitefiell! Club collected, as is usual, a large progertion of the placings.

Scalte, for the liddie Riding Memerial "Trophy", was extremely popular with the crowd and rightly so, for the narrow win proxy-flewn J. Mridgewond's Heston Dhesemix held over frank lecs' beantiful I.usemome Skypal is indicative of high equality, particularly among the first four in this event. But oh: Why mom molel pilots in what are supposed to le: furng scale mondels? Only one in eighteen entries had this last but important touch of realisn. After all, the real thing could hardly Hy without someone at the controls, why not put an occupant in a model cockpit or cabin? Full marks for the points scheme in this contest are hard to get: but when bight and landing points are near equal among entries, these little details help to win.
R. G. M.

Full results aro to bo found on p. 504 in "Che News".

 Levinliful skypal for 2nd place in scale. Betow, is J. Iridyeicood's Phoonix being hammerest into shanp by presk liers Migun and (:tifion; in sprond photo (lefl) they rherk
 idhes after 10 secs. All dome by one fuse! Dollom: In pouring rain, drenched but happh, Forenters trinning T.H. "A " tram, Hall, Bulfon twil Heatan trith olloer Tippr jobh,

JETEX 100 OWNERS
WILL LIKE THIS 24 In
SCALE MODEL OF
THE WORLD'S
SMALLEST JET

25 years ofd . . . siugle . . . member of the Southern Cross Club. . . ove of the "Aeromodeller" nlaf draughtanten/traectu . . . F/F fan, preferring lightweight rubber and large glidexn. . . studcut of modern pieno munie . . . also kren on motor cycling and busing.

LOOKING sather like at shrunk-down "Vampire", the Sipa 200 " Minijet". with its span of a mere 23 ft . 8 ins., is the world's smallest jetplane. The design is the work of a young French engineer, Yves Gardan, whose name first achieved prominence with the Sipa 90 in 1946, and who later groduced the popular "dinicab". The 200 was built at Suresnes, and made its maiden flight at Villacoublay on January 14th, 1952, in the hands of tost pilot Roger Launay.

This initial night nearly ended in disaster, for, after a perfect take-off and smonth climb-away, severc vibration and control flutter commenced, and only the airframe's great strength and the skill of the pilot avoided what might have been a masty accident, Some months later, after various recalculations and modifications, the machine reappeared with strengrhened tail booms, a redesigned cockpit cover, and mass-balanced control surfaces.
The general layout of the 'Minijet"- has been likened to an egg to which has been added a mid-mounted wing fitted with a twin boon tail wnit. The "egg" acconmodates pilot and passenger, seated side by side, and a Turbomeca "Falas" jet

[^2]motor of 330 lts. thrust. Air is fed to the motor through two very large root intakes which are of more than sufficient cross-section--an unusual factor in jet aircraft design! The cockpit is surprisingly roomy, once inside, but a shoe-horn has been suggested as an aid to entry. although the very low tricycle undercarriage is a help in this respect.

Employment of a laminar fow wing section helps considerably in achieving a top speed of slightly over $210 \mathrm{~m} . \mathrm{ph}$. and a reasonable stalling speed of just under $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Jilots report excellent handling and control response at all speeds, and the machine is fully a arobatic.

The model retains the simplicity of construction of the prototype, but access to the interior is made easier by the provision of a larga hateh beneath the (continued on page 470)

IGNITE JETEX BY PUSHING LIGHTED D/T FUSE THRUI REAR ORIFICE WITH WIRE ROD.

CELLULOID

SOFT BALSA

 NOSE BLOCK$1 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$

DETAIL OF INTAKE

8 WING FAIRING
B.L.

 and one or two other weighty and non-essential details have been omitted, as is customary with Jetex models, and the result is a sturdy airframe of light weight (less than 3 ozs.). Some builders may care to enlarge the plan slightly and, with one or two slight alterations, use the machine as a basis for a ducted fan installation.

CONSTRUCOION commences by pinning down the crutch over the plan, and pinning to this the hatch sides. I.ower halves of formers (except lif) are then cemented in place, followed by the lower keel. F7 (made from two cross-grained laminations) is fitter after removal from plan, together with the asbestos tube. Top former halves and top keel are now added, followed by the fin. square motor mount, well-cemented, and the stringers. lit $1 / 32$ in. sheet over $F 1$ and 1 ld , and add $1 / 18$

in. filling between stringers where shown. Carve noseblock, sanding to finished shape after cementing to Fl, and separate hatch by cutting through lower keel and stringers. Wire hooks and a rubber band retain the lantch in place.

Make a tracing of the wing and construct one half at a time, reversing tracing for second half. Leave spars slightly overlength until fitting. Cement WIs to fuselage sides, carefully checking angles, and fit wings at angles given by $F 4$, which should produce 1 in. dihedral under each tip. Add Wl cap strips, t.e. filler, $\left.\frac{1}{8} \times\right\}$ lower intake outline, and $1 / 16 \mathrm{in}$. strips on underside.

Booms are built as boxes, using $3 / 10 \times 1$ top and bottom and $1 / 32$ sides, and sanded to section shown. The tailplane, of medium sheet, fits in slots cut in the booms, and the soft sheet fins are cemented to the boom tops. It is best to pin the assembly together to check line-up, applying $2-3$ coats of dope or filler to tail and booms before finally cementing. Cover cabin with thin cellaloid: wings and fuselage are lightweight tissuccovered and given two coats of thin dope, after which the booms may be cemented to the wing and any colour trim applicd.

Balance the completed model where shown, and trim for glide by bending the elevator up or down. A little wingtip washont is helpful but not essential. Power-trim on half charges. The hatch should be replaced after loading and the wick ignited as shown on the plan.

Many familiar faces were to be seen at the rubber launching spot. and the models uscd were nearly all 1953 Wakefelds with a sprinkling of lightweights. Unly one long (8 ft .) fuselage job was flown, by Tony Brooks of Grange, and, white it performed well, the turbulent air treated it rather unkindly. The O'Donnell brothers were well to the fore, flying their familiar Wakefields: John's struck a downdraught on its first figint, and sank like a lift to put him out of the rumning, but Hugh kept up the famity reputation by being among the eight to fly-off. Few geared jobs were flown, and free-wheders, fatherers, single and double blade folders were fairly eveniy distributed. All eight Gly-offs were made with in the space of a few minutes showing at clear with for Fid (The Expression) Fenneti of Croydon.

If any trend was evident in the power cvent, it was that entries tenced to be smaller, on the average. Several -3 and 1 c.c. models were fown, but only three er four over 3 . 5 . F.A.I. $2-5$ c.c. jobs seened most aumerous, and little radical change of design was apparent Tom Stmith of Blackporl impressed spectators with the periormance of his
"Fried Fritter", a small, hghtweight model on
"Scalded Kitten" lines which haudled its Elifn 2.4 J with ease. A. Sanger of Southampton showed up with a cranked-wing Elfin $1-8$ effort which resembled an astonishoel sea-gull in flight, but which suffered from tank trouble and put in only one fight. Buskell (Surbiton) and Howich (Whitefield) Hew off their tie almost simultaneously, but the latter's fuel tubug became discomnected, cutling his motor run to only a secs., and Buskell's "Slick Stick " romperl home.

The Gold Trophy Judged by Harry Hundleby and C.PI. A. E. Birch of IK.A.1. St Athern, this was probably the most disaprointing " Gold yet hedd. Out of 27 entries received only i actually flew. First man away was llopkins of Bristol who clipped the ground at the buttom of his last horizontal eight, shortening the prop to the extent that a power-ou landiug was an inmediate necessity. Both Jarvis and 1 Larper of Ontlaws blew well, but harper's model, at kox 3 an powerel light weight job, lost its elevators in thight and came to grief it was alsu a change to see ltarry: Wheeler in a stunt event, his model being unusual in that the whole tailphane pivoted instead of the normal elevator-only control.

Noticcable absentes were the Hewitts and Pete Russell, the top place beng contested between Piacentim of Salisbury and Pete Smith of Clingford. Like a gorxl deal more of the contestants Piacentini did not have a tank of sufficient duration to complete the schedule, but did ©y an almost perfect schedule until his Oliver spluttered to silence. Pete Smith might well have pipped him had not the usual smith Gremlin taken a hand. As he gave full " up " during one of the "eights the top lize at the handle snagged in the clip for the bottons line, witt dire and uncxpected results.

Wright which started over 4 years ago. lïrst Powell, then W'right would be the speed man of the day, and now, with standard, as yet "UnCarterised " Dooling 20, 1)on leads the fiekt again in Class IV with 124-3. To lired Carter, indeed. shonid go all honours of the meeting.
Workiag in close harmony with Ron Checkstield, lired has prepared a series of 10 c.c. all-13ritish motors that should, with the right airframes. establish themselves as fastest in the work. On Saturday at Waterbcach, rumour was rife among the speed men that Davenport. Gibbs and Clayden, the East Lundon men, were each exceeding 150 m.p.h. in tests. So, not with little speculation and much incredulity was their arrival watehed on the second day. When Davenport did get down to his motor for a flick start, things began to moveand we include all and sundry adjacent to this very special engine! Airborne safely, Davenport settled down to the pylon and signified his speed run$158.7 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. was the proud figure-yet another check time made on later laps recorded over 162 m.p.h. To Carter and Checksfield this is a triumph, for since the first 1:.1). Competition Special, these engineers have worked bard to make engines run faster, and in this "Special ", based on a Dooling type crankcase, they have their best yet.

This placed Davenport securely in the team for Milan : but misfortune eliminated his clubmates.

Throughout the two days, the collection of Chrome Y'ellow morfels from !larrow club, aided by the skilful hands of M / sg. Cruwe of U.S.A.I., made successive runs to qualify two of their members, Harry Timms (139) and Brian Skinner (138 m m.p.h.) as seconel and third men for Milan. like Bavenport, they use home-hrew fuel with $40-50$ per cent. Nitro Methane and $81 \mathrm{in} . \times 11 \mathrm{in}$. props. For model finish, quality of flying and low rate of crashery, this was the most satisfactory specd meeting yet seen.

Glider anal PA:A-Land Sunday's glorions weither brought liiers out at $\overline{3}$ a.mu., but it was not till mid-morning that a very faint breeze and crops of thermals became evident. At one time in the Thurston Cup as many as five gliders were to be seen circling in the same thermal just below cloud base, but despite this the number of clouble maximums was low-only nine. Design showed the same characteristics as in the previous day's power event, being much the mixture as before with a trend towards smaller models and the main accent on the World Championship class. Remarkably few large models werc in evidence, and no particularly unorthodox jobs. L. Halko of the Polish A.F.A. cntered a beautifully built on in. high-aspect ratio (i4) K/C sailplane, weighing only 108 ozs, all up, but, of course, did not use the radio in the contest. Higher aspect ratios scemed to bo the only design feature noticeable, yot it was a low aspect ratio model which eventually wonthe A.B'S. "Corsair" thown by designer J. Wolt. The dy-off was a case of "find the thermals ", and,

17. Beautifully buitt B.G.A4, fast proving a popular design. $18 . J$. Holt test gltides his APS Corsuir, which won the Thurston Trophy. 19. Tomy Brooks and Long. Tom rubber entry, upset by downTate and
high-finished
Al2 by

21. Hughie O'Donnell launches for Ath in Rubber whilst in 29 Ed. Rennett puts on the expression to make stere of wimning the "Model Aircraft" Trophy. 23. Don Pouedl and Dooling 29 speed wimer with large tail area. 24. Extension shaft on ETA 29 enables R. Farey of Wimbledon to obtain smart lines in B racer. 25. Radio sailplane by L. Hallio of Polish A.F.A. 96 ins.span, velghs 162 ozs.

AEROPLANES IN OUTLINE

Number o
 BY G．A．CULL

Canlerra was designed，information （mostly German）ofl swept wings was scarce and inconclusive，and with the engine power likely to lecome available Wefore the airframe grew obsolete．it was desided that the benctits of a swept back wing would not be gatined to a worthwhile degree．whereas all the disadvantages would be felt．Moreover， the performance and manceuvrability at high altitudes given by a large wing were most desirable，and the large wing has area in hand to cope with

T（）the forefront of ontstanding aircraft in recent years，the Canberra was the first jet lember to serve with the R．A．F．and still holds the distinction of being the only jet－bomber existing in effective numbers with our squadrons．

The basic ideas from which the Canberra grew were formulated in 1944 by W．İ．W．I＇etter（who designed the Lysandier and Whirlwind）and the Air Ministry Spec． $\mathrm{B} 3 / 45$ was drawn up around his seheme and issued to the English Filectric Company．That our first jet homber should be entrustex to a company which hat ceased designing aircrafl more than twenty years ago came as a surprise，and the fact that this company had buite numbers of Wampelens，Halifaxes and Vampires dial not entirely offset this．However aircraft production is but me of the acfivities of the vast Faglist Electric concern and the Canberra was another new prodnct which was taken in its stride． Apart from the Spee．mumber，the new light bomber was dirs known as the lidit under the S．13．A．C．system，but was soon named Canberra by Sir（ieorge Nelson at the head of the company． Jirom the first display performance it was apparent that here was a bomber that was very unlike its predecessors，for the only thing in common seemed to be the purpose of delivering lombs．In otber respects it was like an overgrown lighter with acrobatic and high speed capabilities that were quite unhecoming to a bomber．The great powers of manocusre are endowed by the large wing which is the design＇s dominant feature．Although a swept wing would at first appear a frocgone conclusion in a ligh speed design，this was not used for a number of reasons．In 1945，when the
weight increases that development incvitably brings，without forfoiting the low lanting speed and light turmong radius．Wing thickness was largely decided by the depth required for wheel stowage and with the high speed symmetrical section employed（a moditied German section）a wide chord automatically followed．This resulted in the low aspect ratio of 4.3 ，most favourable for a fast rate of roll and a stiff yet light structure．

The maden flight of the first Canberra was on May 13 tn ，1949．With $\mathrm{W} / \mathrm{Cm} d r$ ．Beamont in charge．This machine was a B．1，and was a dull blue all over with serial YNoge in white lellers． The fin had a dorsal fairing and the rudder a rounded top which was soon shortened to the：now standard flat top．Four Mk．I＇s were buit and all were high altitude hombers with＂solid＂nosess． VN813 was the second machine and had ki．k． Nene engines as an alternative to the standard Avons，in case of troulble．J．ike the first，V＇Neg had $A v o n s$, but differed in mot having the fin fairing， while VN850 retained the fairing but introxlaced wing－tip tanks．（of these VNTG日 made the spectacular elebut at the＇ 49 S．B3．A．C．Shew，but VN8is crashed on takeorf at Ifucknall．

The production Canberra was to be the 13．2，and the prototype VXl板appeared with iransparent nose with bomb aimer＇s panel．（＇rew was increased from two to threce all with cjector seats，and cart ridge replaced electric starting．The I3． 2 has been huilt in mombers，and all but early machines bave increased area at the rudter top and streng thened canopies．The Mk， 3 is the photogratphe version with a longer fuselage but does not have the dat bomb aimer＇s panel in the perspex nose．Several cameras are carried and parachute flares are stowed in the shortened bomb－bay．VX181 is the pro－ totype．Atso in production for the R．A．F．is the T．4，which is a dual conversion trainer with a ＂solid＂＂nose．For pathfinder claties the T3．a has been produced and the prototype $\backslash X 185$ has a＂solid＂ nose but for the enlarged bomb aimer＇s fancl． In addition to these Canlerras there are some spectacular one－off machines．Wlous3 has two A．S．Sapphire engines，Willit3 has＂reheat＂ Avons fitted with two－position＂blinkers＂at

Heading piefure mhones the muse of the famonm bio provisigpe trhich ransared the ditiantir boith mapls int one day. Itoflomin leff: The Mk. il profotype fs froudk in wolloar dinfinguishes the T ereat con- H:L. ehidh domes not hare the entarofat rinditiry of wfrengihesed hood of proditefion machines.

the jet orilice and which commences a steep climb after rolling a few yards from a standstill, and Whase has the very powerful Rristal Olympus engines, as featuret on this month's cover.

Significant proof of the Canberra's success lies in its adoption by America, where it is being built under licence as the Martin B-57A with Wright J-6s engines, which are really British A.S. Sapphires also built under licence. Although the Sapphire 1.5 more premerful than the \mathbf{G}, ath llos. thrust Avon, no improvement in performance is expected, as all-up weight is increased by some 1 io per cent. due to American profluction metheds and mols. to fit the machine to night intruter duties. Fixed guns have been added and the crew of two sit side-by-side. Two Canberra B.z's were delivered to the 17.5 A in insl and the first of these, W19932, has since been crashecl. while WIned is flying m U.SA.F. markings with the new lengthened cockpit hoorl for the 13-57.今. Australiat is also building Canberras and bas taken delivery of two 13.2 's, which version is known' as the 18.20 when Australian built. At home 13 's's are built by three other firms, namely, Shorts, whose lirst-oif flew on ()ctoler 3ith, '52. Wros, whose first machine flew on 2ith November, '02, and Handley Page, who commenced deliveries in March, '53.

Over the past lirwe years many remarkathe thights have been marle and the first of these was on 21st February: '51, when B. 2 WDy23 flew from Addergrove, N. Ireland, to Gander in 4 lirs. 37 minis. (1) average $440 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on the tirst direct Atantic cronsing by a jet aircraft. (On August 21st, '51, a Canberra Hew to Australia in 21 hrs., and on 31st August. 'il, the Atlantic was again crossed,

V., W. in t hrs. 18 nins., to establish a record. A startling Hight by the 13.5 prototype was the two way crossing of the Atlantic in one daby on
 round trip. Fhree other records in the hag are
 tember. "52, London to Karachi on ejth Jantars"
 on the same day. On May tha the bristol 6 lympus
 Worlds Altitude liecord, ambl anothor foat was B00 hrs. Hying in and days by one Canherral Ixefore
 of Noc la Squadron flew off on October 2oth last year to commence a gexdwill teme of s. America and make a great impression before retarning on December 5 h. It would seem that they were in some measure responsible for the order of 12 Canberra I2.2.s for Venequela which is now in hamd The race to New \%ealand wall start from landon on (lotobior 8th, 'as, and five
 P. R. F machines and the R.A.A.F will Hy I3.E's if their own 13.20 's are not ready. First suadron
 and 130 (Janatica sqd.) and forther sepuadrons are re-equipping as proxluction allows. Another Canberra unit is No. 231 Operational Conversion (Hit which converts air crews on to 13.2's via Canberra T. t's at Bassinghourne.
lirom the already impressive record built up in a short time, it is clear that the Comberra is an outstanding trat blazer in the new tied of jet bombers and, furthermone, is well-liked for its docile flying qualities by R.A.F. crews in whose hands its real worth lies.

W00 2 BLE

with one. If this flickering occurs when the variable resistance is increased slightly (thereby reducing the anoote current) it is time to add capacity.

Difficulty is experienced by many home builders in getting the receivers to operate in published circuits, for the simple reason that no one circuit will suit all valves. At least not when they are new, though one circuit would probably suit every valve at some stage during its life. This is because the valves are made to give as long a life as possible, and usually the more difficult valve will give the longer life.

The circuit given in Fig. 1 is that shown by Messrs. Hivac as an example, but they say many variations are possible. Here are their notes on it.
"The useful life of the X.F.G.I. is criticaily dependant upon the peak anoxle current. This peak current is determined by the precise circuit conditions and is not readily measurable. The mean anokle current can, however, be measured and should be adjusted to $1 \cdot 5$ ma. or less in order to prolong the valve life as much as possible.
"The value of the anode current in the circuit shown, when no signal is being received, depends on the value of Kl and upon the value of the grid bias, which is determined by the amplitude of oscillation in the tuned circuit.

" For maximum sensitivity in any receiver there is an optimum value of grid bias and adequate provision should be made for adjustment, both initially and during the life of the valve. Preferably the $L: C$ ratio of the tuned circuit should be variable but the provision of some form of variable aerial coupling may suflice. 121 commonly has a value of 5,000 ohms when used with a relay of about the same resistance.

- When a signal is received from the transmitter the amplitude of the oscillation in the tuned circuit rises and the resulting increase in grid bias canses a sharp) drop in anode current which enables the relay to releaso."

The writer's method is to adjust the L: C ratio, using a fixed condenser for CI and a dust iron corcd coil for tuning. This requires a range of small fixed condensers from which to choose the best valuc. Quite frequently, however, no condenser at all is required with a new valve, but in any case it is always kept as small as will give the necessary anode current. A fairly short acrial of about 20 to 30 inches long is used and condenser C2 sometimes omitted.

An invaltable piece of equipment for trying out reccivers is a small signal generator, and in the writer's case this is merely a transmitter without

aerial that can be tuned over a small range above and below the model control band. A rough dial has been marked out in frequencies, with the centre of the band indicated with a, longer line. Such an instrment need not cost much since the valve and batteries from the normal transmitter can be used. Suitable circuits are shown in Fig. 2. "a " being for triodes or pentodes, and "b" for double triodes. If a pentode is used, the screen grid should be connected to the anode. Amost any valve can be used, for " a " there is the ISi4, 3A4, 3V4, BC4, 1.P2, and luts of others. For " b " there is the 3A: 3137, 16060 J 6 , and others. ()ne of these signal generators is useful to have on hand for ots of checking of receivers, and it can be made up permanently using a cheap valve. Calibrating this sig-gen maturally needs some equipment, and if the huilder hasn't got it, it would be best to approach a local radio society or dealer.

Now let us consider adjusting a receiver to work. Fig. 3 is the circuit diagram that has given excellent results. The tuning coil 1.1 can be 19 turns of No, 3is or 38 s.w.g. double silk covered wire on a $\frac{1}{1}$ in. (8 mm .) Aladdin former with dust iron core, or it can be 14 turns of No. 28 or 26 s.w.g. cotton or silk covered wire on a $\frac{7}{3} \mathrm{in}$. (11 mm .) Aladdin former with dust iron core. L, 2 can be three turns of the same wire ronnel the middle of LB, but a short aerial can be joined direct to the point A instead. 1,3 is a radio frequency choke, and is not always needed. C2 is generally 100 pf, and C:3 can
 convenient. KI is 4.7 megohms and $R 2$ a 3.000

ohms. Cl is omitted for a start. (A radio frequency choke can be mate by winding about 70 turns of double silk or cotton covered wire about 28 to 36 s.w.g. on a f in. former such as fuel tubing.)

The receiver is switched on and the anode current noted. If it is low, KQ is varied in an attempt to get 1.0 ma. If still low. Cl is added. starting with of and increasing is pf at a time until the anode current will rise to $\mathbf{i . 5}$ ma. If an old valve is leing used, it often helps by reducing C2 to 50 ph . When a new valve is used it usually gives a high anode current, which will not fall much on signal and this can usmally be helped by redncing lil to sontething like one megohm, and C3 to 01 mfd. All these things should be tried to get the anode current to about 1.5 ma. preferably with 122 set near its minimum value, to give high volts on the valve. If with in new valve the current cannot be brought below 2 ma. don't worry too much, because it will come down after a little use. The next thing to try is the tuning and sensitivity, and this is where the signal generator is so useful. With the receiver on, the sig-gen is switched on and tuned to operate the receiver. If there is no response the dust iron core in the receiver coil is serewed out it bit and another trial made. The position of this core should be varied in and out until a position is found where the receiver responds to the siggen, and the frequency can be found from the sig-gen. Most likely it will be low, and a turn or two will have to be removed from the tuning coil. Take a turn from each end alternatively. starting with the end to which the core is nearest. In this way it will not take long to adjust the receiver to tune to the correct frequency as marked on the sig-gen. It will be most comvenient if it is adjusted at this stage so that it tunes correctly with the core nearly right in, then when the valve shows its first sign of wear, all that is needed is to add a 2 or 3 pf condenser to CI and re-tune. As the valve ages, $C 1$ will need to be inereased to maintain the desired anoxle current. and after a certain amount of increase, it will be necessary to remove a turn from the coil, to enable the tuning to be carried out without the core sticking too far out.

One trouble that was a little mystifying at first was a receiver that had been operating correctly but gave up answering the transmitter though the anode corrent appeared normal. Everything worked properly again as soon as the low tension battery was renewed.

The A.M. Haby Itrcoiver

At this point we proudly introduce the Aeromomeraler Baby Receiver, shown in Fig. 4, with circuit diagram, lig. 5, and panel, fig. 6. The pancl is made of paxolin 048 in . thick, and the tuning coil uses an Aladdin former of 8 mm . diameter with dust iron corc. This former is cut down at the base to $11 / 16 \mathrm{in}$. long and re-drilled to fit the tapped holes in the panel. The relay used in this receiver is one that could at one time be obtained from Messrs. IE.I). and E.C.C. and it is believed can still be obtained from llessrs. E.C.C. The type can be seen from the photograph. The writer has had very good results with this type relay. The E.C.C. type 5 A can be fitted in the same space, with the same holes.

If a larger relay is used such as the E.D. polarised. the panel will need to be about $\}$ in, wider and there would not then be much point in cutting down the coil former. Also the holes for fixing the former need not be tapped, but nuts used instead. This former is bolted in place first with a short loop of tinned copper wire of about 24 s.w.g. between the bolt bead and the coil former. The coil is wound with No. 28 s.w.g. double silk covered wire, putting on $21 \frac{1}{2}$ turns tapped with a little loop at the twelfth. The turns are wound fairly close (nearly touching) and tight, and should take up about half an inch in length. The start is from the side bolt, the tapping directly above, and the finish opposite, and the turns must be held in place with a few spots of cement, but nost smeared all over. 'The relay is bolted in place and the valve bound down with thread, after the II.'. wire has been soldered to the relay. The leads should the thin 1lex with coloured plastic covering, and distinguishing colours are helpful, red for H.I'. . black for H.T.-, and yellow for I.T..t. The aerial can be the same sort of wire about 20 to 24 inches long. The wire covering should poke about $1 / 32 \mathrm{in}$. through the panel, with about another $1 / 10 \mathrm{in}$. bare. The valve leads are cut to sin. long, and the bottom and third ones soldered
to the negative and positive L.'T. leads respectively. Blobs of solder should be left on these joints which are then pushed sideways onto the panel to prevent the leads pulling thruugh. Next the condenser C3 which is a 11 unts 1 ano volt, 04 mfd hearing aid type. is connected, and then C4, which is a 5 pf R.S. ceramic which is supported at each end by the coil bolts. (C2 is a similar type of 60 pf and kl can be 4.7 megohms $1 / 10$ watt for first trial. A wire is taken from the coil tap to the relay and the top coil end to the valve anode leg. Leads to the relay contacts completes the wiring. Condenser Cl is left out for the time being.

No valve holder is used in this receiver because any change in valve usually means a change in other components tom. It may be found with a new valve that the range is very short, but this will improve with age. Onc receiver built gave only 50 yards at first, but flying was commenced with a small model that could be kept within this. The range soon improved to all that was desired. Note that best range is obtained with C 1 as small as will give the desired anode current. For getting the receiver to work read the nutes in the first part of this article.

When once set up, such a receiver will operate for some time withont attention, even the tuning seldom needs adjusting. The recciver has been designed so that a rectangular celluloid dust cover can be fitted since dust in the relay gap or contacts is about the most frequent cause of trouble.

"Irrecantiona!"

Having read Mr. D. W. Allen's letter (July A.M.) re the misuse of radio terminology, the A.M. caption writer came to the conclusion that Howard Hoys' system could not be proportional, and therefore labelled the photograph on page 413 "progressive". The system is proportional, though only single channel. H. B. believes that one of his models was the first to fly with proportional control, and that he is the only entrant using proportional control in S.M.A.le. contests.

Blld S use a variety of methods to gain air speed when taking off. The simplest is the dive from a tree or cliff: large wading birds such as herons do a shallow dive from the height of their long legs. Small birds can often manage with a jump and a vigorous fap. Water birds vary greatly in their ability to take off; broadly speaking, those which are able to escape from their enemies by diving and swimming under water have not so great a need for a quick and eflicient take-off as those which cannot dive. Thus the diving ducks such as the fufted duck have to taxi along the surface, while the mallard and other surface-feeding ducks can spring almost vertically into the air and climb steeply. Most sea-birds must taxi for a distance, as do swans, and it is on record that gannets have been found incapable of taking off due to the combination of a flat calm and no wind.

When landing, a bird reduces speed as much as possible, either by vigorons flaps against the direction of motion or by gliding upwards. Finally, it stalls on to the landing place, taking off the remaining speed by means of a couple of Haps. When the wings are turned so that the angle of attack is abont 90° they act almost like a parachute. Birds with a ligh wing-loading, such as razorbills, (see overlcai), find great difficulty in landing on to ledges of cliffs though they find little dificulty in phaning down on to water.

4ilininc

All birds glide to a certain extent, but some glide more than others. The arlvanced gliters are sharply divided into long-winged fast gliders and short-winged slow gliders. The sluw gliders which typically have a low-aspect-ratio square-tipped sing with many deep wing-tip slots, usually make use of ascending air-currents such as thermals.

Fast gliders make use of the elifferences in wind speed found near the surface of the ocean, caused by the friction of the air with the water. These birds have long narrow wings devoid of slots. The albatross, with a wing span of up to cleven feet, is the suprome exponent of this method. Gliding at

IBird Jlight

PART TWO

By

John Barlec, F.R.P.S.

Ay courtesy of "Shell A whation. Vews"
high speed across or down wind it plunges from the upper faster layer of air into the lower slower layer. This causes the bird's air specd to increase by the difference between the speeds of the two layers. Turning head to wind and zooming up into the upper layer the bird gets a big lift from the inomentary increase of air speed which it gets as it does so. Having achieved this height it turns and starts its long glide down wind again.

Of course, the air is not sharply divided into two layers, but is really an infinite number of layers, each being slowed down by the layer leneath, but the principle holds good all the same. This method can be used only by fast heavy gliders, and only in the layers of dir within about 50 feet of the surface of the ocean. If it were not for the slowing down of the lower layers this methed would be impossible. In still air the albatross has to flap like other birds.

Somegliders, especially the shearwater, are helped by air being deflected upwards or being suddenly pushed upwards by ocean waves. Gulls which have a lower aspect-ratio than the albatross use upcurrents caused by wind being deflected by cliffs or buildings, as well as those at the sterns of ships.

Most normal tight can be fitted into one of the following categories:

1. Direct continuous tapping. This is found in all sizes of birds from the swan down to the wren.

Giliding mpinarda and stalling on tin parfectly demonatrated by the fanmal in the heculing pieture. fiflthey of fevathers bericath reluga ahoren houe compinfe is sfall. Ahorm: Wood pigeon wilhoumthes shove aren and ofher differences befteren fant fiffit and landing or turning. Nota nioln and odde marepplact miriation.

The bird＇s path is horizontal．＇The rate of flapping depends on the wing－loalling，being slow in such birds as the heron and fast in the duck．

2．Undulating flight．＇Hhis is dapuing interrupt－ ed by a regular momentary closure of the wings． During the dapping phase the bird recovers the height lost during the closure of its wings．The great majority of small perching birds use this method． It is hard to see what advantage is gained for any rest during the closed phase woukd be more thatn cancelled by the increased effort needed luring the flapping phase．

3．Regular flapping interrupted by glides．This method is found in many birds of prey and in the gannet，fulmar，shearwater and game birds．There is wide variation here for no one can say that a gannet and a grouse fly in the same way．Basically． however，the action is the same．

Top pictures shote the high－ ming－taatlmp razarbill in a fant gllding furn，uning fert and lall for atditianat confral，and tramedituf atratioht und fecel at about 50 m．j．h． l．efl：Pinlmar in a aloar furn． Thetn⿻日月 wing in er－ Penfed to tha full and hin an ductealad
 aftackto prgutibe Wft．

4．Long glides interrupted by an occasional hap，prolonged gliding and soaring．Included here are the two types excmplified by the albatross and the vulture－high－aspect－ratio fast gliders and low－aspect－ratio soarers．

6．Other types，including the following．－． （a）Jerky，ditting and zig－zagging Hight（warbler， chat，robin，redstart，nightjar），（b）Jerky and dashing（swallow，martin，swift，falcon），（i）Hover－ ing（kestrel，kingfisher，tern，humming－bird）． Headlong diving（kingfisher，gannet，tern）．

Spurpel

Accurate measurements of speed are hard to obtain．Near the end of the last century a famous ornithologist claimed that migrating birds flew at great heights，and at speeds of $200 \mathrm{~m} . \mathrm{p} . \mathrm{h}$ ．and over． Now that these claims have been shown to be grossly inaccurate there is at tendency to minimize the speeds and to claim for birds only the most moderate performances．Not long ingo a scientist who shond have known better clamed that the sparrow had a speed greater than the sparrow－ hawk I The following speeds may be taken as approximately accurate ：－

Estimates of speed are confused by the fact that a small bird thapping its wings rapidly looks much faster than a large bird flapping its wings slowly．

Einduranmen

Several land birds ltave twen proved to cross up to 2,000 miles of ocean on their migrations to remote oceanic islands．In these cases their powers of accurate navigation are more astonishing than their endurance．

The Arctic tern nests within 600 miles of the North Pole and during the northern hemisphere winter is found as far south as the edge of the pack
ice around the South Iole, a round journey of over 20,000 miles each year. A shearwater taken from its nest in the British Isles was recently released near IZoston, U.S.A. It returned, covering 3,200 miles in just under 13 days.

A swift probably averages abont io m.p.h. as it flics armund catching insects for its young, and usually is in the air for nearly all the daylight hours. It must cover a very great distance each day:--probably more than 200,000 miles per ammum.

Not long ago a flock of lapwings took off one winter cvening from the north of Fingland and headed for Ireland. Since there was in easterly wind of about ars m.p.h. and the birds' speed was about $45 \mathrm{~m} . \mathrm{p}, \mathrm{h}$. they overshot; a large number of them arrived in Newfoundland next clay.

Criling and Itaviond

It is unusual for birds to be seen llying over $2,000 \mathrm{ft}$., and :ny accurate records of birds over this would be most welcome. There are a number of such records, many of which show that birds often cross high mountain passes an migration. A much quoted record is of a flock of geese photographed through a telescope while a photograph of the sun was being taken. Measurements are said to have shown that these gecse were at a height of a miles. The condor, soaring over the Ancles, must sometimes approach this.

Birds do not have any very great weight-lifting ability. Storics of casles carrying away young children are almost certainly exaggerated. It is doubtful if an eagle could lift anything benvier than a sickly lamb. Gannets and cormorants, when frightened often vomit up their last meal before taking off.

Luse of Whight

When birds inhalsit remote places where there are no natural enemies, it may be to their advantage not to be able to tly. Once a bird becomes flightless there is no need for there to be a limat to its size, and so such hirds as the ostrich reach a very large size, and the extinct moa was much bigger still. The heaviest bird capable of fight is the swan, and

Mghe: A furmar puin on the anetiors by strong buckflapping anal "pramarhating" of tail nud feet. Beloie: One of nature's mani majesticerights is the hearlest bivil cajuble of fight. the mican, heromfill wirlorge.

it has great difficulty in hoist ing itself into the air. hationg to run a long distance across the surface of the water before taking off, like a loaded bomber.

Birds which use their wings to swim muder water have ans evolutionary fressure on them lowarels a reduction in wing area. Water as a medium is so much denser that air that the propelling surface need not loe large, and the buoyancy of the water holds up the bird withoul the need for supporting surfaces. Thus we lind that the extinct great auk. the penguin and several fossil birds have greatly reduced wings or nes wings at all. A close relative of the great auk, the razorbill, is gradually following in the same direction. Its wingsare reduced slightiy already, and so it has tos lly very fast in order to get enough lift from the reduced wing-area. To fly fast it has to leat its wings very rapidly, and this requires very powerful and beavy breast muscles. Thus a reduclion in wing-area has bel to an increase in weight, and if this process of "development" goes on the razorbill will be grounded permanently.

Several interesting species are much nearer fightlessness than the razorbill. The Latysin teal can tly only about 100 yards before becoming exhausted, while the steamer Juck of the Fallkland Islands exists in two species, one of which can only just fly, white the other heavier one cannot take off. It can, however, move across the surface of the water with great rapidity using its tiny wings like the paddles of a paddle-siteamer.

MODEL NEWS

THAT＇S a nifty bit of solid stuff＂．we thought． as we first looked at the Frairey＂Flycatcher＂ photograph in the heading，If you agree－－well． you＇re caught as badly as we were，because，in point of fact，the motel is a 34 in ．Etia 29 scale control－liner！Complete even to fully sprung undercarriage and engine－turned metal panelling， the model represents many hours of work，and we can but silently raise our hats to the builder of ＂Model of the Month＂，E．R．Phillips of Peterborough M．A．C．
＂Mosleller of the Month＂is a very different kettle of fish（now what should suggest＂kettle＂ to us ．．．？）．None other than the Nalmstrom， caught in just such a predicament as so many of his cartoon characters have experienced．Morlel is a C／L ducted fan，the fan in this case being a normal airscrew driven by a Mills 1－3．The whole top half of the fuselage，from the rear of the cabin forward，hinges open for starting，and the through draught，as is evident，is quite considerable．Taken a few seconds later，this picture might have caught fingers flying out of the efllux orifice ．．．？

What can be done with a normal box－camera is shown in Photo 1，which depicts S．A．C．C． Russell＇s（R．A．1：Topeliffe） $30-\mathrm{in}$ ．liec－powercd pylon model．Any resemblance between the flying surfaces and those of the＂Gypsy＂Wakefield is more than coincidental，as the wing and tail started life that way．A＂Browne＂camera，with portrait attachment．proluced this excellent photograph．

The $7 \cdot \mathrm{ft}$ ．flying wing in Picture $\boldsymbol{2}$ is the work of A．Haerem of London，and employs the

Clark YH section．Increased chord near the centre－ section is claimed by the buildier 10 increase the stabilising effect of the reffex，and certainly the fight performance leaves little to be desired．The possibilities of fitting a small ducted fan beneath the centre－section are now being considered．
We have rarely（if ever）published a picture of a tandem twin canard biphane，and if any reater puts No． 3 down to Ray Malmstrom the eror would be understandable！Actually，however， ＂Cucumber＂is the work of another of aero－ motelling＇s amiable eccentrics，J．1）．McHard of R．A．F：Wellesbourne Monntiord．Two Allbon ＂l）arts＂are used，and despite the odd appearance the design is acrolynamically sound，so it is no surprise to learn that it really does fly ！
Smooth looking C／L job in Photo is ＂Albatros＂，the work of another R．A．F．borl． Cpl．P．N．Godirey of Old Sarum，whose＂Tipsy＂

appeared on these pages some months back. His lirst attempt at design. this motel is $30 \frac{1}{2}$ ins. span, weight 17 ors. with its [i.1). 3-40 and as befits a sports model, is remarkably stable in flight. Finish is red and yellow with silver trim, and full credit is due for design, construction and photography.

The " Debutante " plan in our last Christmas issuc secms to have rumg the brll all round ; picture :t shows 1: "Hhomas of Flixton with his

Bee " powered version. Colours are dark blue and white fuselage with pale blue flying surfaces, and Mr. Thomas reports that the model flies beautifully and gave no trouble at all.

For the mowerd lying-wing-cum-delta enthusiasts IR. G. Grimes' " Hexer" (No. (b) will be of interest. I-rec-flight, the model is 30 ins. span with 170 sm . ins. to support its !? ozs of weight. and the E.1]. 46 provides sufficiont power for a monlerate climb. (ilide is particularly llat and the general performance is very cunsistent and reliahle.

Yet another R. A.fi. model is the trim Wiles " Martlet " in I'hoto 7 3 33 ins . in span, power is supplied fy an inverted " Dart" and performance is stable and most realistic. The model, by Sgt. G. liohert of l'embroke Dock. is smartly finished in cream and maroxn, and features removalble cowlings, a fully sprung scale undercarriage, and knock-off surfaces with plug-in struts.

Lastly, that ever-popular solid subject, the F.W.190. This A 3 version is by loc lirock of the leadng Solid Mondels Society, and is authentically coloured mottled grey-blue above and leinkel blue below in the seheme used by Cerman shipping raiclers. Scale is 1 in. to I ft., from the Aeromonefons: drawings of thas machine.

TIIIS new Italian diesel, which is officially called the "Super 'ligre C.22" is perhaps more readily designated by the mame on the smart black and ycllow bux-" Saby "ligre". For a small engine it did. in fact, prove most stubborn at times, with a ready ability to hit back smartly during starting!

The Baby 'ligre comes from sound stock and like its larger brothers is full of power and speed. Its actual displacement is 1.23 c.c. which, logically, is a rather more sensible step down in size from $2-\bar{y}$ c.c. Than the favoured British class of 1.5 c.c. However, our own l.f c.c. class has become a National standard and so, as far as British modellers are concerned, the laaby ligre is an in-between size-too large to compare directly with our I c.c. motors and $t(x)$ small for similar comparison
with our $1-5$ c.c. types. Its performance, however, rates it in the upper bsacket. The nearest equivalent in displacement is the 1 -3 c.c. Mills, which. due to its design, is imherently a slower engine.

In appearance the Baby Tigre is not all that impressive. It looks rather tall and workmanlike rather than attractive. Appearances are deceptive, however, for the bore is actually twenty-five per cent. greater than the stroke, a feature gencrally common to high speed engines where high r.p.m. can be achieved without unduly increasing the linear speed of the piston, thus reducing the inertia of the reciprocating parts. Closer examination also shows that the engine is "cut down to minimum size", as it were, so that the total weight of only 1.75 ounces is a very good tigure for the actual capacity of the engine.
 In the cranifense casiting is on one side onty, thr haby Thyre wefunlly has 360' merhauit and tranafrer porda ans pmployed in Allbon angines. Ball and aockel liflie end to conmad rliminales as, zнмmibilly of ghatgeon jitu romprreaton Imass.

The Baby Tigre or G. 22 is actually made in two versions - diesel or glow plug. We had only the diesel for test but, although identical performance figures are quoted for both modicls. we understand that the diesel is actually superior. This, again is a common
 characteristic: of diesels of small capacity, as compared with glow motors of similar size, and even similar design. It is also interesting to note that the instruction manual is printed half in Italian with a complete British translation filling the second half.

The makers recommend a "large, heavy propeller "for running in the diesel version (about 8 in . dia. and 4 in . pitch, weighing atout half an ounce). This, we found, was an absolute necessity, for starting characteristics with the new engine were, quite frankly, a strain on one's temper. The boxed-in exhanst ports do not readily permit of injecting neat fuel into the top of the cylinder and sucking in by choking the intake tube readily draws fuel into the bottom of the crankcase, but takes considerably longer for this same fuel to le dispensed into the combustion chamber. As a result either way the tendency is to flood the engine every time. Right throughout the tests, in fact, starting difficulties persisted, so much so that the majority of calibrating runs were made with an airbrake and pulley started. Hence the scarcity of propeller-r.p.m. figures in this particular report. We consider this a justifiable procedure since this was a foreign engine which is not likely to be handled by more than a limited number of British modellers whilst, for general comparative purposes, the I3.H.P. and towlue figures are unaffected by the manner of test.

Normal procedure for starting a " reluctant" diescl was surprisingly ineffective, namely adjusting compression by the "feel" of the engine. What happened nearly every time was that the compression had to be slackened off and off until what was becoming an increasingly rich mixture finally fired. After that the quite amazing flexibility of the Baby Tigre as regards compression control was evident. The engine would start and continue to run with the compression slackened off as much as one turn from the proper rumning position. Admittedly the running was rough, but the engine did not stop and could be adjusted through nearly one and a half turns compression
before it was finally stopped under excessive compression. It was much more sensitive to an increase in compression beyond the running position than too little compression. The compression control, in fact, could be used as a most effective throttle.

The needle valve, by comparison, had relatively little effect. The instructions stated " 3 to 4 turns open". In actual fact there was very little difference in running between about 2 and 5 turns open. It became largely a matter of setting the needle valve so that the turned over end protruded away from the propeller dise and thus represented no hazard to the fingers when flicking over the propeller, rather than adjusting to a "best " running setting.

The method of locking the needle valve, incidentally, is most effective. A light compression spring is fitted between the locking nut on the spray bar assembly and the flanged end of the needle valve bush-not, perlaps, so neat as a split bush, but appreciably more positive.

The compression adjustment lever is comfortably large in size and smonthly rounded so that it can be operated with ease when the engine is rumning. The contra piston itsclf, however, was a little on the stiff side and wonld not blow back under compression very readily when the engine was not firing. liore and aft play on the crankshaft was a little disturbing at first, this being at least $1 / 18$ th inch so that, ficking over, a sharp metallic click was often prodnced which mather made one wonder whether or not everything was in order.

The integral tank was rather a nuisance. The small vertical pipe protruding from the top of the tank is presumably intended as a combined filler and vent for it does not extend down into the tank wall. A comparative large hole in the tank is for the insertion of the frel tubing far ton large to grip conventional tubing with the result that the end of the fucl pipe tends to work up out of the fuel and, eventually, right out of the tank as well. It was far easier to fill the tank through this hole,
removing the fuel tubing each time, rather than through the small fixed tube.

With the modern tendency to flange the propeller backplate or bonst the propeller shaft diameter so that the hole required through the propeller boss is about f in. diameter, it was a little awkward to find an approximately $\frac{A}{8}$ in. diameter shaft fitting on the laaby Tigre.

This would not, of course, worry individual users of the engine who can obtain propellers initially drilled with a hole of the required size, but most standard commercial propellers are drilled larger than \in. dia., preferably requiring bushing for a vibration-free set-up. It would be an excellent idea if engine manufacturers dide conform to closer standatels in this respect.

Apart from starting, no trouble at all was experienced in getting really high spect runs from the Baby Tigre. As speed increased, so did the amount of compression required, whilst a leaner mixture could also be used, although the latter mainly affected fuel consumption rather than actual r.p.m. Maximum power is developed in the region of 12,100-13,000 r.p.m. which makes it, essentially, a " racing" motor which could well be used for contest work. lior a more moderate performance, i.e. for sports flying, the engine could be throttled down almost to a tick-over on the compression control, swinging a relatively large dameter propeller.

Like many other powerful engines, hand starting tends to become hazardous at speeds in excess of 10,000 r.p.m. -i.e. using small propeller sizes giving operating speeds in excess of this r.p.m. bigure. At high spreds, too, the " throttling effect " of the compression control is rather less pesitive. The engme tends more to run in bursts with slackencel off compression, rather thail steady, slow
running. The engine. too, needs a fair period of rumning in before it will hold consistent high speeds over a period of a minute or so.

A feature of consoderable interest is the possibility of using the liaby 'Tigre for International class power duration flying. With a maximum engine size of 2 . e.c. specified by F.A. I. rules, most designers tend to adopt the largest possible engine size within this limit (i.e. the most powerful engne available). However, the possiblities of using smaller engines (and smatler models) have already been proved by the British win in 1052 with a $1-5 \mathrm{c} . \mathrm{c}$. motor. In the matter of power: weight ratio the Baby Tigre compare: quite lavourably and so may be considered a "possible" in this field. So far, however, Continental modellers of world standard have ahmest ex-lusively employed

Compared with contempenary British productions we would say, to summarize, that the laby Tigre has the power and speed. comparatively speaking, of the best of our products, is an attractive functional engine from the point of view of minimum size and weight, but lacks some of the "good looks" our own and American designers generally produce. Its handling characteristics, as exemplified by the particular example on test. were certainly not as good as regards starting temperament, although flexibility of the controls when running was most favourable.

Iropeller' Then ligures

H:YたI.: Mercury No. E. ad lest rutn Manndacturer's Kecommendiation:	$\begin{aligned} & \text { Propeller } \\ & \text { [):s. Piteh } \end{aligned}$			R.E.M.
	111	\times	1	
1 part l'aration		\times	4	7.1 (11)
1 part Castur Oil		\times	4	5.5110
1 part Eiher, plus 2 yer		\times \times \times	1	
cent. Amyd Nitrate			4	11,200

WAKFFIED mid POWER TEAM TRIALS
 Digby 7th June, 1953

 discumn tho flying site (J) irith fomp, Nire, S. It. Taginr, idith

 ngaln hit the higitighte for tho it hitofictit retelp. the ranull of a large bulidiny proyramme and hourn of text fluhtr.

Briber-deft (or right: Prete Ifmarll (Sinrbiton) wiperatoul his 105: mucerose finimet the name matel man wedl in Siztizerinmal. Siporge rulter appenta eren more pipased
 the nanc Niorthirieda Parke rlates sena a netrporine nuicromier to poserer honomra, an truas Peta Comeron ('rondon), beller knomen the the npeed and tam rachag icorld.

Recalesivero

Artario Acealsuronis

Dear Sik,

I havo been making model aircraft for many years ; luy 1 sufter with something that I have never found in any other modeller. Once the aircraft has been finished as per plan, no warped wings, C.G. is correct. I cannot bring myself to fly the model. I'll admit it-I'm scareal!!! Scared that the model is going to crack up on its first trial glide, even over long grass, into a tangled mass of splintered wood, torn tissue and twisted bracing wircs.

At the moment I have five models lined up which should tly-Avro 501k, Fokker D. VII, Bleriot monoplane, Sopwith l'up, and an R.E.8.

These are all scille models which take betwen six months and a year to build, that is, each model takes this to make, and maybe it's tho thomght of a year's work heing wrecked inside 30 seconds that seares me of flying then. And the thought of an engine of more than - $75 \mathrm{c} . \mathrm{c}$. to power these models (some fellow modellers say that 7 75 is not enough), or the model flying at more than $5 \mathrm{~m} . \mathrm{p} . \mathrm{h} .$, makes me shadder!

I would be pleased to know if anyone clse suffers from this complaint and how to overcome it.

Ashtend.

S. V. Tuckrr.
(My. Tueker can take heart in ths Anowledge that this pagticulas disease is common to many' of the lop mams in the flying scals coordd, as watl as to lesser-known builders and aDen the Editan Amy frcomimended curctl)

Flipponacy - and Slapus?

Dear Sir,
I was very pleased to read Col. Bowden's reply, in the June Arrosodellbr, to twocriticisms of his article on "Slots and related devices" in the December issue, the tone of one of which was entircly uncalled for, and tantamount to rudery.

Thank IIeaven this type of critic is in the insignificant

minority, which we can well do without. Acromodelling would not have advanced to its present state if there had been more than a mere one or two of these people who indulge in sarcastic remarks devoid of any constructive suggestions.

Col. Howden's status in the aeromodelling world is no fash-in-the-pan limelight like some, it's based on an accumulation of knowledge gained from experiments through a good number of years. When others have accomplished as much, il's still never time for sneers.

While not agreeing verbatim with all his writings, I always find form fur thought in his articles. I also fly models just for the pleasure, and by far prefer to see a model "acruplane " that at least rescmbles what it is supposed tor represent, both in aspret and performance.

Teet's have criticisms by all means-we learn by our discussions and more heads are letter than one-- but pleasc. you "bods" who indulge in presumptuous accusations and petty digs, wind your necks in, you only indicate your poror spirit. If some individuals find interest in only one particular rut of aerumodelling. and believo everyone else to be labouring under a delusion except themsclves, then it's a pity they do not even know how to live and let live.

Streatham.
S. Кемр.

Nhatters - and Nlops?

Drar Sir,
I was sorry to see the resentful manner in which Col. Bowden replied to Mr. Barker's and my criticisms of his article. The Coloncl's attack on youthful modellers seems singulariy out of place. The fact is that a young modeller canlearn more with the aid of a few simple aerodynamic books than could be learnt from a lifetime of purely practical experience. In other words, a little theory is worth years of practice. Enough data has been published on the Delta to show that it is unsuited for model tailplanes. Whilst I have no objection to Col. Bowden trying delta tails in practice, why try to ram the idea down the throats of other aeromodellers?

In viow of his tendency to misquote, omit important facts and introduce red herrings, I have no desire to bandy words with the Colonel. For instance, when he says the delta is one of the shapes of the future, he should have added " for supersonic fights". I doubt if Col. Bowden's delta is capable of that! Incidentally. Col. Bowden does not tell us how his large \&elta makes out in the air. I ams afraid it looks rather unstable and very inefficient to mo: I expect he will correct me.

Now, to come onto the sulject of slots. I do not deny that glots catn bet useful. In fact I am using them on a Heston A.O.1. flying scale which tip-stalled without them (photo on leit). However, I still doubt whether slots will give a drag reduction, even on large models, and Col. Bowden gives no concrete evidence of this. I think he will confirm that the tests which he mentioned were made in wind tunncls which were highly turbulent. Thus although the wings were of moflel sizes, flow conditions were completely different from those found around a model in Blight. It is for this reasou that these old wind-tunnel tests aro little used for model design. However, there now exists in S. London a low-turbulence wind-tunnel which could prove once and for all whether slots do in fact improve power model performance.

If it is possible to form a small group of enthosiasts

THE SHOW THAT WAS WORTHWHILE

by w. Turley

TTIF seenc was typical of the minutes before the commencement of a model flying show. Jingiucs were warming up, models being assembled, I/A tests going on and, over all, the usual murmurs of expectation from the spectators.

But this was a different show. The place was a Children's Orthopacdic Hospital, and the spectators . . . nurses and patients.

How those kids appreciated the Model Club's efforts to entertain. They were brought to the field in wheclehairs, or carried, strapped to special metal supports. to their places amongst the crowd. Others watched from stretchers, barely able to move fleir berlies to see all that was going on, but each one really enjoyed the show.
buring the afternoon we were invited to see some of the handicrafts carried on as occupational therapy by the patients, and acromodelling was there right to the forc. It was amazing to sec the quality of the construction, bearing in mind the circumstances under which the models were made. Une little chap, the proud owner of a partly finished "Skystreak " control-liner, announced his intention of "having a go" as soon as possible this, in spite of having to use crutches for support.

Whilst at the hospital, I thought of the many controversial letters which have appeared in the modelling press on the subject of junior club members, aund the varying degrees of interest which they show in the movement. Here, I thought, are some of the real jusiors of acromodelling, grappling not only with the incevitable queries which dug the activities of us all, but also with their own obstacles of illness and deformity.

Surely we can class such youngsters as the future

Top: Ex-pafient If. Sangford of Mation cthb expfubay hia

leaders of acromodeling and I thisk you will agree that they are worth an occasimal show and periodical assistance from established (:lubs.

To Clubs who have an ord afternoon free churing the coming season . . offer your services to such an Instilution in your area. You will lind gratitude and assistance from the authorities, and reap your reward from the appreciation of the children, as we have done.

(Cominued from preceding mage)

who would like to assist in making a series of model tests in this tunnel, I am loping we could produce some very useful resulta. The idea is to measure lift and drag of a number of the " best " wing sections, and some of the most "propular", using typical wing construction. Also, to ters seme typical models, scaled down, with washout, slots, sweepback, and any other alevices which seem interesting, both by force measurements, and airllow visualisation, using wool tufts or smoke. Any readers who are interestel in this project from any of the following aspects are asked to contact me

Constructing test wings (alkut 11 in . span).
Daking accurate solifl scale models (about 10 in . spant.

Vind tunnel testing (some experience of experimental work worlid be necessary).
Making and developing a satisfactory smokegencrating apparafus.
Photographing movels muder test.
I should also be pleased to hear from monkellers whos think any particular acrofoils worth inchuding in the tests.

The sucemsful comelusion of such a project can only leak to a better understanding of model acroklynamics, and eventually increased prestige for British acromodellers.

> Ealing. N. M. Cates.
(Corroxpondeme on this subject has proved to be cqually divided for and against Col. Bourden's opiginal arficle and his crutics. Accorditigly, in the interests of spuce, the Etitor regrcts that ith corfespondsuct must mow bo considerca as closed.;

0NE of the most frustrating things about power modelling, as far as the novice is concerned, is to read a report or all advertisement on such-andsuch an engine which emphasises that the product concerned is " particularly easy to start"- and then having purchased that same engine find. apparently, that the very opposite is true! Both statements can be quite correct. An engine which is, genuinely, an "easy starter " can appear to be the most stubborn piece of mechanism ever invented if the process of starting is tackled in the wrong way. Risling a bicycle is easy-once you have mastered the knack. lunt it is not easy to someone who is learning to ride for the first time. It is very much the same with a model engine. Once you have mastered the basic knack of starting, then the whole process becomes quite easy. Until you have that knack, it may appear quite difficult.

Getting the best out of your engine can, logically, be divided into two separate stages. The first consists of "getting to know your engine", which is best tackled before the engine is put in the model.

After you have mastered the knack of starting and adjusting the engine for consistent running, then only is the time to think about getting the best out of it in the way of performance. liar more important than getting an extra thousand revs is the knowlerlge, backed by your own experience. that you can start the engine quickly, every time. with no tmmecessary prop. Alicking. Also very important is that preliminary running gives you confidence in your ability to handle the engine so that you do not have to make hurried, sometimes frantic adjustments on the flying fich-and more likely than mot put your fingers in the spiming propeller, which is painful, to say the least.

Almost certainly, if this is your first engine. when you do get it running for the first time, it will frighten you by the noise it makes and the
power it appears to be generating. The larger and faster the engine, the greater this psychological effect. The main factor involved is the speed at which modern engines operate, recommended propeller sizes being designed to produce an operating r.p.m. in the region of 10,000 or more, at which speeds the engine develops maximum power. You can minimise this affect from the beginning by using a propeller which is appreciably larger than the recommended size for normal tlight operation and so limit the maximum speed at which the engine will run. All your " familiarisation rums" can be done with this oversize propeller and after you have got used to operating the controls and mastering starting technique, complete "' getting to know your engine " by repeating the process with the propeller you will eventually use when the engine is installed in the model.

Preliminary running of a new engine before fitting it in a model is not only a common-sense process, it is necessary to settle the engine down, as it were, just like a new car needs rumning-in. In the case of a model engine, "pwards of one hour's actual running time may be necessary before high sponts left by manufacture are worn down smooth aud all the working parts " mate" properly. This is particularly true of conventional designs where a phain piston is used. The piston cannot be manufactured as a true and perfect running fit and can only wear itself down to this desirable state after a certain amount of running time. The same is true of the crankshaft and its respective " mating surface " or bearing. Since engines are produced in quantitics of, perhaps, scveral hundreds a week in the largest factories, cach individual engine cannot be fully rum-in before despatch. They are bench tested to prove their running ability. but the actual rumingein is left to the purchaser. The

manufacturers of motor cars work on the same principle. They camont afforl the time to run cach new car for the necessary five hundred miles or so specified before delivery. If buyers of cars (or model engines) insisted on this, they would luave to pay that much extrá. Rumning in a new engine, thercfore, is really saving yeu mones.

Some modellers do ignore this very necessary process. They bolt a new engine straight into the model and start flying with it. This means that they have to get to know their engine on the flying tied and possibly are disappointed by the results. About the only type of engine which does respond (o) such direct treatment are those with ringed pistons. These, in general, need little or no running in, particularly if the crankshaft is carried on hall races as well. but still need getting to know before the best operating and starting technique is mastered.

What actually happens inside the engine during running-in is that the various rubbing and sliding lits are improved, so that less friction is produced between them. As a consequence, both engine r.p.m. and power improves. When fully run-in, the engine is developing optimam revs (and power) with the particular propeller used-lig. 1.
lingine speed does, in fact, provide a simple check on the condition of a new engne. With the same propeller, r.p.m. will gradually increase with runming-in time, until it reaches a constant ligure where further running time prodaces no further increase in r.p.m. Some actual figures obtained on test with a new engine are shown in lable 1 . illustrating this point. When constant r.p.m. is obtained, then the engine is fully run-in with that propeller. It may need further ruming-in time to settle down to constant r.p.m. with a smaller propeller producing a higher initial speed-Fig. 2. In practice, this can be reduced to an initial break-in run with an oversize propeller holding the revs down to something like one half of the maximum r.p.n. specified for the engine, foliowed by a further run-in perioll with a smatler propeller of the recommended size to be used when the engine is installed in the model. As a general rule, the oversize propeller required for initial rumning should be about the same pitch as the "recommended" propeller and two to three inches greater diameter.

The advantages of correct running-in are threefold. First the engine is properly broken-in to

TABLE I

Running time (Minı.)	0	10	20	30	40	50	60	70	80	
R.P.M.	\ldots	\ldots	8,500	8,800	9,200	9,350	9,450	9,500	9,550	9,550

Allbon Dars II. Mercury No, 8 Fual. $B \times 4$ Propeller
develop maximum power. Any spots of local friction are worn down, so that the engine developsis more consistent rumning. In the case of glow motors, in particular. and some spark-ignition motors, consistent running is not possible until the engine has been at least partially run in. In other words, a brand new engine may not run consistently and this failure is not a manufacturing or design fault. Jiesels are less aflected in such a way. Lastly, of course, rumsing-in with the engine monnted convoniently on a bench provides an ideal method of getting to know the starting aud operating characteristics of the engine in a practical way which no amount of printed instructions can convey.

Suppose, now, we are taking a new diesel engine out of its box for the first time. It will almost. certainly be complete and ready to rum, except that the needle valve needs screwing in place and the engine mounting on suitable bearers. However great the temptation. do not fiddle with the compression conirol at this stage. Almost certainly it will have been left at the setting established by bench testing at the factory and be near correct for starting and running. Move it and you will have to find this correct setting again by trial and error. If you have no previous experience with diesels, the errors you are likely to incur are considerable and the "trial " part protracted.

Simply, starting the engine for the first time then consists of bolting it to suitable mounts, as in Figs. 3- 5 , using the recommended fucl and following the maker's instructions for starting. However much more we wrote on the subject, it would all boil down to that simple statement. The makers know how to start that particular engine and they do their best to convey that knowledge to their customers in their instruction leaflet. However obvious the moral, possibly a majority of customer: still ignore the basic rule of read the instruction leaflet carefully.

With most modern engines the needle valve control is not particularly critical. The engine will generally start and run even if this is one turn too far open, or closed. The compression control is, however, more critical. Generally the setting for

best running is critical to within about one eighth of a turn. The importance of remembering this setting is self-cvident.

If you have been unfortunate (or foolish) enough to lose the compression setting you can usually tind it again by " feel '", but this takes a little practice to get the required knack. With the valve needle open the recommended amount (or 2-3 turns, whichever is the greater), prime the engine by placing a finger over the intake and turning the propeller over four or five times by hand until the top of the piston is visibly wet with fuel; alterna-
tively you can squirt a small charge of fuel directly into the top of the cylinder through the exhaust ports. Now continue to turn the engine over with one hand and gradually screw the compression control down until a definite resistance to the upward stroke of the piston is felt. Never force the piston past such resistance, and never close the compression control down so far, or fill the top of the cylinder so full with fuel, that a "solid " feel is developed. Forcing the piston to move against " solid " resistance will most likely bend or break the connecting rod.

BAITISH PRODUCTION ENOINES-195I-53 (GENERAL DATA)

Having found the position of the compression setting for "stiff " (not solid) resistance, slacken off about one quarter of a turn, and that should be about right for starting. You can then go through the normal starting technique recommended and make further small adjustments to the compression setting, is required.

In general, the compression setting works this way. Provided adequate fuel is being sucked into the engine (i.c. the engine is primed and/or the ncedle valve is opened far enough), slowiy, increasing the compression as the propeller is ficked over should eventually result in the mixture firing. If the firing is harsh and the engine stops abruptly, compression is too high aud must be slackened off. Slacken off a little and continue nicking until the engine fires again, and repeat, as necessary, until it keeps running. Some engines will start and run at the same compression setting. Some start best at one setting and compression must then be increased slightly to kcep them running. With others, slight decrease of compressinn after starting keeps them running. When the engine is running, mis-firing or knocking indicates lack of compression. The engine labouring to a stop indicates too much compression.

At the same time, bear in mind that although it is wrong compression which results in mis-firing, or labouring to a stop, it is not necessatily only the compression control which is at fault. Compression adjustment is the more critical, but excess fuel (an over-generous prime, or needle valve open too far), or lack of fuel (necde valve not opencd far cnough) can also produce similar results.

As a general rule, if the exhaust is very oily, the needle valve is open too far. If the engine bursts into life and then quickly dies out, the engine is being starved of fuel. Rather than prolong these particular instructions we again emphasize reference to the manufacturer's instructions on starting features-and a study of the monthly Fngine Analysis fenture which deals with the starting and running characteristics of individual engines on tests. These latter reports, written in a completely unbiased manner, should be representative of the average modeller handling the same engine. Also we emphasize, it is your oun practice which eventually makes perfect.

Fuels we have so far mentioned only to recommend the fuel type specified by the manufacturer. We stick to that, at least for the "familiarisation" period. Do not try to make up your own fuel mixture for a start. Nor need you add " runningin " compounds for breaking in the engine. Stick to a tried and recommended fucl which is known to suit that particular engine and that is one uspect of " familiarisation " that you will not have to worry about. Once you feel that you have mastered the controls of the engine, then try other fuels, if you wish. Actually, unless you are specilically after absulute maximum performance, stick to branded fuels of the ordinary kind. Try one of two different types, if you like, to see which gives the best performance with the particular propeller you intend to use. The advantages claimed for a good many "home made" doped fuels are frequently more hypothetical than actual-and some of these " hot " formulas are actually corrosive to the interior of the engine!

When the time comes to install the enginc in your model the engine itself should he properly broken in, you should be able to start it from cold

or hot in a matter of a few seconds exery time and shouk be thoroughly familiar with the effect of the controls (c.g. the effect of too much or too little compression, etc.) so that if you do do something wrong on the field when starting you can immediately recognise where you have gone wrong and correct. "The one new feature you may have to arrange is a suitable fiel tank, for not all engines are supplied with an integral tank.

A good fuel tank can make all the difference to the actual light performance of your enginc. If the engine has a tank fitted, all well and good. If not, then you must buy or make a suitable tank to fit to the model as close to the engine as pussible and, ideally, maintaining the fuel level appreciably on the same line as the crankshaft. Fig. 3. A flattish tank is therefore preferred to a tall onelocaterl as close to the engine as possible to minimise the effect of the changing attitude of the model during llight. In a steep climb, for example, a tank mounted well aft develops a considerable " suction head " which may well affect the mixture, or necessitate the engine being started and adjusted with the model held in " flight attitude " pusition.

Whilst some engines will operate quite successfully with a considerable suction head, this is not good practice and does tend to give a varying fuel mixture in light with the same (fixed) needle valve setting. Thus a low-mounted tank is generally best avoided, unless mounted very close to the engine, e.g. immediately underneath the crankcase. A high-monnted tank is even worse for normal operation since this will tend to let fuel feed continuously into the engine under the action of gravity as long as the needle valve is open, with a consequent risk of flooding the engine cluring
starting. Under actual fight conditions a gravity feed of this type can le advantageous, but seldom worth the possibility of starting troubles.

Flight testing is, of course, the only satisfactory answer as to whether the tank design and location is correct. If the engine runs all right on the bench but does not perform consistently in fight, then pretty ubviously the tank is at fault. Fither try a different tank, or alter its position until this fault is cured.

Ficld operating technique follows the same principles of starting and adjusting determined by bench testing-together with applied commonsensc. Keep the eugine clean, for example. Dirt is abrasive, so small particles which may work their way into the cylinder will increase wear, reduce the useful life of the engine and eventually spoil its performance. Wipe the engine free from oil after a day's use and cover it with a rag. If you have a crash and the engine gets partially buried in the ground, wash all the dirt away thoroughly (e.g. with fucl) before attempting to turn it over to see if the crankshaft is bent. Nake sure that the hold-down bolts are always tight and that the propeller is properly balanced so that no undue vibration is set up, and so on.

Finally, we commend the old adage--"' if it's working all right, leave it alone!" In other words, don't disassemble the engine unnecessarily. Many expert power modellers will conlirm that they never take an engme to pieces, except to deal with a major fault. Even then, e.g. the result of damage suffered in a crash landing, the best plan is generally a return to the manufacturers for the necessary repairs.

TABLE II
GRITISH PRODUCTION DIESEL ENGINES 1951.53 (PERFORMANCE DATA)

ENGINE	$\begin{aligned} & \text { B.H.P. } \\ & \text { (max.), } \\ & \text { at r.D.m. } \end{aligned}$	TORQUE (max.). oz.-ins. at r.p.m.	$5 \sim$ Dia.		R.P.M. FIGURES-STANDARD FUELS-WOOD PROPELLER 6 Dia. $\quad 7^{\circ}$ Dia.							S 8^{-0} Dia.	
			$\times 5$	$\times 4$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 3$	$\times 4$	$\times 5$	$\times 3$	$\times 4$
E.D. 46 Baby	028-11.000	2.7-7-10,000	8.500	-	10,800	-	-	-	-	7.500	-	-	-
Fros ' $50{ }^{\prime}$	030-12,500	3-1-6,000	9.450	-	11,800	10,950	8.000	-	9.350	7.200	-	-	-
Allban Dart II	042-11,500	48-6,000	10,600	12.400	11,100	10,350	8,250	-	9,300	7.400	6,350	6,750	6.100
				6^{6} Dia.			7- Dia.			8 - Dia		90	
Allbon Spithre	084-10,800	99-7.000	$\begin{gathered} \times 3 \\ 13.150 \end{gathered}$	$\begin{gathered} \times 4 \\ 12.000 \end{gathered}$	$\left\{\begin{array}{c} \times 5 \\ 11,250 \end{array}\right.$	$\begin{aligned} & \times 4 \\ & 9.450 \end{aligned}$	$\begin{gathered} \times 5 \\ 0,950 \end{gathered}$	$\begin{aligned} & \times 6 \\ & 6,850 \end{aligned}$	$\begin{gathered} \times 3 \\ 0.500 \end{gathered}$	$\begin{gathered} \times 4 \\ 8.200 \end{gathered}$	$\begin{gathered} \times 6 \\ 5.900 \end{gathered}$	$\times 3$	$\begin{gathered} \times 4 \\ 6.750 \end{gathered}$
E.D. 1.46 -.	148-10,500	180-5.000	12.900	-	11,300	-	10,350	8.400	9.700	9.400	6,600	8,200	6,900
Allbon davelin II	.134-11.000	15.8-5.000	12.450	11.950	-	10.550	10,150	-	-	9.550	6.800	-	7.250
			$7 \times$	Ia.	$8 \times$	ls.		$9{ }^{\text {c Dia. }}$			0^{-}Dia.		11° Dis
Ollvar Tiger315-14.000	280-7.000	13.750	$\begin{gathered} \times 6 \\ 11.800 \end{gathered}$	$\begin{gathered} x 4 \\ 12,200 \end{gathered}$	$\begin{aligned} & \times 6 \\ & 9.950 \end{aligned}$	$\times 4$	$\begin{gathered} \times 5 \\ 9.400 \end{gathered}$	$\begin{gathered} \times 6 \\ 8.450 \end{gathered}$	$\begin{gathered} \times 3 \\ 9.800 \end{gathered}$	$\begin{gathered} \times 4 \\ 8.650 \end{gathered}$	$\times 6$	$\times 6$
Amco 3'5 日	$\cdot 32-13.000$	270—10,000	-	-	-	-	11.450	10.650	10,000	-	11.100	9.750	7.950

MAX. B.H.P. 匋 R.P.M. FIGURES ONLY CAN BE QUOTED FOR THE FOLLOWING

Allban Dart ...	-045-13,300	Elfin 1-49 wh	.10-13.700	E.D. Comp. Special		$.11-7.000$	Fros 250 . ${ }^{\text {a }}$	192--10.700
Mille P. 75	-059-11,350	Frog * 150°...	$.12-13.000$	Mille $2 \cdot 4$.18-10.000	Amco 3.5	.260-11.600
E.D. Een	-062-10,600	Allbon devalin	099-12.000	E.D. Mk. III	'	260-14, 100	D.C. 350, Mk. II	281-11,300
Millı 13, Mk. II	078-7.250	Heavai M.18	087-13.000	EIfn 2.49		$\cdot 231-12,300$	E.D. Mk. IV	265-13,300

TRADE NOTES

MAKING their appearance in the model shops at the same time as this issue will be a new ancl inexpensive boon to modellers-a range of plastic bottles, which can be dropped, squasinex, or thrown to the ground without damage. The basic bottles (from 4 to 10 ozs.) are made of a semi-transparent plastic which is soft enough to be squeered in the hand. The lirst and obvious use is for fuel, and a plastic cap with a fine nozale is available to replace the nonnal cap when the

tween 1s. fid. and 3s. Ud.) these bottles will form a most attractive addition to the average modeller's toolbox.

Mach in evidence at the Nationals (by those lucky enorugh to get them in time) were the new ELMIC MINI-DIESEL, timers fitted with Ehmic Flexi Tube. These little units uffer ponsitive cut-off Fexi Tube. Theschittle units offer positive cut-otf
action for a weight of only $1 / 50 \%$, and like the other Elmic Timers, are anjustable over a wide
range of times from a second or two up to several range of times from a second or two up to several minutes, with a very high degree of reliability. The Flexi Tube included is a supple, opaque tube completely impervious to all fuels. which passes completely impervious to anilucls. Which passes
through two holes in the unit's top bracket and so cannot slip out of place. loor contest fans and so cannot slip out of place. For contest fans and little gadgets represents 8 s . 98l. well spent.
bottle is so used. Another version has aspray-cap, tit ted withalong plaistic pickup tube and is ideal for water-sprayingor forapplying small quantities of thin dope. Modestly priced (be-

A clever control-line hande with that little extra thought is the "AM-PCIL.", marketed by thought is the "AM-1'Cli." ", marketed by
Arthur Mulfett of brighton. I screw adjustment enables the operator to adjust his line length, and
also provided is a series of altachment holes by cuables the operator to adjust his lime lempth, and
also provided is a scries of altachment holes by means of which control sensitivity can be varicel. Comfortably shaperl, the " Am-pull" costs ts. 5 k .. including tax.

Many modellers are already using the special model size SPRAY GUN manufactured by The Motor Car Exchange, Deaconslield Road, Hemel Hempstend, but many may bot kinos of Hemel hempsteind mon many may not kione of this firm. Intended for tonching up cars and motor-cycles, the units are excellent for spraying
larger models, and

CLUB NEWS

H.J.N.'s beneflt day Y Monsbers of the Imicester M.A.C. ecith some of the modetn budit in the club's onc-dealgn contemi, for which thin year tho "Mentor"'kit ucas choyen.

IVITH one of the most successlul Ifritish Niationals ever now behind us, the scason is well and truly in its stride. So, unfortunately, is the weather. Farlicr metings and the Nationala wero lavoured with splendid lying conditions, but lately rain and wind have entered into the picture, upsetting one or two big meetings and innumerable small contests and demonstrations, particularly those held during Coronation weck. If onc fcalure of the 1053 season so far is to be remarked upon (apart from the climatic vagariesl) it is the tremendous number of public demonstrations which clulss all over the country have been giving. Such shows, hekd at local feles ar sports mectings, result in a great deal of pullicity to the model movement, which can be very valuable in securing co-operation or concessions for future activitics. Even really active clubs are frequently unknown to the local citizens, and it can do a great deal of gers to let your townsfolk know that a live group of modellers exists in their midst. Organisers of large garden partics, fétes, etc., are frequently only too glad to have an additional and unusual activity on their programmes, so what about it you clubs that still hide your lights under bushels?

Soulh Midiand Area

Dany roads will no doubt lead to Radlett on

```
July 19
Aug. 2-3
    9
    2 3
C.M.A. Cup, Frog Sanior Cup. D/C. Intarnational Ric Contett. Sourhand Airport. Aug. 2-3 WAKEFIELD TROPHY, F.N.A. Cup. INTERNATIONAL POWER TROPHY. Cranfield, Beds.
Cambridge M.A.C. Team Race Rally. Cambrideo. WORLOA2 CHAMPIONSHIPS. Yugoslavia. N.E. Coast Competitioni. Town Moor, Noweastle. upon-Tyne.
Bolton M.A.S. Rally. Edraworth.
Araa Chemplonshlpa, Taplin Trophy. I•5 and \(2 \cdot 5\) Payload. Long Marston, nr. Stratiord-an-Avon. lrish Nationalus. Dublin.
Yorkhire Evaning Nowa Meating. Sharburn, Yorkg Inetrnational R,C Content. Brunsols.
Gutteridge Trophy, M.E. Cup. Area Cent. (1954 Eliminators).
Incernational Team Races. Molland. All-brieain Rally
International Jetox Content \(\{\) Radlotr, Hepts. K. and M.A.A. Cup, Halfax Trophy. Area Cenc. (1954 Eliminators).
```


CONTEST CALENDAR

September 20th. for what is to be known in future as the "All Britain" (nde All-llerts) Kally, organised by the ST. ALBANS M.A.C. An impressive list of contests (including tailless, seaplane, concours, etc.) gives something for cveryonc, and is backed up by a radios recovery service.

HENLEY M.C. are doing well in the certificateline. A. Cooko collecting his "C" and International by flights all made within a fortnight, while J. G. Waldron has only his rubber llights to make for the same. A new club rubuer R.O.G. record of 8:00 was an incidental during one of Waldron's attempts to get his three times. Cooke broke his motor after a first round max. in the M.A. Cup at Whaterbetach, and had similar luck in the Thursten.

Didland Ares

A static show and C / L demonstration (stunt and stredurer-cutting) given by the SUTTON COLDFIELD M.A.C. went down very well at the Princess Alice School, which is the local National Children's Home. The club is always happy to welcome new members at the Mill St. Y.M.C.A., between 8.0 and 9.31) each Foriday.

SOU'11 131RMINGHAM M.F.C. are engaged on a full programme of displays at Sjorts and Carnival days, and fud the resultant publicity and prestige of great value. At Stourbridge K. Ashman cleaned up, team race and speed, leaving A. Hewitt to win stunt despite sonne months without practice. Tin hats are advisable in this area as some non-modelling bighead has alirily told the clubs that he is producing an allplywood, five receiver l / C effort to his own ideas all tive receivers tuned on the same $27 \mathrm{~m} / \mathrm{c}$ band.

Terd fixatns of NORTIAMPTON M.A.C. did well to top the Wakefield, but clubinate H. W. Revel was dogged by ill fortune. There is some mention of t sq. longerons under the new rules... ? Many of the club vibited Waterbeach and thoroughly enjoyed the meeting, and the express the hope that this splendid venue will the available for further contests.

WALSALL M.A.C. is another club taking advantage of the August lank Foliday for a C/L Kallytheir 0th in this case. Scene will be the Vallsall Arborctum Extension, and programmo covers scale concours (plans are a must), open stunt, combined speed (up to Class IV) and A and B team races. Special
prizes for the most novel performance of the day and the lest flight by a multi－engined job．Enquiries to Mitchell． 2 l＇araday Road，Gypsy I ane Fistate，W＇alsall．
Due to wind，LHICESTER M．A．C．＇s scramble contest became a physical strain，and not surprisingly was won by M．Raynorr，a junior．I chuck glider event suffered from the wind and was won by E．Kinnaird＇s aggregate of 83.5 secs．Better weather favoured the Jetex Comp．，which was won by N．Kinnaird，whose model later disappuared into clond after 7：03， establishing a new club record．

BIRMINGHAMM．A．C．also enjoyed the Nationals， and have a word of praise for the organisation．Wheeler placed third in the Gold，Dallaway third in robber．and Monks second in payload，so the trip was well worth－ while．Second and third in power at Wiondford were taken by Doughty and Monks，the latter＇s second maximum being in pouring rain！

Somilicrin Area

1R．Tee won the W＇INCHESTER M．A．S．Sailplame Comp．．flying a＂Lulu＂：also anung the cutries were three＂Ninds＂and a＂Suark＂．I＇．Ivory lost an Elinin 1.40 job which was later picked up）！ 1 niles away conplete with D．＇T，fusc．Unlit，of cuersc．The club newsletter contains the query，＂Where do fiers go in the summer time？＂，since it secms that average flying atiendance so far is just one third of the number who slowed up to the winter evening sessions．

Wenterm Area

Interesting was the flight of a modified A．P．S． ＂Stomtper＂helonging to R．Perrett of BATH M．A．C． when it flew from Lulsgate across the Bristol Channel into Wales．The fight brought a tie for secund place in the power scetion of the West of lingland Challenge Cup，which was actually won by J．Dixun，of Jath， with a Javelin－powered＂Eliminator＂．

Soudla Linsteril Arabl

The CANTERIBURY PILGRIMS are leading the seabon＇s progressive club scores in the championship scheme organised within 1：．M．M．A．（Hast of Medway Modellers＇Assnciation．an independent body formed
as a result of the S．M．A．J．8／8d．fee）．The first round brought Precision 1st and 2nd places．Ratio 2nd and 3 rd ，and Sailplane 2nd and 3rd，while the second round saw an irnprovement to Sailplane 1st and 2nd， Katio 1st，and Precision 1st，membery J．Ashby， 1．Powell．E．Rigden and C．Ashby being responsible． Kigulen＇s＂San de Hogan＂，lost on a 6 sec．run on its maiden tlight and returned after five days exposure to flaming June weather，ratios a comiortable 18，largely due to being built at 0 ozs．under design weight．

Lomilon Arest

More than 1,000 visited the ENFlELI）H．M．A．C．＇s ambual exhibition，where over 100 models were on show and K． $7^{*} .1^{\prime}$ ，and C / L ，lemonstrations continued all day． Chicf interests of visitors were F / F scalc and ultra－large IF／F jobs，and balloon－bursting and streamer－cutting by pairs of control－liners．The local Council is now intorested enongh to en－operate on a flying demon－ stration to be given in a lecal park．The club travelled en mossa io the Nationals，and these were the first comps．entered in force：Lady Luck was not，however， part of the company and no prizes were won．

The WIEST MIDDLESEX M．F．C．recorled their first guccees of the scason when D．Ridley＇s＂Tadpole＂ flew into second place in the Thurston Cup．Wakefield flicrs，R．Nicole（Sweden＇o2）and I．Dowsett（Finland ＇51）had no luck in the Trials this year，despite the high hopes of Nicole＇s geared，feathering job which is a work of art．On Junc 14th Dowsett and G．Overs achieved three maxs．in six ilights，which，with tho scores returned by J．Plank（＂Quickie＂）and D．Ridley （＂Tadpole＂）proved enough to hnock out the N．W． Middlesux（Thermaleers）Club in the Area Contests．

A prototypr of the NORTHERN HEIGHTS M．F．C．club mider design indicates great possibilities for open contest work，wing loading coming outat nearly souare feet to the ounce！ 28 mins，was the team score of Chesterton，Copland（Wakefields），Mcad ans＇Ferrer （A．2＂s）in their first K．O．contest against Hayes．

SURBITON D．M．F．G．members enjoyed their stay at Waterbeach despite all－night motor sessions by an un－ known（but unpopular）C／L，fiend．D．liree had the agkravating experience of having
 his lines fouled when his motor was running and he was all set for the last 9 laps of his＂A＂T．R． heat．P．Buskell＇s timer was sticking slickly in his＂slick Stick＇＂（Amco 3．5）but intelligent guesswork enabled hins to gauge his runs accurately and．of course，he took home the Shelley． With in Fin． $2+46$ version of the same job he topped the Power Trials，and J．Hancock with a similar model placed 6th． P．Allaker returned 12：50 to be well up in the Wakefield results．

North Westerm Armit

A chapter of accidents resulted from the IHLACKIOOL \＆ FYLDE M．A．S．visit to the Woodford IKally．I．Headley

Part of the neato dejurimiput of
 Kron rype wifll diacmil the mand

 inartme siedfetm buitom teft hand corner fo h．holfo＇s．
folded his IO it. glider wing. C. Davey broke his " King Oliver" rubleer job prop.. . . Webleer lust his eatry on its secomel tight, ated A. Kimber's $16: 10$ rubber mexdel lobbed in on top of a tree.

Similar luck attended some members of WillTriFIELD M.A.C. at the Nationals, but whers enjoyed better fortunc and members obtained two ends and a 4th. The sight of R . Bennett strugkling with hydrophobia and washing eight times a day (well. it was hon ') is only one of many yleasat memories.
t tale of woe in the form of downponts of rain is the sal history of HYDE, CHESHIRF'S M.A.C. Coronation Display: STOCKPORT \& SHARS'ON clubs cathe along to lend a lamed, and things were going well until the rain. K. Wilson's "Junt. (tf " was flown away on a leng motor turn (this always shakes the layman) and was recovered two days later $1 \geqslant \frac{1}{2}$ miles away: C/C: flying was on the go when down came the parney and the $f(0)$ spectators fled; fundreds more on the way. to see what it was all about, turned bark. Ther show is being reorganised for a later date. (i. Buckley has raised the chat power recosd to $0: 15$ o.o.s., and R. Wilson has purchased a cine-camera and projector to make a modelling film. He is prepared to lent booth to any interested club, which is a very nice gesture; write to 31 Bottom Strect, Hyde. Cheshire.

WALLASFY M.A.C. reports growing membership and a big swing to scale. interesting \mathbb{F} / l models inchado a Widgeon. a Tiger Moth and a is in . Moth Minor and a D.II.5. A successful C/L display was given at the local British Legion Fair.

August Bank Holiday will sec CiHfSTER M.F.C. staging a big $(\mathbb{C} / \mathrm{J}$, rally at the Rowlec, with lots of cash prizes for A and 13 racing, stunt, scale stunt, and streamer-cutting. Tied up with the Chester Autumn Sports and Carnival a large andience is certain.

Nontherit Areat

Hik wind upset BRADFORD M.A.G. v. WEST YORKS in their Area K.O. tly-off on liaildon door. lue to hroken towlines, etc., nome of the West Yorks boys managed to secord an oflicial light. and for Bradford S. Eckerslcy's o d. A2 made only one 3 inin., 3 mile dight. A. Cillinsun, however, made a three-
 gale, and so ensured an homourable win for Bradford.
luck again refused to favour FORFS'TERS M.F.C. members at the Nationals. A. Rhodes and Co. won their I teams race heat with ease, but a lap-scoring error necessitated a re-run in the semi-finals. and a blocked jet put the Rhosies team out of the race. C. Green's ID.T. failed in the Thurston, resulting in a 1.: In Hyaway: his reserve was damaged after a second max. and he was left with no model to fly off.

The Jobhshive Etenug Jews third Festival (Sherburn, heptember 6th) this year reaches a new high with a prize list totalling more than \&100, as well as trophics. The list ineludes cameras, watches, pens, electric razors, and even a fretwork machine, as well as cash. but even if you don't manage to collect a prize you can be certain of a most enjoyable day's flying.

Eant Anglinin Area

A group of WARE D.M.A.C. nembers camped out at the Nationals and concentrated on the Thurston. No-one managed to catch two consecutive thermals, however, though E. Barks came near with 5: 01, flying a two-yar old A2. F. Hills flew a similar model, which 1).T. d near control and was, apparently. picked up by someone and seen no more. Any information about this incident would be welcomed : model is 60 in . span, black fuselage, white wing, tip diledralied tailplane.
NORWICH M.A.C. are busy with public demon-

	Bickerstaff	Accringeon	6:00
	Dougher	日irmingham	6:00
	Hawite	Aitheon	$6: 00$ $5: 43$
	G. Jackson	RUBier	
	Andersan	Cheadia	6:00:4:33
	1. O'Dannall	Whitefleld	6:00:3:42
Jr	R. Jackion	Littlonar GLIDER	6:00+4:21
	Shaw	Oldham	5:50
	Echarilay	Gradford	s: 40
	Hindle	Accrington	5 : 30
3.	Jr. Wa		
2. Lees Amend Ahtanter Hertonphoanix			
Jatex t- 1.O'Donnell			
Champione:--Seniar: S. Ward. Junior: H. ${ }^{62}$ m.p.h. Lady Champion: Mrs. Bennett. (All of Whitafield Club).			

strations. IR. Aplin and A. Coe gave a thirty-minute C/L show which went down well at a children's Curonation Party. and on August 3 rel a static exhibution and C / L demonstrations aro being held at the local Iritish Legion tete. The club have found that three or four streamer-cutters in one circle attract the public more than anything else. Messrs. Davic and Son (son being 31) recently went I / C dying; papa stoxd the tramsmitter on the deck ard launched his "Junior is "". which climbed away nicely, went into a left-hand turn, and crashed. Somewhat bewiklered, he turned, to hear a small voice sity." Did I lly it, Daddy ?'". and to see his half-pint son staggering under the weight of the transmitter, with the button pressed very firmly on!

W'ith which example of childish virtuosity- for, alter all. he successfully did what a good many seniors can only just manage--we will leave you for another month. And don't forget that most important item of gear when attending 1953 contests-your water-wings.

Cheers. The CLUBMAN.
NEW CLEBS
HURNBANK M.F.C
W. Parlk, 1. Robertaon sircot, Hurnbank, Hamiltun. Lanarknilra.
GRAYMOUNT MFFC.
W. Micclean, 33, lilttaburr streak. Belfast.

WIIIASTON D. M.A.C.
V. L. Bariest, 01, glenwood Road, Littlo sutton, Wjrral Chewhire.

BECRETARIAI, GHANGES
RUUBY M.E.S. (AERO SECTION)
K. H. Sanmom. O4, Wheatticlil Kobal, Bliton, Rugby. MLL MIII, D.M.A.C.
J. E. Ladu. 13. Orkmead Gardens, Fidgware, Midux.

ON IBEING A HIRID

PHILIP WILLS
The World Gliding Champion has written an exciting account of his experiences and knowledge after twenty years in gliding. Every acromodeller, particularly those who own model gliders, and all who have an inborn love of sport, thrills and adventure must read this book. 232 ng .15 plater \& 30 dravinge. 15 s . $6 d$. Juat publithed

More skill at your fingertips．．．

You get immense satisfaction from X－acto，accurnte cuting is so eass．You sclect one of the interchangeable X－acıo blades to suit the work in hund；quickly lock it eo the appropriate handle and you have a flrm，rigad kuife with the sharpest blade you can buy．
Thers it an X－acto blade for every cutting job See the lull series at your X－acto Stockists（who will also show you the range or X－acto knives and tool kits） or write for illustrated folder．

Blades from 2；6 for five．Knives from 3；each Tool kiti from 23／－to Bl：－
TRIX Lid，Dept．K，it Old Burlingion St．，Lendon，W，t

BUD MORGAN

The Model Aircraft Speciallst

THE MAIL ORDER HOUSE
Send for my new latast Price List showing now pricas raduced by Purcha＊Tax．sane pose free by retupn．Llete include M Kil Kralt， Veron，Fros，Skylende，Mercupy，Jarex，E．D．，Oapen．Fuels，Cament， Balan Wood，Kits，Eneines，Accestories．All ordert post free over El，undar idd 1－ponrage．Oversean Orders frea from Purchase Tix，deduct lích．C．O．D．Orders welcomed．

Veron＇MARLIN＇Marine t Cruiser

A new boal kit for 1 to Se．e．enginas，Ideal tor use with RADIO CONTROL． The kit conise：of FULLY PREFABRICATED PARTS in plywood and bala， ice Yaron＇s advere for full parciculars．Price $\mathbf{3 3}$ ． 12 ． 11
ENGINES AND PROPELLER SHAFT，etc．for she MARLIN：E．D．BEE I c．e．s4／8：PROPELLER SHAFT and STERN TUBE for Bon．5：6：E．D．日EE FLYWHEEL 9 ，PROPELLES $5 / 4$ ．FLEXIBLE COUPLING $3 / 3$ The above prices are the rame for E．O．I 46 ee ingina．
spECIAL OFFER－Frot VANDVERMK． 11 control line kir，seondhand FROG 150 and suirsble PROPELLER，prlce 44 －．or with NEW FROG ISO ENGINE，©I／
5里COND HAND ENGNNE E．D．Set $35 i=$ E．D．Buby $17: 1$ Fros $5033 /=$ Eifin $1-49$ c．e． $40-$ Elfin 2.49 e．c． $45 /-$ Amea 3.545 im． E．D．Racer 55／＝，Froz 500 45：－。 O．C． 3504 ini，Frog $^{2} 50$ 35／－，E．D． 346 45／
$34645 /-$
Send for
Send for my second hand angine lisemires．

NEY JETEX MOTORS ATOM 35 oulft 9；4，50b ousfie with AUGMENTER TUBE 12 ， WCORPION OUTFIT WIIH AUG： MENTER TUBE 4s，6，SOb Aus． monter eube $2 /$ ，Atom 35 fuel I INTERCEPTOR FIGHTEA READY TO FLY DELTA modal with 50b motor 29；9．WREN ready to Ry wirh Atom 35 motor It／ ＂SPARROW＂，tailored kir fap Acom 35 motor 3／9，Suparmarine ＂SWIFT＂zilored kiv $21 /=$ NEW JETEXILLUSYRAYEO PAICE LIST fREE．

FROG SENIOR SRRIES rubbar powered spores models，all as 4， 6 each．
RAVEN 18° Row wing speedsier． REOWING 18° span high wing． LINNET 18＇racas，rwin rudders． for the Fros 50 mocor－＂MIR－
 wart 3－bleded propeller．price 10：／4 ＂TARQUIN＂ 36 span power duration for the Frog $\$ 0$ motor． 12：－

RADIO CONTAOL

NEW＂BOOMERANG＂，theradlo control sat with fro livetuse E．D．dyert．for full perciculart． Price 111,19 ． 8 complece．
E．C．C．95l：HARD VALVE RE－ CEIVER． $27 \mathrm{M} / \mathrm{C}$ band．Now 44．3．2
E．C．C．106I TRANSMITTER
64．3．2
FULLL RANGE OF X－ACTO TOOL CHESTS and BALSA KNIYES IN STOCK．＂EURLINGYON＂cam－ glece Tool Chost 84f－No． 82 Tool Chest $30 /=$ No． 76 Wood Carvina Sae 37，No， 77 Wood Carwind Sae 37，No．PLANE $1 / 6$
Carving Set 21／－PLI Carving Set $21 /-\quad$ PLANE
SPOKESHAVE $3 / 6$ SANDING SPOKESHAYE 3／亿 SANDING
BLOCK $3 / G$, STRIPPER Sj－Sथnd for iuli illurerated x－ACTO PRICE LIST FREE．

Alben spiefindins

Allben Spiefire， 1 ec．
Allbon Dart． 5 ce．Mk，
Allbon Dark． 5 ce．Mk， 2
Albon Javalin，$J \cdot 49$
ED．Bee 16 e．c
E．D．Aacer， 2.46 c．c．
fros 50
Fros 150
froe 500．slowpleg
Elfin， 5 ece．
D．C． 350
D．C．3S0．claw olus
Amco $3.5 \mathrm{cic}, \mathrm{BS}$
Mille 75 c．c． 4：2 $41 / 2$
$64 / 2$ 54， 52,
54 541
78 7815
$42 i$ 42i／－ 716 $1 / 2$
$78 / 4$ Naw ELMIC MINI－D\＆ESEL TIMER and CUT－OUT COMEINEO，E／S CONTROL LINE KITS
Fros Vandivar II． 27
14／－
Vaneage Class 8 20／－
Vantise， 40° Secunt Kaikraft Ranger
Pacer
Phantom
Varom Beabur
Panchor
Focke Wulf 190
Wyvern
Midgot Mustang
Minibuter
Skyloada Auster
Horner Auter ．．．．．．g／9
FREE FLICMT POWER KITS
Kellkpalt，skylon 39＊．．．I2／3
Kellmpati，Skylon 38
Pirate．34＂
Bandit
Ladyhird．is＂
Ouriaw
Southerner Mite，32＂
Slicker Mite． 32
Skjleada，Poine Five
SE．5a flying Scale，27＂
Kaikraft Cosina $170,36^{\circ}$
Luseambe Silvalre， 40°
Piper Super Cruiser． 40
Fros Zephyr．33＊
Frog Z
Firelly
Firally
Powarin． 48
Cirrus．48＂
Varon Cardinal 37＂
Layorhkin 17，37＊
Skytkooper． 48°
Morcury Fiylne Seale Stinson Aeronca Sedan． 65 T *
Monocoupe
Monocoupa 64 ，
Skyjeep． $4 S^{2}$
D．H，Ticer Möln，јj̈

1417
$21 / 7$
$21 / 7$

MMPOIR'TEIRS OF THMIBEIR TORE MODEL MANUEACTUTEIRS

AFRICA HOUSE, KINGSWAY, LONDON,W.C. 2 TELEPHONE: HOLBORN 7053 TELEGRAMS:'BALSAWUD' LONDON

"Torrestive Érenings 1 leass"

 3rd MODEL FLYING FESTIVAL

 3rd MODEL FLYING FESTIVAL
 *Sherburn-in-Elmet, Yorkshire, 6th Sept., 1953
 THREE MAGNIFICENT
 PERPETUAL TROPHIES
 £100 IN
 USEFUL PRIZES

Open to all Modellers !
CONTESTS
Open Glider. Power and Rubber : Team Races A \& B Chuck Glider : Concours Scale and Free Lance

Entry forms obtainable from Y.E. News (Model Flying), Trinity Sereet, Leeds, 1.

* 7 miles East of the Gt. North Road, 20 miles North of Doncaster.

ROLAND SCOTT

* POPULAR ENGINES ED. Baby 46 c.c. Diesol Froy 50 's c.c. Diesel Drert Mk. 11 -5 c.e. Diesel Mills P. 75 e.e Diesel Milli 5. 75 c.e. Diasal E.D. Gei. I c.c. Diesel Elfin 149; I. 49 c.c. Diesol lovalin Mk. II, i.s c.c. Diosal Frae 150, 1-5 c.e. Diesel Frot Comp. Special, 2 E.O. Com
E.D. 246 cc. Racer EInn 249, 2.49 c.c. Diesel Oliver riger, $2 \cdot 5$ c.c. Diesel 666 D.C. 350 Mk . III, 3.5 e.c. D.C. 150 Mk .1 I . S c.c. Glow 78,5 E.O. Mk. IV. 346 c.e. Diesol 78.5 E.T.A. 19. 3.2 e.c. Glow ... $118: 6$ Frog 500,5 c.c. Glow
E.T.A. 29,5 c.c. GP. E.T.A. 29.5 c.c.GP. 141/11 * POPULARCL KITS Phantom Mite Trainer Rangor Clasy:" A: T.R. Stunt Queen, 5 c.e. Siune Sunt Quaten, S c.c. Stun
Eif Kine. I c .c. Stunt Eif Kine. IS c.c. Stunt
F.W. 19 Scale Stuns
 Philibuiter Class "B"T.R. Spitira 22 Scale Siunt $\quad . .3111$ New Junlor Monitor \quad 22; 5 Marcury M\&. I T.R., Clasi

Vanfira 5 c.e. Scume
Bobbue lis c.e. Stunt
Homer Class "A "T.R.
* POPULAR KITS *
 Cadee 30° Chiof A. 2 Sailplane. Vorozente $\begin{aligned} & \text { Narseman } 2 \text { Sailplane } \\ & \text { Marauder A. }\end{aligned}$ Marauder A. 2 Sailplane Prince 60°
Diana 36° Diana 36
Fortuna 48° - R Aca 30" span
Senator 32^{2} span 5,5 4. 21/$11 /-$ 27/11 27/11 16.11
2310 23/10 8,8 14/4

Sanaror 32 span $5 / 10$
 All JETEX Motori and Kit available from stack.

Skytkooter RADIO -

unior 60,60' span Soushorner 60,60" span Falcan IOE span ... 46/1

$16 / 4$ | ... |
| :--- |
| | $\begin{array}{llll}\text { Monocoupe } 66^{\circ} \text { sale } & \ldots & 86 / 3 \\ \text { Aeronca } 5 \text { sedan scale } 66^{\circ} & \ldots & 6 / 3 \\ \text { Radio Quean } 72^{\circ} \text { spin } & \text {... } & 81 / 4\end{array}$

- POWER

Cossma 36" scalo
Ladybird 41° somi-sesle
Piper Supar Cruiser 46° Luscomba Silvaire 46° Cardinal semiancale... ... 16/10 Manocoupe 40^{-3} scale ... $35 / 5$ Shyjeep 40" seale. fox 40^{-}sami-suale Firatly Biplangele 20/Firatly Biplang ... 21/5 $\begin{array}{lll}\text { Stinson } 105,40^{\circ} \mathrm{srale} & \ldots . & 32 / 11 \\ \text { Veron L.A. } 171 \mathrm{MP} . . . & \ldots & 29 /-\end{array}$
Eliminator Duration
19,6

THE MODEL SPECIALIST Incorporating RAEBURN MODEL SERVICE, COLNE + NEW LISTS NOW READY SEND 3d. IN STAMPS

List your roquiremonts and vend P.O. or cheque-I will do she rese. C.O.D. sarvica is avallable. Add postige on bill kise and accossorien under 20i-

SECOND HAND C ENGINES +
I have the lifigese selaction of guarantead sacond-hand engines in the Bricinh Itlen and can usuallyaupplyall popular maked from stock.
Maney bsek if not delightad. E.D. 46 Diesel 40/Froe 160, 16 c.c. G.P. ... 27.6 Fros 180, 6 c.c. Diesel $\quad . \quad 30 /-$ Frós 150. 1.5 c.c. Diesal Ettin 1.8 c.e. Diasal D.C. 350, 3.5 c.e. Diesel Amco 3-S c.c. Dicsel Elfin 2.49 c.c. Diesel super Hurricane 2 cm . \quad 47/6 Super Hurricanc 2 c.c. Diosel 27/6 Frot 500, 5 c.c. Glow ... $42 / 6$ E.D. Bee I c.e. Diesel Elfin 149, 15 c.c. Dised E.O. Comp. Special 2 c.c. $\quad . . \quad 37$. E.O. 1*46 Diesal 40/-
—FULL LIST ON REQUESTThat eceond-hand ongine you are not using will be taken in part orchang for amy modelling goods. If you are stuck for epares either now or eecondhand, ery the R.S. Service.

* THE NEW I c.c. SPITFIRE x I heve ceresed one of thate unite with completeracisfaction. Hamy starting, fexibility end high powar output make this emine tha laader in tho 1 c.e.fild. Sec D.C.'s advert for full " Een". From itock at 64/2 + JAP SILK +
I have now obtained B further upply of Jap SIK Permehution which, as most cood modellars know, ls the finest covaping meterial for all power modele mid larter cliders.
Single Panclo, It sq, ydi. $4 /=$ Full chute of 16 pands $\because . .60 /=$ Apply to the framowork with DEX Pasta, 1,6 and 2/9.
HGENERAL ACCESSORIESt B c.c. Toam Rece Tanki ... 3/3 $30 \mathrm{c}, \mathrm{c}$. Team Raca Tanks ... $3 / 4$ Smali Seunt Tanki $\quad \cdots / 4$. $\quad 1 /=$ Lighe Layserate, 70 3/4; "00 4/4 Britfix Cement. ©d., 10d., 1/6 All Britix Doper in atock.
Transfarl-Assorsod pket. ... 6d. Kaylee Cutios \quad... Par ifi 7 dd . Pustors. Clas iin ."... Parif ed.
 H.M.G. Hardwood Cement $1 / 3$ Elfin Jar Asvambliaa \quad... "Solarbo" Bilsa Wood-all lizes.

I47 DERBY ST.,BOLTON, LANCS.

Flying High!

HIGH POWER Elfin

E. KEIL \& COMPANY LTD., LONDON, E. 2

39. Parkway CAMDEN JOWN. London, N.W.I. Phona:GULlivarl8ıs fona minues from Norshern lina tuba station). "THE RADIO CONTROL SPECIALISTS" \therefore TELECOMMANDER

RADIO LISTS
(Sand Large S.A.E.)
J A PTISSUE
5 sheers $36^{\circ} \times 36^{-1 /-}$

- pirelli rubiser $f^{\prime \prime} \times 1 / 24^{\prime \prime}$. $11 /-1 / 1 \mathrm{~b}$. $21 /-\mathrm{lb}$.
 mix and very high periormanco durjng runnink.
Shell devote as much care and research to producing fuels for modol aircraft as to the ovolution of specfalisod grados for glant aero ensines.

Shell Pa;ca-Mix. In half-pint pressure packs
for easler. sulifor refuclhno. is sold by: International Model Aircrafi Lid.,Tri-Ang Works, Mardan Rd., 8.W.Is

This self-sealing cellulose tape sticks cleanly, quickly on any surface. It's tough and transparent, holds permanently, mends invisibly. It comes in a handy red dispenser, for instant use. And think how useful it is around the house as well.

top-flight jobs deserve top-flight

finishes

JOY-PLANE BALSA CEMENT

is the strongest, lighrest and highest quality adhesive. Available in display boxes of 3 doz. Tubes 6d. and $10 \frac{1}{2} \mathrm{~d}$. Extra large tube 1/6. Note long type nozzle for applying in awkward spots. Also supplied with normal nozzle and screw cap.

joy plane
Durable losting finishes
OTHER HIGH OUALITY JOY-PLANE PRODUCTS ARE AS FOLLOWS:
CEILUHOSE DOPES. Matt and Glossy RUBBER LUBRICANT PLASTIC WOND. GOLD DOPE SILVER DOPE RANANA OIL No. 1 Thiek, No 2 Thin. HIGH GLOSS WATERPROOF FINISH. GRAIN FILLER. FLAMBOYANT ELARHM- THENEW COLOUREDMEYAL SHEFN FINISH WHICH IS MORE DURABLE THAN DOPE. COLOUREO AND CLEAR FUEL-PROOF FINISH.
 If amy dificulty, in obldining. a posicood so TURNBRIDEE LTD., london,
S.W.17, will bring the name of rour nearest sfackolt,

GIG EIFFLAENDER 36-HOUR REBORING SERVICE FIELDBANK, CHESTER ROAD, MACCLESFIELD Ban's \& Elfins, 12/9, all orhor makes, shapos and slyes 16/9. Excopr HALF c.c. 18/9, and UNDER * 46 c.c. 20/9 all C.W.O. C.O.D. 1arvice add I/3. CON. RODS from 3/6. CRANXSHAFTS trom 15/-. When aking for estimates ploase enslose S.A.E. 30 day guarante with all jobs. HUNT OUT THAT "worn out" engine even if it has no plscon. WE supply them froe with reberc.

Phess dare for Septambar, 1953, isiua, July 20th, 1953.
ADVERTISEMENT RATES:
Privale Minimum 18 words 6d, and 4d. per word for Minimum 18 wordi $6 d$, and 4d, per word for
each subsequent word. Minimum 18 words 12m, and 8d. por ward for
Box numbers art permissiblo-to count an 6 words when costing the advareisement.
COPY and Box No. raplies thould be tent to the Clastifled Advortisement Department, The "Aoromodellar", 38, Clarendon Road, Watford, Herts.

FOR SALE

 38; Mil? $75.40 /-$ Finlun 30, $60 /-$; Arden 0s8, 75/=; Sbimam, Abh Crover Whatey. Yarkis.
K.1. Bea. $15 /-$ E.11. Mark 2, $13 /-$; Hrog 100. 20/-: E.C.C.

 Quen Kit, 42. Jetex 201, 12/6. Jcticontor, 12/6. お.T. All nose nind unusci. S. Skalos, 123, Prork Itond. Barmoldswlek, Coino. Latica.

Brand yew in orkglan box comploto wilh gaminor and prop.
 New II.C. 350 (i. Sark 11, 65/-. Complutely new. D-E'Aorutroi Amorican radlo control transmituor, receiver, relay, aeriat, ancnjomont. full instructions, 52 mcs.. only st $34,0 \mathrm{~d}$. $130 x$ No. 401.

Offers Invitad for "omplete neroliantical llibrary, fucu value over 2300, cuntaluing curtain booke of inostimable valne. Sale ns a $\mathrm{com-}$ plota lihrars slasirad, further delalla on applicat lov. Hox. No. 402.

TRADE

Shins in Bottlea: Saitor simm's Secret. Toll Fon how to mako them. K'ha $6 /$ (tax freo). Sond fur list. Modal mhons wrlte for tornis. Chopor Craft I.td.. The I3rldewell. Narwich.
A Amoricran maknzinos, Gne your "Modol Alrplane Nowa". 2s/-:
 (Dapt. 1), 101. Flect Sirsat, lantinn, F.C. 4 ,

FArn colt making Wnelol linusalows at homo. Wo show zon how aud liny your work at wril yalel rates. Stomped uddrevioil unvolono briaga fron detnile. Hommete Mantols, Richmond. Surroy.

Moke your own rockets aud propellenta for sircraft, camand hoats, Safo and lnatrictivo. Hooklot Juit publifhed, 2/6. Dopt. M. 10, Nowtrin Roud, Southampton.
 falory Lo the Model I'rado onls. havo vacaneles for travellars whote op jurt timb. Statal grannd cosurad and experienco.

 iR, Joyston S vemur, Padilington, Wrarlagton, Lancs.
 falt-longth lids, liarcafa. Snace wanted. Box No. 103.

GLIDING

 sumsucr wonríse conrme on the Silmex Cuhbt. F'ull slotafls: Soc.a

WANTEÓ

Harthoromph hooks Incindme A.E'I', aud all otherg. "Model
 before 1952. l'ricer nnil conditlin to Mark R.evinson. 18f\%, benon Avonte. Brooklyn 30, N. Y., U.S.A.

 130 N No. 34 ค.
A "simp" deal with wny A morlean moilollor for kita and onginos. For partlenlars write IJux No. 100.

Hack nnmbors of the A Priomobsil,s:is for Fobrnarg, 1914: Iune, Juls amp Octobor, 1946; Jnnuary, Jumu, Augunt, 1017 ; Ootoler, 1018: Foliruary, '1949. 150ג No. 329.

Comalitions of Sale

[^3]IS THERE A FLUX AS GOOD AS 'FLUXITE'?....
 FLUXITE FLUID
as well as Paste! - you can't buy o better fluid!

which conforms seriesly to the high ecendard of manuiaceupe and qualiey thas has made FLUXITE tho frat choice of GOVERNMENT WORKS, ENGINEERS and INDUSTRIALISTS for moro than a generation. Seandard Sires: 4 fluid orz, 8 fluid ozs., 20 fluid ozs., I Gallon Cans.

SILVER WING

Superlo Solids

SWIFT,SKYKNIGHT,

 METEOR, MIG-I5, SKYROCKET, SABRE, gloster jayelin, HUNTER, SCORPION, YAK-25, ATTACKER, THUNDERJETA range of 12 authentic $1 / 72$ scale Jet Fighters complete with cockple covers. Easily the finest value for All one Price 2/6 including P. T.

At last. DAY-GLO In a small handy pack selling at $2 / 6$ per lar.

The ERIGHTEST DAYLIGHT FLUORESCENT COLOURS IN THE WORLD

In five glowing shades: Neon Red, Signal Green, Are Chrome, Flre Orange, and Saturn Yellow.

trucut
 AIRSCREWS

5" $6^{\circ} \quad 748^{\circ} 9210^{\circ} 11^{*} 12^{\circ} \quad 13^{\circ} 14^{\circ}$ DIA.

 each inc. P.T,

OBTAN FROM YOUR MODEL SHOP 1
PROGRESS AEHO WORKS, CHESTER ROAD, MACCLESfIELD

KINGSTON BY-PASS, NEW MALDEN, SURREY. Tol. MALden 2442

Syd Tyson
 For SERVICE and SATISFACTION

AGENT FOR-KEIL, FROG, VERON, SKYLEADA, EtC. * all popular engines in stock, * sent aeg. post free

Any of the fallowing hits and many others may ba had by raturn F.F. SCALE GLIDEA C/LNE					
Skyleep	$34 / 7$	Marein	$9 / 2$	Stune Quean	25/8
Stinsor	$34 / 7$ $69 / 6$	Cader	4/11	Stune King	22/8
Cesina	$22 / 0$	Chiar	22/8	Phaneom	$22 / 8$
Pipar Crulear	22/8	Diana	$1 / 0$	Monicor	12/4
RUBrer. Ajax $\boldsymbol{Y}_{i} 4$					
Full mage K.K. 3/0 seale In seock.					

28a Fisher St., Workington, Cumberland

TIIE FIRST INTERATIOEAL

IIANDICRAFTS

 homechafts \& hobbies
EXIIIBITION

The premiler event of the handicratt yaar will ba held n London
0 LYMPIA
OCTOBER Ist - 10th, 1953

Full datalls af avalability of itanda space ratas. and floar glans may be ablalned from the Official Organiser :JOHN PULLAN, M.B.E., M.C., M.A., 25a Cockspur Street - S.W.I Tal. No. 1 Whicehnall 1345

Our Ealsa serip, shear and bloctis accarataly machinad from the very bert quality Timber obtainable.
Our prices are CHEAPER because :-
(1) Our Timber is ipecislly selected so an exacelng apecification in Ecuador.
(2) We do nos have so find alternative markess for unsultable Balse, consequently the weste inctor hespesty raduced.
If you buy kisu than you have boughe our Balat. For over ten yoars we have speciallsed in curtlag to manulacsurers' requiremante.

FOR YOUA SCRAP BOX

Our Reject Bunder made up of assorted atrig, theat, oy tlock Daliz or Obeche in approximate 12 inch langth, offar unbeatabla value at ONLY 6d. Each.
Postage on RETAIL orders up co $10 / \mathrm{m}$. $1 / 6$; $10 /-8020 / 4,1 / 9$: over 20/-, POST FREE. Deeailad price liyt of all timber aizes. Send S.A.E. hor your eapy.

TRADE SUPPLIED AT FUZL DISCOUNTS-SEND FOR LISTS.

E. LAW \& SON (timber) LTD.

272-274, HIGH STREET , SUTTON • SURREY
Phone: Vigilant 8291 (2 llnes).
ITALIAN AGENT5: Soc. Comm. Solaria A. R. L. Largo Richini, 10, Mlian.

Builal a Winmer！

RSAIR，J．R．Hole＇s sim－ of all a 2 is with a string od ner or expere，apan in in．Order G，316．Price 4，6 P．F．
5．）OK，Peter Wrighe＇s 2.5 c．e．Class Hd model，halder of the new loss Finoh，eccord．Combined metal，balsa and hardwood construction．yct within any enthusiases capabilitios．Order any enthusiases capjointict．Ordef
$\mathrm{CL}, 501$ Price－3．6 P．F．

ICERER＇S APPRENTICE． Narman Buteher＇s Clasi ＂A＂ceam racer，designed from tnany yoar，experi－ ence．Tousth，casy to build and fass flying，Order Cl．5IS．Price 3－P．F．

STOMPER，British power esam member Gisorge Fuller＇s easy and mexpensive building de－inch profile contest winner for 15 e．e Order PET 499 Priea 48 P．F

8．8．Guido Baeciseefle＇s 149 h．World record－ho！ding 10 c．e． specdster for Dooline 61．Com－ bined balss and metal structuee． Order CL 502．Pries 36 P．F

ADPOLE，Peter Law＂s lone lean 78 rinch $\mathbf{A} 2$ with the＂mew rook，and hugh class performanee tomatch．Superblor the new ithort lime．Order C 519 Price 5 －P．F．

ELIMINATOR，Barry Whealer＇s World Champion that has taken the country by storm．One or swo－piece 45．inch wints．for is c．c． Order PET Sio．Price 4.6 See Chuck Daughty adver： for special Cash Prize OHer．

QUICKIE，the mort

 popular of all A 2\％s，by Ray Monks．Simple to build．easy eo eransport．a 1 cm to fy．

9－～ルいいいいいいいいいいた ）Over 45.000 copres of the popular $($ ₹A．p．S．fully iflustrated catalague？ \｛have olreadr been distribuied and？ \} the new, fully wb-10-dase Mid-1953? Sedituan is now hot off the press．Send（ ）Ed．stamps or P．O．（or yous copy now． Aunvivio．

IRENELTN CDINT！

APS design successes in National \＆International events held this year alone

SPARKY，buile and flown by Ted Sills． wins the＂53＂Acromodeller＂\＆C Trophy with a 150 psints margin over second place．

CORSAlR，Nown by designer J．Hotr， decisively wins the Thuratan Cup with terrific 3rd flighe of B：45

GOOK，breaks its own record time to record $106.5 \mathrm{~m} . \mathrm{p} . \mathrm{M}$ ．For Peter Wpight and to win Class II speed at the Nats．
and 1953 World Champion
Q．8．8．with small fin addition，wins the 1953 World Chanıpionship for Class ill speed at $155.25 \mathrm{~m} . \mathrm{ph}$ ．for devizner Guido Batiseclla．

TADPOLE takes cloze second to Corsnir in tho Thursion Cup．Nlown by O．Ridley so make ir a real A．P．S．＂anciewo

SORCERER＇S APPRENTICE wins all its heats and becomes third finalist in the Easthourne T R Trophylor Norman Buecher．

South African Nationals in nne contens no less than scuentecn A．P．S．des＇gns pired lst．2nd ar 3rd． and in Club events the popularity poll selects
＊stomper．．．performance plus．
（1）eliminator．．． 52 Worid Champion．
ir QuIckie．．．Everyman＇s A：2．
ORDER YOUR PLAN NOW AND JOIN THE WINNERS CIRCLE ！

AEROMODELLER PLANS SERVICE
38，Clarendon Rood，Watford，Herts．

[^4]
BUILD and FLY these famous

KEIL RPAFT

JETEX 50 POWERED SERIES

13!"Vonom

15- MiG-15

Supermarine Swift

17" Panther

Kits conlain bubble comopr, cement, crsue, ample Bolia veris and shect. fuit size plon, buiding and frime 1月

15* N.A. Sabre

SUPER-SCALE MODELS

For enginas $\cdot 3 \cdot$ at c.c.
Complete intulucioons also given fos rubber powneed The plans for chote the plans por thote
therse of the Koillematt bere of the Koilkratk
range were preparcd Pange were preparced
from datu supplied by the mahari of the full. size planas.
 atyured, and these aro indeed the most modelt.
ALL ONE PRICE
inc. 21/7 tax

The Giveatest Mame in Mlutel OKits Manufactured by E. KEIL\& COMPANY LTD., LONDON, E. 2

Diszributors for: E.D., ELFIN, D.C. ALLBON and AMCO engines; JETEX hits and motore: ELMIC. SOLARBO, E,C.C.R Cequipment

[^0]: Jn thin month, a fribute to finhtish Acialion achlerement and depiela the Olpmpun ongined Cianborra which on Moy the extablishoul a welo Clusa C' Intornutional altifude record. The halght rrached wan 6i, fidif fl. (12 milles upl) a haight to tohfch fee madellars could aspire, despite somo of the tales trithare heardl Our alnoern comgratulationa to the Finglinh Fitectric and Briatal Companten on thin graat feat.

[^1]:

 gilife, in almu amada to cash ronalraction.

[^2]: Out-piace conmtruction (s simpla emil mipontt, tahem mur. urniflyinn knerkes in ifs mirids blodel in maliabfe for milariom Arlmaster an acrill ren "tioni"

[^3]: Thls garlodicil Is soid subjecs to she following condtrions:That it shall not, without the writton consent of the oublish. ere, be lent, resold, hired-out or otherwite disposed of by wry of Trada excopt as tha full retail price of $1 / 6$ and that le shall not be lant. rasold. hired-our or orhorwlee dirposed of In musilated condition or In any unsuthorlad cover by way of Trade: or affixed to or 21 pars of any publication or advertising. Herary or plccorial matter whatsoever.

[^4]:

