A30

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

Built to Last a Modelling Lifetime

Engineered by DAVIES CHARLTON LTD. Barnoldswick, via Colne, Lancs. Tel. 3310

Sole Trade Distributors: E. KEIL \& CO. LTD. 195 Hackney Rd., E.2. Tel. Shoreditch 5336

NORTH SOUTH EAST WEST GREGORY'S

Service is the Best

FREE-FLIGHT KITS

Kail Krait		P.T.
Slicker 42, 42"	-	17/6-2/11
Ourlaw, 50°		$22 / 6 \div 3 / 9$
Bandis, $44^{\prime \prime}$		$18 / 6+3 / 1$
Ladybird, 41-		$18 / 6+3 / 1$
Pirate. 14		$12 / 0+2 / 0$
Cessna 170. $36{ }^{\circ}$		$18 / 6+3 / 1$
Luseambe Silvaire.		$18 / 6+3 / 1$
Pipar Supar Cruis		$18 / 6+3 / 1$
Southerner Mise. 3		$10 / 6+1 / 9$
Southerner, 60		$40 / 0+6$
Supar Slicker, 60°		$35 / 0+5 / 10$
Veron		
Stranker. 37-		19/9
Cardinali 35"		$14 / 6+$
Sabra (lmp)		$25 / 0+4 / 2$
lad (1mp)		25/0+4/2
Shystanter. 46*		25/0 + 4/2
Stentorian		$69 / 6+11 / 7$
Frog		
Cirrus, $48{ }^{-1}$		$14 / 9+2$
Fox, 40^{-}		$12 / 0+2 / 0$
firefly, 36.		$14 / 3+2 / 3$
Janus, $44^{\prime \prime}$		$16 / 3+1 / 8$
Vixen, 36"		$12 / 4+2 / 1$
Powavan, 188°		$14 / 3+2 / 3$
Zophyr, 33*		$8 / 7+1 / 5$
Tarquin		$10 / 4+1 / 8$
Smyleada		
Point Five, 31° SEGA 27		
Doughty		
Ellminator, $48{ }^{\circ}$		

BOOKS
$\begin{array}{ll}\text { A B.C. Model Aircrate } & 54 \\ \text { Miniature Aero Motori } & 78\end{array}$ The followine as raviewed in Seps. issue
$\begin{array}{llll}\text { Cover of Darkness... } & \text { 12 } 10 \\ \text { | Flew for the Fulhrer } & 12 & 10\end{array}$ Filumer in the 5ky $\quad 1210$ Observera Boot of Aiperaif 5 A.B.C. ol Military Aircratt
ecognition (ys
On Being a Bird
All pricesinclude poseage

OVERSEAS CASH ON DELIVERY

Mare countriet will now accepr C.O.D. parcale-We gan give a complate lise showing recent additions in bold eype. No currancy auchange co worry nbout--Simply port ut the order requesting C.O.O-All osperels insurad whenavar possible. Aden. Alegerim, Aroron, Baharmas. Barbados, Belgum. Bermud. Br. Guana, Br Honduras, Burma, Cayman inlands, Ceylon, Cornica, Gyprua, Crechoslovahia, Denmark. Dominici, Egrox, falkland hiands, Faroa Isiandi, Fifi lilanda. France, Gibraltar, Gold Cosat Colony, Grenada. Holland. Hong-Kong, |caland, Inda IBritish Embasy only). Ireq. Jamaica. Kenya \& Ugards, Luaward lalandı, Luxam. bourg Madora, Malaya, Malta, Mauritius. Netherlands. Nigerin, Ansilias, North Bornea, Northern Rhodesia (emrtsin parts only), Nyacaland, Portugal, Portuzutse Eant Africa, Sarawak, Se. Lucia, St. Vineent, Saychalley, Siarra Leone, Somalignd, Southern Rhodesin, Suringm, Sweden, Switzerland. Tanganyita (principal sowns only). Tancier. Togo (Brisish). Tortola, Trinided \& Tobago, Zanzibar.
Oversas C.O.D. It not available so H.M. or Altied Forces.

ENGINES	C L KITS			
dar eo day, and apart from E.O.	Vanfire		240	0
and Allbon products it is	Vandiver ll		12	210
possible to forecant stacke at publiestion date. P.T.	Vantage			2.9
Ampa B.8.3 $3 \quad 120+17,3$	Keil Mrafl			
	Ranzer			
Allbon Dart. If c.c. 11540.102	Pacer			
Allbon Spirfiro 540 a 102	Stunt Qüan			
Allbon davelim $\quad . .550-102$	Skysereat, $26{ }^{\text {- }}$			1.7
D.C. 350	Skyarenk, 40^{-}			19
E.D. 46 Horner - 43073	Phaniom			3/1
E.D. Bre 1 c.c. $\quad . .476572$	Scout Biplane			3/9
E.D. 246 Racer 72 a-5,11 E.D. Mk. IY 346 e.e.	Phantom Mite	-		111
Hunter $-\quad 126-511$	Veron			
	Berobut			
E.D. 246 Watercooled 98 g 109	Berebug Panther			
	Manther			1.2 2.6
Frog 250 - 600	Philibuster	t.		,11
Fros 500 Red Glow $\$ 18100$	Midgoe Murrang			$3 / 9$
Froz 500 Paral 699 il 6	Focke Wulf 190			3 il
Mills P. 35 ... 500.84	Seg Fury Mk. IX			3.11
Mills 5.75 550 92	Spitifle Mk $\times \times 11$		13	4.7
Mills 13 $750-126$	Wyuarn		13	3. 1
Elin 1 49 c.c. 4760.8				
Elfin 249 c.c. \quad S60 100	Shyloada			
E.D. Mries Soceral 5 c.e. 140 0-26 3	Mornet		,	1.6
E.D. Mitor special	Auster		,	1/3
S c.e. Watercouled 160 0 39.6	Curess Hawk		15	2.6

HADIO CONTROL COMPLETE OUTFITS E.D. Mk. IJ, J-valve unir. Complete pramemicear and recaivar only.

2\%10 S5:íP.T E.D. MK. IV Tuned Reed 3 channek unit. Ineluding conerol ban.

Camplere 400 i 75 0p7. E.D. Ill (Hive) 181 0:340p.T. E.D. Boomerans 2e0 - 39 6P.T.

TRANSMITTENS

E.D. Ill and aerial s2 6 16,6 P.7. E.D. II and merinl il2 0 21 0P.T E.D. II and nerin 112 , 0 al op E D. IV control box and mapial
160 a 1300 PT. E.C.C. 1061 70. 13: $13 / 0$ P.T.

RECEIVERS

E.D. II IB $0-34 \cdot 6$ P.T. E.D. Ill (Hivar) 69 A-11 0P.T. E.D.IV $2400 \quad 450$ P.T. E.C.C. 951 A 700 13.0P.T. E.D. Boomerant Receiver Pack fincl ereapomint) 109 b $17,2 \mathrm{P} . \mathrm{T}$. (inci. Elcapomant
ED. Boomerang Recelving Sat only 8 61160PT

COMPONENTS

E.D. etcapervene, compact and normalivpe is 0 3/3p.t E.D. palarizad retay 3 E.C.C. SA relay E.D. Seandard ralay 226 E.D. Reed Unie thith or low frequency, staee which) 600 quoncy, staee which)
Hivac Valve $0 / 6$ P. T. $\begin{array}{lll}\text { Hivac valva } & 150 & 2 / 6 \mathrm{P} .1 . \\ \text { Hivac Valve Halder } & 1 / 3\end{array}$ Milliameter, oSMA IS a E.D. IV Convol Box
$440 \quad$ B: 3 P.T E.D. Rudder Machanism $480-9.0$ p.T. Vennar Accumulatars. Boohlet evilable (fres).

GLIDER WINCH

Inexpansiva and irrangly construcred. Wooden pistol mrip fieed whit frea running matal Arum and line guide. Drum measures 5^{-}dimater. f^{\sim} wide, havine ampla line capacity. Finishod in alassy red and black 5910 P.T

X-ACTO TOOLS, From 10 to 840 . All spart blades in toch Na. 86 Tool Chest. 840 ; No. 82 Tool Chate, 300 : Na. 78 Wood Carving Sof. 37 \& No 77 Mood Carvine Set. 210 No. Knife iwirh No. 11 bladel, $10:$ No. 2 Knile lwith No. 22 biade), 3 i Na 5 Kniln (with No. 19 blade). 4 : No. Sl Knife Sot (No I knife end 6 blades). 96 : No. 52 Knife Ser (No. 2 knile and 6 bladet'. 6 : No. 62 Knife Set \mathbb{N}^{2} No. I and 2 knlwes with 12 assemted blades). 121 ; No. 50 Planes 5 : Ne. 55 Spokeshave, 3 ; No. 58 Strippor, S D. See X-aceo advert, forilluitrations An X-ACTO illuserated leallet will to ment on recaipt of S.A.E Containe full rante, prices and coneents of cool chets, etc.

P. E. GREGORY \& SON (ALTON) LTD., ALTON TEL. 3376 HANTS

AN UNEQUALLED RETURN FOST SERVICE. 3d. STAMP FOR LISTS

ORDERING INSTRUCTIONS

HOME CUSTOMERS

Cash with order or C.O.D. All orders under 10 - add 9d., 25. - add I I. 40 - add I 6. over 40 - post frae.

OVERSEAS CUSTOMERS
Gustomert resident outaide United Kinedom, including H.M. Forcen, buy frea of Purchaen Tax.

Cash with order or C.O.D. See above lise of cauntries.
Postal races vary according to pasal inrvice rmquested and dascinas. tion. Information concorning dispatch to any councry given on requett.
FORCES CLUBS. Recognised Clubs can buy on a eredit accounc. Datails on request.
Modal Shops overseas supplied, write for cerme.
NOTE. Willall customara requiring Information pleas include a S.A.E. or if ovarseas Internationi Reply Coupons.

This is the last word in revolutionary aircraft propulsion. After months of intensive research Phit Smith, Veron's designer, has perfected she "iMP "r (pat, applied for) method of proputsion-a ducted impelter. You'll be AMAZED at the realism-You'll be delighted with the performance.

TWO OUTSTANDING TEAM RACERS . . .

"MINIBUSTER"
Slaek and fast . .. "" the liste plone with lots of characera," This 19^{-}ipan value kit contains all the parts you need so build and fly. Plan shows ensime installaton for E.D. Bce I c.c., Allbon Arrow, KIT PRICE Javalin. Elfin I 49 and Elfin 1 g (altarnarive radial आロบกะ).

Prices shown
includo P. Tax

" ${ }^{\text {PHILIBUSTER } " ~}$
Ancther " good loaker" and s sugar ceam recer to S.MA.E. class 8 specification-le's got averything including topdine VERON got overything inciuding eq
quality. This 28, cpan kiz quality. Thi 28, Span kis
will eale all Glow Plus and will eale all Glow Plug and
Diesal mosors up eo 5 c.c. (invertod) such an E.D. Mk. IV, Fras 500 . Ameo 3 S, D.C. 350. Kis included 30° 天 40" Illustrated plan.

KIT PRICE
27.5

Inc. P. Tax

Span 34", tengith 30", doasged for Diesel and Glow Pluz motors ip to 9 e.e. such as the Alloon Dare 5 e.e. Frog 50 . Elfin 5 e.c. Mills .75 c.c., and Amco 87 c.c. Kit includer maze-by-rtage construction plan and READY MADE IMPELLEA AND STARTING PULLEY.
"IMP" (Pat. applied for) PROPELLED

'LAVOCHKIN I7'

This is the companion plang to ehe SABRE and hat the same fighter qualities and rasisslc porformance which chapacterises "IMp " (pat. Appliad for) gropulsion.
35* span. this kis is delignad for use with KIS PRICE Dianel and Glow Pluz moters up so 87 e.e. and is complete with seage-by-grage plan including READY MAOE IMPELLER AND STARTING PULLEY.
$29 / 2$
inc. P. Tax

ASK YOUR DEALER FOR THE FREE 'VERON' POCKET FOLDER

YOU CAN'T BEAT 'VERON' KITS FOR COMPLETE REALISM!

Airframe Fitter-and given him the chance to leasl a good life in the process. Today, still in hes early thirties, he and his wifc have a comfortable home near the jet fighter base where he's stationed. 'They pay 15:- a week rent for it. Out of his Siervice pay Fiamsworth saves about f. 2 a week and runs a small car. He can look to the future with confidence hecause he chose a long service career and will have a pension at 55 when he retires.
If you're young, keen and capalile of training for a really important joh of work, the R.A.1F can do the same for yout. It will give you plenty of sport, comradeship and travel as well. There's a coupon below. Cut it out, fill in and post it today. It's a chance you mustn't miss.

The R.A.F, as Sergeant Farnsworth will tell you, has enabled him to become a highly skilled, well paid

but you've

 got to be good
R-A.F

ARTHUR MULLETT SERVES NEW ZEALAND

It country whore there muat be moze aesomodellera pat thoumand of tho population than anywheze clace in the world，it is sourch of great platamety and pride to note tho marmming numbor of Now Zoalanctore who buy tines roquiremonte from miy organienfon．In ppile of the ran diplancea，an ever increbeing fow of goods goed out trom Maating Houme Inio 10 the Antipode and I look forerard to ervending the large circle of froonde I haye aiready eetabluhad there．Wa pride ourselves on goting thunge a⿱夂口犬 jusi a bita quacker，packed just a ditle belter and in fece on alwaya irying to do for our lar abey cusiomari

ARTIUR MULLETT

fouf stoche always corfied，maluding speciod squrpment for mapine modeliers．A reppesentasme seleci ion of eodoy＇t mose umporiont limes is diven here Enguifies for oll R．C lines welcomed．

E．O．TRANSMITTERS ANO HECEIVE是S Mk．II Transmizcer mind Aerial ．．．f12 0 2i 0 ME．II Recuiver
$120 \quad 210$ Mk．Il Minalure J－vilve Ourfit complate ［14．17．6＜2．14．6 Mh．Il Trangmicer and Aerial 92 ｜ 16.6 Mi．III Recaiver complete 89 i 130 Mi．Ill Miniature Outfic

THE SAFE WAY WITH 日ALSA We con posk bolsd btipm mintoul tuber to correct lemeh for Dolsint Each holds a good number of strips and moter useful storoge containes
Price．per tube I
blut bortore

ACCESSORIES NFIN

KEILKRAFT Topper，40＂Gliders Topper，40＂
Sourer Minor， 48° Saver Minar， 48^{-}
Soerar Mapor． 60^{-1} Momern Major． 60^{+} Chiof． 64

Frae Flight Powar Southerner Mite． $32^{\circ} 10.611 / 9$ | | |
| ---: | ---: | ---: | ---: |
| Slicker． 50° | 17.6211 | Southerner， 60° ．．．． 40 0． 8.8 Ourlaw， 30° … $226 \quad 3.9$ Ladybird， 41

Me．IV Transmister，Control Box and Aerisl $1600 \quad 30.0$ Mk．IV Three Chanmel Receiver $2400145^{\circ} 0$ Mh．IV Tuned Reed，Three Channel OOMER．compleco thapd valvel
$200 \quad 39,6$
COMPONENTS SELECTION

Piper Flyine Seale Power

Piper Super Cruaser 18：6 $\quad 3 / 1$
Cesina 170， 36° ．．． $18.6 \quad 3 / 1$
 The AM－pULL is now an meapted jast of every ween CL Ryeris equioment If gives extrafine fint Mafle whider is very reipon－ sive and comfort－
Alf lypes of wotteries（funroniesed［resh）olways in 1 tock．
Today＇s Most Popular CL Handle able to hold．
5＇6

Mk．I Clockwork Escapemane
Mk，II Emcaperment
Compact Escapement
Polaping Relay
2－pen diteo（polapised）
2－pole Swiech
On－o斤 Single Pole Switch．．
On－an Dauble Poln Swirch
Posentiometer

Tider

WORLD－WIDE C．O．D．SERVICES

＇T（DISIM HEN＇EVGINE

Allbon Oart S．Mh．II Allbon Mk Ii Javelin Allion Spitfire I ce． E．D．Daby 16 c．c． Mils 0.75 e．c Mils 075 c．e．with cutaut E．D．Bat I c．c． Milis 13 ce．．． E．D． $146 \mathrm{c.c}$ E．D．Camp． 2 c．c． E．D． 246 e．c．Ricer E．O．Hunter 3－46 c．c． DC． 15015 ce． ETA 295 e．e．G．p． DC 350 G．P． P． Full Cut－aft valve
 AMCO 3.5 b．b． Ball－Bearing Madel A mest beausilully engineered pob with fust that eyera power Iand Iweet rumint A ＂＂lor＂bic＂bob＂ 92
flyars．
17．3P．

AMCO 3.5

Ona of tha finase yet pros duced andseil $001-$ a winner $\quad 00113 P T$ ．
－MATERIALS－DOPES－SERVICE

sty all leoding makets．Quichest porsubr FROG，SKYLEADA

 delivery on all orders，unchuding mems YERON MEACUBY hod listed herefor peasens of sboce．deTEX．K．K．ate ete

The INayflower

 Marmectall RatThe simple design of the "Mayflower" makes thls kit particularly suieahle" for beginners. Kit contains, shaped hull, coloured panels, 7 stage phoco chart, plan and decalled bullding inseructions, all paints and varnish. Model length is liss, First apply at any good sports or model shop. Completed models may be seen $2 t$:
MODEL AERODROME LTD. 43, TEMPLE ROW, BIRMINGHAM
37. WEST STREET, BRIGHTON.

The Famsus "DR O ME"AIRWHEELS
 SAFE LANDINGS FOR RADIO CONTROLLED AIRCRAFT

 Safeguard your radio controlled models. Size $3 \frac{1}{2} \mathrm{In}$. dia. Weight $3 \frac{1}{2}$ oz. pair.Price 8/6 pair.

DEALERSYOU ORDERWE DECIUER BY RETURN

TIEE RINEST RANGE IN THE THADE

MEIRCURY KITS SKYLEADA KITS JASCO MOIDELS E.D. ENGINES E.ID. IBADIO-CONTIBOL

SOLAIBBD BALSA

STANT AIISCREWS

 MEIBCUIRY FUELS CELILAN IDORPSALSE
BRITFIX CEMENT, DUROFIX, M.S. ACCESSORIES, MODELSPAN TISSUE, DUNLOP RUBBER, PIRELLI RUBBER, JOHN BULL PAPERS, F.G. TANKS, VALVESPOUT FUEL CANS, WHISTLE BRUSHES, K.L.G. PLUGS, DOWELS, C/L ACCESSORIES, ADJUSTALYNE HANDLES, TRANSFERS.

TRADE LIST ON REQUEST
THE PROMPTEST SERVICE IN THE MODEL TERADE.

Order it
from

H.U.NICHIOLISLId.,WHOLESAISE 303, HOLLOWAY RO, LONDON. N. 7

Telephons: NORth 1272-3

More skill at your fingertips...

You get immense artisfaction from X-acto, accurate cultung is so easy. You select one of the interchangeable X-acto blades to yuit the work in hund: quickly lock it to the appropriate handle and you have a firm, sigid knife with the sharpest blade yuu can bey.
There is an \mathbf{X}-acto blade for every cutting job See the full weries at your X-acto Stockists (who will slso show you the range of X-acto knives and tool kits) or wrise for illustrated inder.
laden fram $2 / 6$ for five. Knives from $3 /$ - each Tool kits from 23/- to 84/-
'rRIX Lid, Dept. K, 12 Old Burlington Se, London, W.I
)

3NEW MODELS in the FROC

 SENIOR SERIES -Here we lllustrate the latest additions to the FROG Senior Series. These new models-now in production-are to the highest FROG standards in design and fight performance.
FROG Senior Kits are all fully prefabricated with precision cut balsa sheat parts: shaped balsa blocks; plastic moulded airscrews, wheels and nose bushes ; tissue and fully detalled drawings. All feacure "built-up " wings. See them all in your model shop and start your racers coday!

EROE PREFABRICATED KITS CORIED BUT NEVER EDUALLED!

THREE ESTABLISHED FAVOURITES FOR THE " 150 " ENGINE

FROG " VANDIVER" Mk. II Talte erery remet in tha book. . . add the Imoxth flyur choracteristics of FROG "Von" desifni and you heve ithe "Vandiver ||" This noep scale madet is generolly sumilar to the original "Vandives" " but the kow-wing layout allowi for a lacta mernal tank. The IROG Xit is absalutely com-plere-with precision cut wrood parts. plele-with piecision cut wood parsa, tank pressings, platic whech, metal
conlsal-plate and all alher accessories.

FROG "CIRRUS"
An attroctive desise by C. T. Buffery. Special feafurei imblade aliertative engme mounts for "150" or "250" - mono wheel ralfoctme undercarsiope and arediy
hat fying performonce.

FROG "FOX"

A meal pylon sireominner for the FAOG "Is0". Of 40 m . spon. the beginners to powne contesi flying.

＂Covers the Horld of deronnodelling＂

Editor：

C．S．RUSHBROOKE
Anasant Editor：
HUNDLEEY
Pubile Relatlons Officer a
D．J．LAIDLAWDICKSON
Published monthly on the 15th af the previous month by the Prapriator： THE MODEL AERONAUTICAL

PRESS LTO
38，Clarendon Read，Watford，Heris．
Subscription rate 21／－per ennum prepmad （nncluding Special Chriscmas Number）．

Content：

SPECIAL FEATURES Page
SOUTHEND I．R．C．M．S．MEETING ．， 580 WORLD CMAMPIONSHIPS，WIN． NERS ．

549
WORLD CHAMPIONSHIPS，POWER 590
WORLO CHAMPIONSHIPS，WAKE－ FIELD ．．．

594
WORLD CHAMPIONSHIPS，GLIDER $59 a$
＂GNAT＂．．．．．．．．．．．． 607
A TOWLINE WINDER ．．．．．． 610
＇PUSHY－CAT＂．．．．．．．．． 612
＂．YARDSTICK＂．．．．．．．．$\$ 18$
BREMEN TAILLESS CONTEST ．．． 624
8．A．F．CHAMPIONSHIPS ．．．．．． 626

REGULAR FEATUAES

HANGAR DOORS ．．．．．．．．． 586
ENGINE ANALYSIS－ McCOY＂DUROGLO＂．．．．．． 604
GETTING THE gEST OUT OF ．．．． 614
SPORTS MODELS ．．
RADIO CONTROL NOTES．．．．．． 620
AIRCRAFT DESCRIBED NO．58－ GLOSTER＇＂GRE日E＂．．．．．． 628
SCOTTISH PAGE ．．．．．．．．．630
CLU日 NEWS ．．．．．．．．．．．．631

Editorial and Adveritement Offees： 38，CLARENDON ROAD，WATFORD． HERTS．

Tel．：5445

FJ．IOWTNG ？n the lirst of the 14币a World Championship series at Milan，in which Cireat Britain came so close to being the winners， events culminated at Canfield over the August Bank Holiday with what is generally agreed in be the finest International model meting yet wilnessed

The many munths of hard werk by the organising commitee paid dividomels，atsisted by the most remarkable spell of fine weather yet experiencev．Following on many wecks of un－Summerlike weather， hopes were very low indeed on July 31st，the date of the official reception，for that dity saw of steady hind continuous downpoer of rain for sixfeen hours sidul．Hinwever，the Clerk of the Weather relented and August Rank Holiday for 19,3 must surely be a recoral for the fine weather provided．

Greater suppourt than evor had been rocoived from twenty－one nations，and it is interesting to record that the S．M．A．T：．only hast to find ten Wakefied proxies to accommodate those who were unable to accompany their momels personally，and no l＇ower proxics were required．

Is to the events thernselves，these nre filly reported elsewhere in this issue，but we are certain that everyone who was fortunate enough to withess these two major contests will agree that the whole tone of the mecting was a steady buikd up to the most remarkable climax in the history of neromostelling．

The perfect weather pronluced three Wakefield linalists with triple maximums，and the contest was therefore declared a tic between Argentina，Great Britain and the U．S．A．A fourth round was then conducted to theride the individual holder of the Trophy，and our sincure congratulations go to Joe Fonter of America for his remarkable tlight of 7 ： 25 ith combitions where thermals were rapidly dixappearing．

It is with prife that we place on record the feat of fourteen－year－old Hugh O＇Donnell of the Whitetield Club，on whose young shoulders fell the honour of uplsilding Ifritish prestige in this nust important Hy－off． Here indeed is a world champion of the future，as his steady record weer the last few yoners clearly indicates．

The fourth，and the last，Wiorld Championship for $10 n 3$ was that for A－2 Class Ciliders，held ingain at Tesce－I3lorl in Yugestavia，and here the picture is nos so bright from the British viewpoint．

Our tean arrived in Yugoslavia only to find that their models had been shunted off the train somewhere along the route，and in spite of frantic efforts to trace them they were still missing when the conteat was held．No words are ateynate to describe the sterling effurts of the tean who，nothing daunted，designed and built two models－working all through the night prior to the contest－in order to ohtain at least some sort of seore for their country．Thelr ellosts were fuly rewarded after excruciatingly laal luck in tho first round when cuerything was literally washed out，a feat that was duly reacognised ist the concluding banguet，when a special awarl was matde to the libitish contingent in appreciation of their coflorts and refusal tes be beaten．and they usdoubledly received the greatest round of applause at this function．
Much has been learnel from the 1053 Championship events that calls for both home and international consideration，and we trust that the lessons learnt will tee put to good use for fnture years．

Finally our thanks to those nably readers who wrote congratulating us on the production of our stop fress Supplenent Jast month，a servire which has been sincerely appreciated both at home and abroad．

Cover Ticture

[^0]

A Sinfirise Decinion

Probably the greatest surprise at the highly successful World Championships moeting at Cranfeld was the belated announcement that, as the rules for the Wakefield Trophy event call for a three-round contest, the decision of the Jury was a threc-country tie, the fourth Hy-off only beng a means of decisting who shouk hold the actual trophy.

Whilst this was naturally gratifying from a nationalist viewpoint, we fail to understand how this tallies with the printed Rule 10, which states: "If two or more competitors make the same score the final placing shall be established by a fourth light which will be timed to the end ''. In our upinion the official decision detracts from what was a very definite and clear-cut American win, and we trust that the II.A.I. will speedily sort out a clarification of this, and other rulings that have proven embarrassing in practice.

We bave been taken to task for referring to the Jury as of li.A.I. status in our Special Supplement, wheress their appointment was at the invitation of the S.M.A.E. Ilowever, we fail to sec how a committee consisting of the l'resident, Secretary and Assistant Secretary of the Models Commission can be regarded as baving other than full 1..A.I. authority, though we stand to be corrected!

Nore Time, dientlemen-liense

How often a well-intentioned rule can go astray was amply demonstrated during the fourth round Ilv-off in the 1953 Wakefield. This, surely the most vital in the whole series of fiights, was conducted under conditions that severely handicapped the keycd-up flyers, and the F.A.I. rulings want a speedy alteration to cope with possibic future tly-ofls.

In each of the three normal rounds, flyers have at least half an hour in which to make their fight. thus allowing for damages, winding difficulties.
slightest mishaj, during preparation can wreck a goon man's chances. Delighted though he was to win, we know Joe Foster had every sympathy with Hughie's hard luck and wuuld have much preferred to have a straight fight with a plucky opponent, who, young though he is, showed that he has the stuft that makes the world's best acromovelliers.
Noticeable tor was the impractibility of the " one helper only " rule particularly in the Wakefield event. In \&act one could safely say that at large proportion of modern Wakeliekl models need at some time during winding operations, the assistance of a third helper. Certainly three holpers were very much in evidence at cranfield in spite of the prevailing rules, and although we agree with keeping the number of people on the take-of area to a minimum, we do feel that here is a common sense adjustment to present Wakclicid rules that might well be intrenduced for 10.54. What do Wakefield flyers themselves think ?

K an It Cormer

The view on this page of the competitors enclosure at Cranfield reveals both American and British teams besides many other personalities. 1)uring most of the run of the power event the: American boys were besieged by woukd-be acquirers of $\mathrm{K} \& \Omega$ Torpedoes, and itsays much for American generosity when we record that samples of these new motors were fairly distributed on an international basis. Knowledge of American generosity unfortunately brought acromodelling spivy on the scenc endeavouring to buy up supplies for their own financial gain. This was not only restricted to mutors, to witness one grasping customer who cadged the entire stock of American Gik) fuel for his selfish little self. We only hope it blows holes in the tops of all his pistons I

Pity the Poor 'Timelserpers

Much criticism has been voiced regarding Ted Evan's first round flight time in tho Wakeficld.

olficially recorded as $4: 32$. Being present on the tarmac during the thight in question we state without hesitation that Teel's mostel did go out of sight al the time given, mainly due to the extrene height the model had reached. It was obvious that even had the wings fallen off at the time watches were stopped the model would have gone on falling, never mind tlying, for a maximum. The timekecpers for the international contests at Cranfeld were all specially picked and the two chaps in çustion we kum as experienced livers of above average integrity who did their joh exuellv accordtug to the rulcs whech state that watches will be stopped when the model goes out of sight. We have cvery sympathy with Ted who failed to record what was in fact a llight of over five numutes, but point out ernplatically that the fault lies with the rules and not with the timekeepers. Such episodes will, we hope, le avoided in future when the five dight, three minute maximum rule comes nito usir.

so Now we línows

We have often wondered what it tenk to become a can-carrying otlicial in the S.M.A.F.., but our
incpusitive instinct has been set at rest loy reference to the sour-grape tinged writugs of the fiditor of the " Northern Area Nows". Dearyimg the fact that any spectator going to Crantiethl woukd not be ahbe to doo more than spectate (though who the heck would expect to do otherwise passes our understanding !). he states that " you have to be rich or influential to be an osfficial",

And to think that all these years we bave laboured under the impression that the sole requisite was an ability and willingness to do a job of work in an honorary capacity, and be ready at all times to le kicked when perhaps thanks might be anticipatel. 13at then probably our sense of values is wrong somewhere.

We are consoled by the kneswledge that the anthor of such damaging mis-statements is undergoing a bout of sour-grape squeezing by virtue of the fact that the Organising Committee only allocated oflicial positions in those who were williny to do more than hall an hour's work throughout the periox of the contests, and thus depriwed him of a buckshee week-end at the Society's (and its members') expense.

I.R.C.M.M.S.
 MEETING AT SOUTHEND

(1TRONG winds and! weak or ganisation spobife what might have bren an interesting Internatiental kadies (ismtrolled Contest at Southend on July e6th. The llying area was ill-chosen, and se atempt wat made le altur it unell after the context had actially gtarted-when it was tom late -heing down wint on the elge of the aterolrome. adjacent to a rablway line anct housing estate.

Sul Allen was the only compethtur whor plit up a model in the contest. This wats promptly hlown out of sight ower the housing estate, but, leving the only fighat, was properly awarded firnt prizel All credit to sid for risking the model-not las best as he was happly to pront out - and for at least a minnte it was responasive in sorme ciegrec to sighals hat this seems a very sad cllort for an International event. We fecl very strongly that the S.M.A.E.. slinuld retain fill rights to organise any and every event that is homoured by acceptance in the F.A.S. Calendar in future years. A little more thought, and sume prompt anmouncement from a well-sited I'A. syatem \{even this was ill placed '\} could have producerl in aloridged evenong contest with say a reduced time per compertitor that would have merited in somo degree its imposing title.

However, as a friendly radio control lans ger-tugeother it served is useful purpose. Nearly cveryane who claims to le anyone in that field was present, including tho putative worth record holder Ollefferman, with his most interesting car-bised transmater. Flying llentor
 dismayed when his carefnlly prepared glider was danaged before bee could tly in the "social" evening attempts. Comfortenl by his compatriots Madame and

A.E:quipe frameaiat lthert Wastable, him "harming irlfe, and "Im horlewr rulati. Millet. Ithert hoida
 uranderful afier-contest diaplas.
Munsieur A. Wastable be repaired it and perfurmed croblathly. Most amaring sjectacle of the day was undoubtcdly Wastathes serifunmance. Equipped with a six-reed set he had stow and fast enkine speeds, rudder and whator comerols. First the mutel taxied mat on the grass, was given full threntle and touk ont in a few feel, fu dimb stedbls. Drectional cuntrol was perfect, and fur the lirst time a "fullsize" type of loop was socen wath the model accelorating in the elimb, wathout any of the pricos spimmok to altan velesity'. A sput lousinge was made, on a dead stick alter crowils lad batulkeal an engine on attempt, within ton paces of the marker-lwac. Nillet'- hat! Several other enthusiasts, motably 1.1. (wh. Tiblin and Sid Ablen, had als, elesatur modeln un show, but these were nut thown.

So impressed was Ceorge llonment keedlich, who had acted as guide, comfurter and transhator to the Firench ghrty, that whern we last saw him he had alrendy had successfal Ilight teses will his sux-reed set '

1953 has been a significant year in international contest flying with a total of twenty-four nations comperting in the World (hampionshipevents. Outstanding lactors were the sweeping American victories in I'uwer and Wakehekl at Cranliclet. and the relurn of the A , as Golicler Champiunship to llenmark, the country of its original conception.

Never hav the standaral of international olving been son high, iand never has the competition letween mations
 best to conver by pers and camera in following pages the true suirit of these events, and siberely bope that even our mon-contest reathers will apprewiate the space devoted to the subject

Acrnmedellers the workl over have a common bund in the fascination and exhacation of a gramd hobby, and to our minds the actual compertition side of these World Championships is secondary to the free exchange of ielcas and the splenelid atmosplicre of interational cameradie that surh events leave in their wake.

(Bn the left: Girurge Fiuller puta the 'flumene on his tifin is job watler thar reqes of drerial . 1 merican trammembima.

1. Amulties Hritinh totim momber istan fuidrd ta fiut
 mgyregntrat ins:is. 2. Jrecrmantig acemm uhere the fremehinra aarall their turn at the srulex. S. Norman Couling grin ready to prewn the nfop wintrh bertan an lypualar Taste monlen the land rery from bis metorr. f. Trertifir milhrilial keas a freafure of farsi Nominn marhimena. one uf erfulch wan lomit un the jureriouns day. Jrikal, Huber fumpx up irhlis foum managet . 1 rondd Jenfu lewhen on. 6. Jop Eligin refurned Iha firmi miar of the miretinet teith a climis that whanf neory rivenimaty.

THE: Third World fower Champlonships was dedibyed in starting as the wint had swung I Bl elogrece away irom ins patime jravalme fuartor. In consequence. thermats hith time to lorew upl whilst control was moved to its new pkint. "libs was a kenkl thing, for all frest round wights were then madle in explat condations of visibility ath thermal activity. and the conterst opencel up with a ripsorting climbi by Joe l:fgin's stim pylum, automatially ronceted by istommederl spectators an a maximum frum the thament the Torpedo 15 stopped at II secenels. Li!gin's Hight was in fact a protucte io a contest par excellence. Drobsably the mont edmational power ovent ever held in Enrope, it was certainly the best run in the aunals of faternational aeromodelling. loor the first time in our experience, pewer mentels were reaching Wakefick class herights in 17 ;20 seconds power man, and, significant fact, the U.S. A. were making their first real entry in the World lower Championships. American paricipation, on event that has been long awaiterl by Hritish moveflers, was nure thath walconne at Crunfidd.
After ligin's "penitug maximum, team managers hastened to put their first men in the feeld. Fddic Cosh

sent George lipson ont on the tarmate tomake the first british flight; but though a beautiful max., the prower run was well over the allowed 24 secunds. llis sthbsequent effort was leas thath his normal average, probably due to over caution. In the meantime. lerherer of Anstria amazed all fortunate mough to lx nearby by releasing his stick fuselage entry is the ervical attitude for a perfect straight climb. In stict contrast. Stan Hill of the l!S.A. Sent his "Amazon six) resaring across so fect of tarmac before entenng a territic chanb on his tiurd take-aff attennpt. This apparently for certain max.; but, alas- the fuse had been burning for two minuteg on the ground and the d/t popped at 3 minutes.
(Cigar-smoking Jakob Huler, flying Swiss Leam-mate Buchuer's dexign with extraudinary dihedral angles, also di/t'd carly. Thes adding tes the frustration of puor Bodmer, who haul lost his own model the previnus day.
liorty-six flights were gade in the: twehour romad lefore lunch break, and the scorebuard registered no less than seven maximums, ne ol which was accreditel to reljable Poter Buskell, and another to Dave linedand of the U.S. teatru, who was beginnang

 tt'uedicurih'n medefle, dinfanm thetr promperim for tho third

 reprempmiatian of thr memald madellinft monfermant in thrir

1. Cicarge fuller"a faolhag did not prectent hia furnima in

 irhich timin din romiont rirtariea an thir pyion.

Lo ltw recokniswel as in entrant of outsianding merit.
Is is already known, the [:S. tram were using the
 Driving props thiat Fioropeon moxtellors woukl think I wice about before fiting to diessels of cioll l-a c.e., H6. パ. \& If's roally screimed their way upstairs, though rwalled, we: may saty". By the llatian Super Tigratir, ents, Through each rumbi we were treaten to the clean-cut performunce of tic "" fine piteh" brigade", yet in this
 frll whethror the diessls really werp at a disadrantage with their lower reves and coarser piteh props. Gevif. Womalworth of Ireland cane into the lead eirly in the second round wilh a second fiverninute max. , he was using one of the fow oliver "figers on the fiedd, and his moded a medileod Mercory Ballard. Then the Betgian pair, lorler abul dippens, each scored maximums. agann with diesels, in company with Yugoslavinn I'nsis: and Holland's Kempen. Ont the other side. Koberto Bacchi ami Vidossicls of Italy and Dave Kinceland came through with their glow moters.

Chagrin at firsi fars that lhe Irish momel was loset turned to jubnlation as the eltacient recozers squad wimer Jolany lambleand forbam returned the yellow jobl intact. We visitemf the downtield arra to sese bow rexcovery was gesiltg. only to have the atir gue complotely " clead " for this piart of the third tomenl. iame returned in Jearin that Burbell's moxlel had lowed after take off atd Wimolworth": Madlard mande a datl Hight of ably 1 5.3. Il was tosw up to lomorge: Fuller for Britain, abl white we waited, fave Kneclamd came forward for his last attempt. Dready in the lead, his " Vitpour Trail " liad to do its vory best to elinels the final resull. Ify mow the atir was dead as could $\mid x^{\prime \prime}$ A sizzling climb, a wide lixple, and then a beautiful gain in height righe up

 of flefuinm making Bitional geaferes in frumd of tho kaffer'm

 hypalormif primm whe his ragion mefore nfarlimg! motr than amperaunde téinp tijus.

On rifht: siewne at fima-herping ranitral arith recoratern

 effertively " Trorpediosed" the appantlion.
wer lise berimueder alter a lis-secound ran decided many that the " "torp" is the motes in the on'i thas. 'This was contirmed within a half hour by two mens maxi mums by lilgin and finll, atsed yet antblior anly three seconds sloort of a maximum lov Wherley, all of the Anerican team. Jojfting lift from the hankar helpeal a bit: but "V.'l':s" altitude made douthly sume of a maximum, and the mertel landed at fir. Chaterel back to the tarmace ly. Wakefield men, Montptaisir and Foster, 1)ave was now an undefeatuble wirmer with an impereable mudel

So now we settleal to watch ficropte the inimutable. Fuller. He was on top fosm lBubhing witi lamasur, be kejut the spurits of the Jritish imm io lighest level, absl even when out on the takeoth arrat, crateat nos small mothequake wlarn he asked the timekeepery in which liole shoufll lie put the fucl liut forge was out al luek. Twice he had made lows than maxinum Hights. ant rum be was to retarn 1 :02. Vet this placed him second . . and soluly of the results will show how many otlers gatued i wo max's wath thermal aid to fall shost on their ullur light. Fibller's per. formance certainly cheacries mere credit than is at firsit realised.

As the fielef thared at power conupettors will the
 thanking of a possible tranmatlantic trip in $5 \mathrm{~s}^{\circ}$ (ther

 rilsinel ex ent on the narresw.

HA.NY sighs of relief were heard when Monday morning dawned clear and finc. avith the pronise of a day at least edaal to the standard set on Saturday and Sunday. Hespite a beathtul red sumbet on the presious evening. it seemed alstoss 10 of optimistic to expect a third fine day in succession

Activity commented practically with first light, especially by the New Kealand proxy llyers, who hasl received their mustels late bin Smatay afternome. The Hastings bringing lie crate: had tursmel back for Maltes with oul prosisure tronhle on Therseday, atad on arrival
 pietely upsetting the caresfully made artangements for bringing the models up from Lynelam After considerable time spent in telephoning. a monsoge was passed wa bishlurth ennerol teweer to the Hactmgs, which was returning tu I. .onehath and hith eventaally got airburne late on Saturday evening. Berott Lintord drowe all day to collect the box on Sunday, and if the proxy flycts had any sleep that night it wits a miracle:

In wiew of all this, if was wath considerable pleasure: that we saw Bethwaito's mudel (flown by Reg. larham) first away in the opening round of the contest, and far atr eany maximmon at llat. The whit was from an unasatil difecton, mathewesterly, hut was very light and many moteli landed inside the aerodrome. Thermals were flentiful and stro-o-ong-as witness the

Canadian prosy-1lown entry, whirh comarted despite lexing parl of at blade and sublering from wheres butheh trmble, Few meters gave up in this round, athough some of the Camadian and $\mathbf{N} \%$. runtels were afflictert.

As motel followed model we began to ba slightly appalled at the number of fiverminute fleghts being retnrned -ay in all, in the first round! First "ritish member to dy was ted livans, whog got oll witla a perfect take-off and at thrilling (homb then the fivans jinx stepped in and the model was clockerl off at $4: 3 \pm$. while selll at a gexod height, by the wry lonest ami conscientiuns tinekerpers. Ifnforfunatery, the shachine was well in sight of many sprwiators, aghe was secen te D.'T. at exartly 5: 1010 whle st ill a hembered fert or winp.
circoll interest was shown when the Argentinjans came sut to Hy ; these " dark hories" had hown that their constructional standards wrete wedl on a par with anything else there, even thongh some of their mextels' features were strange to our eyes, and before long they delominalrated that their Hying was as groed as their hilding. The beatifully constructed ontry of lobkowski (Cillatemala) also showed that it was a serious contember for honemrs.

Holland's Finnk had trouble in his firn attermptod take-olf, damaging the model amblansing him to fall back on his reserve machine, which, nevertheless, Hew well throughour the day and pave hom 1 th place

 santham's modela in forepronant.
mose formaral three thmen. A. The Trit of simbth Africos also heat bad
anmintant T. Hhand of thr it igan rind. S. Tumkurir wi ingonianta
'mpiand, ichase turh mrored right pus. 11. In the firnt Aramitinian
fourth. ame areand ruthting him of a pleter in the $\mathrm{H}_{\mathrm{H}} \mathrm{-}$-ff.
afril finimg of m mondrlivitheair.

Mosstplaisir of the l'S.A, also hast takeoft trouble with his long: rumelage jub. a premature retraction cunsing dianage to liv prop; fle teonlew his reserve throughout. to place 12th. Moherg of Sweden was perhaps the
 string monlel (later fonsme sear Insustable) afler a max. His secomel llight was also a max. and, on D.T.'ing the tailplane of his reserve machine became detached and disnppeared upwards, to be lost * It speaks tolumes for the lomenty uf the Siwedish toam when it was learited that foe actually lad a sparre tanlplane bearing a processing stamp, but would not use this without rirst secking permission. which was refused. Ju 「roit (Sonth Africal) itho fust his first-string nuselel

Cloud forming towardes the end of the tirst round refluced the constancy of the thermals, hut British hopesfadibren raised by both the ()'Ilonmedls refurning matsimums.

The secomd tosume satw cloud masenes rlofting slemly across the 'drome, with a woserpunt reeluction in the frequency of lift and more noticeable scattered areas of down-draughts. 'Fle icmperature had risen and the quict of the contest began th be more irequenty pinctuatiel liy the " splitez" uf breaking motors. 1. (b) hommell was an early casualty in the sinking air, and it became obvious that our chamees were resting un Hughie unless sume jhenemenal rhange in the weather tomk pince. (ieorge Reied (li.S.A.) gave a wonderfui show of sport imamaip when his arborne model dis. appeared luchind ath ohstruction ind lie was clesiket un at as a glance at the watehes showed- \& : 54. This wdel seenod later cost Cionrge a place in the flyod. but his pholosrabic acceptance carnod him friends for life.
 livans produced one to help the laritish tulal along. Jand luck attended Hakamsonn (Suexlen) who smashed his fuselage after a doublo-max., and both the interest Ing Hiveric-tapered Argentinian models wert rendereal huss-de-rombad witll wink failure. Scotto, lowever. quictly put up his jolf for his second five minutes.

The third roumd saw a tonsioning of the rtmosplere, thongh meteorological conditions remained much the samr-. Siwerten's lotal was really formindable, but Dotereg was out aml \#akánswost's moclel, hastily re-buile, was liully wut ul trim. Carl Hermes became the first Amortcan motor casualiy, and clanged his shewtfisselage model over to a more conventional reserve. Evans frmented the audience with a real texe-dook maximum. hut the tirst cheers were for Scotto"s third

[^1]

Ifight. another fabltess max. Latuder cheors grevert Hushie O'f's reaching his ereble, and these were edosed again as Foster adhicued the only other triplemax. Howndraught was stall thwre, as revifence coplanit's lawt Hight, which was well twlow his momat evening air avetage

The flyont was sheme agony fur the anlookers. pspereially when Hughbe stopuperi on pateh a conple of strathds in his moter. Scoted was unfortunate in calching a weak patch of sinking air, but Foster liew into a riser and was well up by the timer the British moxidy got away (to the checrs and sighs of reltef of the crowed !). Handicapped by flapping (issure thars by the loose siramis, Hugh's model went up in the tight. fast upiral whoch was the mest outstanding Hight fealure of the whuke contest, and levelled out in tinng atr at nearly the sime height as for foster's job. As the results show. Joc's model eventually had the edge. though there appeared very hitle in it, and sen thu veceran Wakefield Trophy ent the foN. A. Team cup goto America for the mext iwelve monthe it very well deswried win and a very popular one.

Hut Jon't try tu cosnvmed a certain labla fiarmer that the Americans actually won this contest a "phone call was received fourtone days after evergone had gone home which informont Crandiedal control tower that a morlel hast just landerf in one uf this geatleman's phatures bearing an " l'rgent "latel asking the finder to 'phose monediately!

BY virtue $u t$ hasa（bund as war ith liraz last vear． Yuguslavia had the task of organising the comtest fur the Swollosh（ilder（iup for the second tume sine the inception of the Champhenships，and once aguin the site was that pleasant \uguslavian summer resust，lase－ IBled，a delightind spest moted for it，picturesulae：lake． complete with church－dofted istamed，and real mediacral castle perched on a monntain side．
Unfortupately for the：Rritish contingent，little ajpreciation could be taken of these pleasant sumenndi－ inge，for，following at chapter of imeichents，the party arrived al at late lome at the lowal rasiwas station，only to simel that che haggage van had lown shanted aff the train smmewhere atong the line．and the three boxes containing larotish heopes were＂miseing somewhere in
 obs jons that in future a maximum tavelling－bux size must be instituted for teame travelling abonath．for the eromble commenced owing to the samembat pernerons proportions of at least one bux which no amourt of conxing would ronice intn a Contmental raitway compat thent．

After an intitial clash with the ralway althorties at Ostend，which atmest canser the feath to miss the Tauren lixpress，no further tronble was met mitil hali－ way across（iermany．The boxes，tow large ge stand in the compartment itself，were suspernded it onte end of the coach where they travelled happaly untal it nupears seme person，wishng to make nse：of the facilities foumel in such lecations，mesed the carmfully stacked crates． ＇the sumbe of breaking glase leand tu the apparance of an irate Germatn erain cundactur who demanded onr
aticntion to it broken carriage window－and a box loug on the fint wo obvimsly the cause of the calamity． fimmowiat mullificd by ingreenuent to pay for such dathitge as load been caused，said conductor neverr－ theless demandeal that such ungainly freight lex im－ merliately transferted to its proper place in tho luggage van，a reyucs？to which wo had finally thongh reluctantly－tor agree．

The climax came at leence Station，where the half－ lean sent to collect the loxes found to their horror that the luggage van had disappeated－and with it the luritish andels for the murrow＇s cuntext．［itelings were somewhat alleviated when our l＇ugoslavian hosts assured as that they would explore the sitnation and havo is speedy settemont fur ns，aud we spent our firmt night on Yuguslaviets suil inxiously awaiting the out－ come of their enguries．

The welcome news that three mondel boxen were in the Customs deport at berder towa Jonellicio greeted us next murning，and we adjourned to the field at lase to witmeng test ilving and the official processing．confident that the miswim mofels womble soun be in eur hamis． Consternation followed，buwever，when it was learnt that the tosses just arrived were the Siwerlast entrien and not ours，and hurried platns wore macle tos iry tos trace the mbsing nacisines by back－tracking on our journey．With the aid of a lecal car driver，（icolf． Linfould tesuk off for the Austrian turder and the telephone wirec hommed for ag far back as was alleswer．

Mesawhile it was decided that rathor than have a Wank entry from Great Britain，an aticmpt would Ine

[^2]

made fo builal a numbel in fane for the start ar thre contest, due lo tatie place at $130 \mathrm{a} . \mathrm{am}$. the followsis morning ! Such were the sterling eftorts of the eromplete team, ally assisted by the ofler of thaterials from many other teains, that by the time the official bus left at is an an., tum complete mudels were rearly to take thar itir.

It freing agreed that Tony Hramike and (ienti. Byrd would oflicially fly the maklines, we anxintuly waited on the pitch-black airtiplel for sulticiont light to allow first tost runs to be made. It immediately became whious that, despile hasty dexigning to meat the materials natalable. and the: fact that ronstruction bad of necessity leon consislerably rushere, the momals were both caprathe of usodul turation, and testing was rigoromily pursued until well atter the dars round got under way at ja.m.. following a half-lout posiponenent owing to lack all light.

Under the circumstances one can le excused for not having mueh irlea of what went oul elsowhere:, tut it was only too obvicus that the figho systenn alopterl was Iriming te consideralle cenfusion, burclering on chas. Comileriturs were fummelled through contral ont to a line-lenkth check, and with ne particular arift alirection to standardise faunclang runs, the air was sonn filled with ratlotons and duss-words in a fine varimty of languages as lines were erossurd or ran infu. Fifty five comperitors from sixteen nations were only tom innious til get : heeir models airbarne within the all ton brie§ one hour allowed per romed, itnd the weatherwime enterinaly anticipated a worsening of the num t (on happy canditjons.

Bowever, in spite of mist, and drift that comutinually changerl an direction, the mumater of maximums that stareced in bee dhalkerl tip macle it chear that something presulatr wats luafpening. f nfortemataly for the Jlyjith teritl. the answer to the sithation appeared on the scene too smon to be: appreciated, isnif sery elefinstely at the wrongr time for us! With llrueks all reaty to launch (basilig picked his way will difliculty limough tle matuy line and mexteillers that lithered lae heldl. without warniag cante at dowaponer of ran of such

amat efficiont montels.

Octoher, 19.53
intensity that everyone was swaked io the skin within a very few minutes. The obvious course was for an announcement to prostfone the round, but with no, such speech making itself heard, the lfritish monel wat launched. (It was learnt later that, ewen had it beens tho intention of the organisers to call such a postponement, ne pmblic amomaremant could be made nas the: londspeaker system was completely ruistal by the downpour.)

Up went the model, ami at tar less than full heimh was released with little hope of success only for the wing to sudtenly fail to lake the strain and fold up. With tine rapidly running out, Byrel then put tho second mokel inter the air, but here agan tho wing failed even before it left the line. So much fur British hopes it seemed, and. tugether with our gallant pair of timekeppers, Hernot and Novta, who dutifully stuck wilh us hreughout the contest, we seurried across serme half a mile of aorodrome ted the shetere of the already crowded hangar to aw:at devedopments.

What a picture 1' Never have I seen so many wet and bedraggled tolk in one place bedore, and personally I only remember laing as wet once before, after falling out of a canoe in Headingly L'ark, Ieeds !

Hack to Bled, where the team, completely llaked ont after two slecpless nights, ware sum in bed complete with glasses of that potent Yugoslavian tipple, Slivovic -gnarantesal to kill or cure incipient pheumonia, er the patients.

Followed another day of trying to trace the selected models, again with no success, and tho makeshifts were reparred and strengthened in an effort to still rack up whine time. A conference of team leaders and oflicials agreed that the remaining two romals should le ren off the following morning, but after a later start, with postjenement tos the Monday if conditions stall did not allow of a start on the Sunday. Uwing to the mability of many visitors to extend sheir stay indefinitely, it was further agreed to conclude the contest on the 2.th. como holl or bigh water. (It was further agreed that it is a team manager's duty to wake his own team up and get them out to the oflicial transpart theugh the two Italian dights made just after closing tume as a result of late arrival were alloweal to stand in the oficial records after al show of hands.)

A fitful sleep. with each awatening contirming that it still poured with rain, came to an end at 1.30 a.m. on Snnday the 23 arl , and bleary-cyed crews staggered sut of their varions hotels to find that the downour had stoppect, though naturally !verything was wringing wer, and the sky forksal anything but promising. The mosuntain peaks that completely surroumd the town and airfield were shrouded in a thick mist, but a slight breeze eventually chared the tops to disclose that heavy smow envered a considerable portion of their height:

Further tests were quicily conduded, as we had no intention of being caught ent as on the provious day. I glanere at the seorelxasel disclosed for the linst time that the themal conditions created by the front advancing ahears of the previous day's ramstorm had brought about no less than niste matimum fights - and coblitions were far more pronising for the remaining two rounds.
live-thirty a.m. siw round two under way, and it mattered not which way you ran to launch a moulel, for currents criss-crassoll the sky, and it was a woird experienco to actually see wisps of cloud merge into
small cumulus at the liase of the forthills, then suttenty hurst and fly apwards as hough a bounb had been exphukerl under them. Surh thermals were fortunately fairly wall awfy Ircon the llying biedk, for 1 very minch doubt if any model could have withstood the violent stressev olswously taking place within these wind-devils.

Maximum thights were being clocked all over the fich, and wo waited with bated beath as l3yrd got his moded onto the air. A perfect stranght tow to full lino length wats folk, wed by a slow, circling glide that just occasionally liit weak patches of lift, and after causing us all heart failure by circling amongst the trees of a small orrhard the model finally sank into the grase at the valge ul thre field. Time?-exactly fiminutes!! Thus were the brains and constructive elforts of the lads justified, and congratulations were forthcoming frum all sides, for it is true to say that the sympathies of the whole entry were with us.

Tony Bronks could not get tho same perfect launch with his model ; novertheless, his 3: 31 was good going with a morel which obviously wanted more attention and test flyisg.

A sharp eye kepl an the scorebuard disclused that of the nime Round Onc leaders only Hans Hansen of Itenmatr had collected a second full score and led the fied cumfortably from lleinz Denzin who had also collected a max. but who dropped 14.8 seconels in the first round. Ilso well in the runnigg were Templier of france iseventh last year), (iunic, and Barge (brother of llans) Hansen. In ill, eleven maximums were scored in this round, undenbtedly due to the still but thermal loaded atmosphere that eibtained throughout the carly fart of tha round.

A half-hour break saw the comamencement of the lanal round. and itl eyes were on Hansen to sec whother hee

 chititn hin fisfly ronstrurted madel, nfill reiaining the incli-hwatm marapt-back, polyhedralled tailpiane form serpl an rarlier if akrficint modnin from his afabie.
prematurrly tor record $2: 20$ and a tutal score of $5: 51$. Indeed, better than nothing.

With consfitions as they were, $13 y \mathrm{rd}$ waited for some time with tholine stretched uut in the hope of antitipsting lift, and fimally got away to another dead overhend

Abures Heint benzin (tiermany) emeond place man
pertiray hid prize of the bangurt. Holour : Horte
Hannes (tfenmark) catientat the maseire plava flanmerio
(up on bohelf of hin wercrmu/ml leam.

tow. lerpaps be was a little ton anxious (u) get the Inest out of it. however, for he kept plugging away down the ficid with the mokel at full stretcle tultil wed Jad great difticulty in moing the line relonsed. it last it Wats off. but aiter one of ewu little fmaps it got into an obvicus down-draught and lost so much hoight that has final siore for the rount was 2: 27. (1)eciding to bly the moklel back rather than carry it, the joll was im mediately launthed again in the opposite durectionand clocked an ensy $\&$ minules 11 !) Such is the luck of 1才e aeromedelling kame.

Congratulations were showered on the winner whilst we all waited around the scoreboard for the final timos and placings to be claalked up, athl it was gratifying to lind that Creat Mritain were by no means bottom, even thyng half a team with liurricdly built sulostitute mulels. As te:itm manager, that I was proud of " niy boys " is (t) put it millly, and I say without hesitation thatt nos better representatives have left this conntry te uphosij our aeromodelling prestige. They workel wilh a will. and as a team, aud I do not think it is stretching it ton far to say that they probably did more for lbritish prestige lyy lusing than if they had won top hunoume. T" know that that opinion is endorsed by many others who were there is extremely gratilying.
lhoth Isruel and Girecce were represented for tho lirst time: at this contest. Naftali Kadmon doing well to place loth in his first International event, though the only Greek lad to tly was obvionsty inexperienced in such conditions. However, they mide athowing, and we wolcome these two new countrics to International flying and all the fur and goodwill that goes with it.

Following breakfast and a clean up, competitors were taken rut to the lovely Bohinj lake for lunch, and many put in a spat of mountain climbing before the redurn 10 liled for the concluding banquel and prizegiving. IRoversing unr usual procedure, the awards were given out before the meal, and Hans Hansen canse in fur entlusiastis: applause when he collected the lovely Swedish (ilider Cup, as did his brother looge when staggering oit with the heavy glass Daumerie Cup for the l"cam award.

Others up to tenth jlaro went forward to collect thens prizes, and Max Hacklinger gut a special cheer when it was announced that he qualified for the special prize awarded to the best constructed model in the contest- .t ducisum which we heartily endorse, for on rate occasions have we seen comparable examples of tho aerumudelling art.

Then surprise of surprises! The Rritish team manager was asked to come forward to collect a special award in rocognition of the stout effors made by his team in ovarcoming adversity, and refusing to le beaten in spite of circumstances. It is no line-shoot to say that this ammouncement brought the house to its fect, and 1 felt extremely proud as 1 accepted the award an behall of Brooks, Byrd, I.inford and Hansen.

After this the fun waxed fast and furious, and we broke it up in the early bours of the morning. Many.-. including the British team-had decided to stay on for the lugoslavian Nationals, but I had to leave for Innolon on the Monday morning, still without news of the lost models, but with the one cunsoling piece at information that the crate of New Kealand entrics whicil had been consigned by registered luggago in travel with us, hind turned up some hours after the conclusion of tlying at Ljubljana (though consigned tos lesce-13led! If lon't ask one why or how -it remains one of the inysteries of Continental travel that beillec even those hardencel to the ways of Hrisish Ranlways.

195：W〇DIRID（IIAMIPIDMNIIPN

－4 4 斯

	Knewland． D ．	U．S．A．	5：00	5：00	5：00	15：00
	Fuller，${ }^{\text {c }}$	G． $\mathrm{B}^{\text {a }}$	4：16	4：50	1：02	13：18
	Vidastich，G．	lealy	2：54	5：00	5；00	12：54
	tuskell，P．	G．B	5：00	4：45	2：45	12：10
	Lederar，A．	Auntria	4，14	3 l 19	4：32	12：27
	Hill，S．	U．S．A．	3ill	3：44	5：00	12：02
	Talic．	Yugaslavia	1：33	5： 00	5：00	11：53
	Woodworth，G．	droland	1：00	5：00	1：53	11：51
	Kompan，C．	Holland	1：41	5．00	5：00	11： 49
	隹pp， 6.	Germany	4：53	3： 20	3：27	11：48
	Elein， 1.	U．S．A．	5：00	1145	5：00	11 ： 45
	Ferbar，M	Alsium	1142	5：00	5：00	11：42
	Lippens， $0^{\text {a }}$	Belgium	4：05	5．00	2：17	11： 22
	Muber	Switzerland	4：35	4：38	2：07	11： $\mathbf{1 0}$
	Partinan	Finlond	3：39	4：53	2：17	11：19
	Bacehi，R．	Italy	3：31	5：00	2：04	10： 17
	Barth，J．	Germany	1：27	4：01	5：00	10： 218
	Whealey，C ．	U．S．A．	3115	2：03	1：57	10 ：is
	Zigic， 0.	Yugoslavie	3，00	2：36	2：30	10：06
	Schmittor．	Swlererlend	2：58	3：29	3：40	10：05
	Cameron	G．B．	3：11	4：00	2：30	10：01
	Lefort，	France	5：00	1：22	2：10	a ： 52
	Marchina，A．	lealy	1：16	3：50	3： 10	－ 14
	Kauni， H	Austria	0：50	3：25	4：23	8：31
	Groerim，	Halland	2：12	2：04	3：58	． 134
	Leppert，H．	Garmany	1：51	2：43	3： 17	－11
	Goatr	France	1：00	1：40	1：21	107
	Maitach．	Swirterland	2：10	3：11	2：41	8：02
	Bergamamehi，G．	Italy	1：47	3：02	3：00	7：57
	Storgardo	Finland	1：58	3：0¢	2：41	7：48
	Auner，${ }^{\text {c }}$	Swaden	2：03	2131	2：31	7：27
	Krais，E．H	Garmany	2：39	2：15	2：32	7：26
	Thampson，	Ireland	1：43	2： 13	3：00	7111
	Blomberg．	Swaden	1：00	4：19	1：46	7；05
	Renneseon，A．	France	1：40	2． 51	2：10	7，01
	Upian，G，	G．B．	2：29	1：$\$ 1$	2112	6132
	Makry，${ }^{\text {P }}$	France	1：47	2：04	2：12	6：19
	Prhave， 1.	Yumalevia	1：46	1：34	2：55	115
	O＇Regan，M．	Iraland	1：45	1：09	2：07	4：01
	Dahlquiac， N ．	Swaden	2：43		3：06	5：49
	Vandermeulen，W	．Belarum	2：13	0：33	2：53	$5: 39$
	S＇Jongerit，J．J．	Balgium	1121	1：24	1：56	1：41
	Hekking， m ．	Holland	0：56	2：14	1：08	4：18
	Carrall，」	Iroland	0：56	0：59	2：20	4：15
	Ericaran，K．	Swedon	0.52	－	0.51	1：50
	Dambergar， H ．	Austria	0.54	一	－	0： 54
	Krenn，E．	Austria				
	Bodmer，M．	Switzeriund				
TEAM RESULTS．－（1）U．S．A．． 38 147．（2）G．B．， $35: 49$ ．（3） fealy． $32: 17$. （4）Garmeny． $30: 27$. （S）Swlemerland，29：27． （6）Belgium，24：43．17）Yugoulavia，20：14．（18）Ireland， 25 ： 12. （9）Molland， （10）France， $24,00$. （II）Anetpis， 21 ： 59. （12）Swaden， $20: 21$. （IJ）Finland，15：07．						
1.	Fonter，J．	U．S．A．	5：00	5：00	5：00	15， 00
2.	Scnito，E．	Argentine	5：00	5：00	5：00	15：00
3.	O＇Connall，H．	G．8．	S：00	3：00	5：00	15：00
4.	Raich，G．	U．S．A．	5：00	4：59	5：00	14 ： 59
5.	Ferber，Mdm．L．	Belgium	5：00	4：55	3：00	14： 5
6.	Nilbarn，J．	Sweden	4：53	5：00	5：00	14：53
2.	Elameren，A．	Sweden	5100	4.40	5：00	14：40
d．	Samann，Mri．I，	Garmany	5：00	5：00	4：34	14,14
1.	Kannenworf，L．	Italy	5：00	4：33	5：00	$14: 33$
10.	Evine，E．W．	G．8．	4：32	3100	S ：00	14：32
11.	Foz， 6.	lealy	5：00	4128	5：00	14：20
12.	Mantplalair，C．	U．s．A．	5：00	4：02	5：000	14：02
11.	O＇Dennall，J．	c．e．	5.00	314 ${ }^{1}$	5：00	13 ： 41
14，	Vonk，M．	Malland	4：50	3：43	5：00	13133
13.	Makanison，A．	Sweden	5：00	5：00	3：28	1］： 21
16.	Calombn，E．	Argentine	5100	1117	5：00	1］： 17
17.	Gerlaud．E．	France	5：00	3 109	5：00	11 ：0s
18.	Lippens，G．	Belgiam	$5: 00$	1：01	5：00	13：01
19.	Marsh，	N．Zealand	5：00	2：47	5：00	12：47
20.	Nocetti，G．	lialy	5：00	3：48	3152	12：40
11.	Gile，P．	Franca	5：00	2：37	5：00	12：37
22.	Rowe，R．	5．Africa	2：14	5：00	5：00	12：14
13.	D．Vrien，C ．	Holland	2：37	5，00	4：3］	12.10
14.	Corwell． N ．	Iraland	4：45	2：20	5：00	12：05
25.	Copland，R．	G．8．	4：05	$4: 31$	3：10	11：48
16.	Sadorin，E．	lealy	4．08	1：13	3：03	11，24
17.	Belasto，E．	免algium	1：08	5：00	3：14	11.23
28.	Meidmullor，E．	Germany	3：40	2：30	5：00	11110
19.	Bothwaite，F．	N．Zealand	5：00	4137	1：24	11101
30.	Goetı，A．	France	3：12	1， 34	4：04	10，51
11.	Herrmen，C	U．S．A．	2：25	41 as	1：22	10：55
11.	Mackensia，D．	Cinnada	1：05	5：00	2：29	10：34
33.	Mursepp，F．	Argencina	2：15	5：00	3：17	10．32
34.	Ford，A．	Canade	$2: 56$	5：00	2123	10：24
35.	Knudsen，e．	Dennmark	2：11	5：00	3：08	10：19
16.	Hipes．H．	Camada	1152	3.13	5100	10：05

37.	Mo	Sweden	5：00	5：00	－	10：00
31.	Bobkowaki．会．	Guaternala	5：00	3：00	1：53	9：51
39.	Drew， 6	Ireland	5：00	1：31	3：04	9115
40.	Lipinaki．	Germany	5：00	1：11	2：18	1
41.	Campbell，W．	N．Zealand	2：58	3：05	1：25	－129
42.	Farber，M．	Aulicium	1：43	5 ：00	2：34	－119
41.	Klerman，L．	Canada	2：12	1 ：04	1：48	P：
44.	Fresl，E．	Yugoalavia	5：00	1：53	2：14	－
45.	Tomkovic，M．	Yueorlavia	5：00	4：05		9
46.	Prhave，J．	Yueorlavis	1：14	1：11	4 i 15	8： 4
47.	Strateror．W．	Germany	1：31	5 ¢ 00	1：33	$8: 0$
48.	Visser，	5．Africa	2：3］	3：27	2：03	$8: 03$
49.	Hewirson， m ．	N．Zealand	4113	1，34	1： 10	7：11
50.	Du Toit，${ }^{\text {d．}}$	S．Africa	5：00	0：53	1：20	7：13
31.	Morisict， J ．	France	5：09	1：57		6：57
52.	Mertina， P ．	S．Africa	1：53	1,54	2：01	$5: 48$
51.	Stojadlnovic，V．	Yugoslavie	－	2：01	3：11	5：18
54.	Chave，M．	Aureralia	4：41	－		4：41
55.	Sandham，A．	Argentine	4 ： 37			4：37
56.	Oibourn， N ．	Jraland	2：30	$0: 54$		3：24
57.	Fiezpatrick，G．	Ireland	2：35			2：35

TEAM RESULTS：（1）U．S．A．： 44 ：01，（2）G．a．［3］：IV．（3） Sweden． 43 ： 41 ．（4）tealy， $41: 41$ ．（5］Beleium，39：19．（4）Argen． tine，10：49．（7）France， $16: 39$ ．（8）Garmany， $35: 14$. （9）New Zealand，31：16．（10）Canada， 31 ：01．（II）South Africa，27： 30. （121 Yugoslavia， $16: 52$ ．（11）Molland， 25 ：4）．（14）Ireland， $25: 04$ ． （I5）Denmark，10：19．（16）Guatemala，9：53．（17）Auseralia． 4：41．

1.	Hant Hantwn	100	300	100	000	Danmark
2.	Hoinz Densin	215.4	100	258	4434	Cermany
3.	Jen Pierre Tenmpliar	100	215	300	835	Franca
4.	Bara Gunic	300	270	254	024	Yuacilavia
5.	L．Bumech	100	251	265	418	Halland
6．	Gorald Shala	200	300	300	100	Austria
7.	Walter Schonborn	211.7	2818	100	790．7	Smar
E．	Giovani Faderici	151	300	2813	113．3	Isaly
9.	Lamart T．Perison	304	243	189	712	Swedan
10.	Dorge Maneen	242	291	195	179	Denmarle
11.	Hame Sehmatol	128	300	300	128	Switzerland
12.	d．Van Loo	109．2	271．4	266．	$107 \cdot 2$	Holland
11.	Alfrad Bickel	131	300	172	703	Swirnerland
14.	Hachlinmer	187	300	215	1021	Germany
15．	Naftali Kadmen	276	151	245	680	｜l｜atil
16.	Emil Fresl	246	181	190	479	Yugasfuvia
17.	Henri Maee	180－2	247	225	652．2	Balsium
18.	Rudolf Schenker	300	172	162	834	Switzarland
18.	Andre Goeez	141	270	190	403	France
20.	Gerhand Wummel	100	170．5	112	602.5	Germany
21.	Pierra Follete Duguit	129	271	184	584	Monaco
22.	Frize Neumann	－	100	102	592	Denmark
23.	Valdemaro Lenad	2124	152．1	217	581.5	lealy
24.	Kurt Pormsan	244．6	1961	123．5	146．1	Smudan
25.	Varner Hauenteain	300	175	9	545	Switimerland
16.	Rudi Knoll	15	300	214	549	Sazr
27.	Rune Anderion	155－6	201－ 4	184．4	5418	Sweden
21.	Shrar 릴 Katz	254．4	711	211	$536 \cdot 2$	Israel
29.	Eduard Avonte	276	210	1317	532	Belgium
10.	d．F．Mecking	－	100	217．4	517.4	Molland
31.	Caveio Pidani	104.5	234．3	162	504 ${ }^{\text {a }}$	lealy
32.	Osinar Crepa	100	101	\％	499	Aulrria
33.	Pierra Lefort	113	190	173．5	4965	France
34.	Jean Maet	118	145	229	$4{ }^{4} 22$	Belaiom
15.	Luciano Toml	90	162.4	2131	45515	Iealy
16.	Christian Clasenen	$10{ }^{1}$	219	119	456	
37.	Rudolf Lindmer	147	187	119.5	4355	Guermany
38.	Harberc Weintraut	151	129	165	445	Samer
39.	G．C．M．Brrd		300	147	437	Gt，曾ritaln
46.	Kurt Sandber	97	139	171．4	409.4	Sweda
41.	A．A．Thunissinn	22	2014	161．2	301．8	Holland
42.	Sakellarakia	42－6	191	155：7	190．］	Greece
41，	Joraf Schober	219－8	43	103.2	346	Auveria
44.	A．J．Mrooke	－	211	140	351	Gt．Britnin
43.	Prite Zidak	20－4	153	174	$347 \cdot 4$	Auserla
46.	Jozar Smole	\sim	185	160	345	Yujorlavia
47.	Ove Needam	135	6	121	44	Dinmark
413．	J．Fontaine	16	130	1975	117．5	Frince
$4{ }^{4}$	Zeev bon Shaher	42	169.4	105.4	$317 \cdot 2$	Inrael
50.	Menty Dore	35.4	41.4	I33	210	U．S．A．
31.	d．Noparo	208	－	－	200	Monaco
52.	Melir Fried	114	S］	31	104	Ifrael
53.	Geore Perrmman	16．	70	49	119	U．S．A．
54.	Roger Aubertin	－	96	－	d ${ }^{6}$	Monaca
53.	Ladiulev Pinear	－	－	005	80.5	Yuesonlavia

TEAM 費至SULTS——（1）Danmark，2111．（2）Germany， 2148
（3）Switzerland，2045．（4）Halland，2040．6．（5）France，1934s．

 Grames．190－1．（16）U．S．A．， 129.
 formula published) and might prove a little tricky on liritish fuet. Actually nothng could he farther from the truth. Although Mercury No. \& ats used for ruming-in was probably not the ideal fuel (jutging from the hackened, only exhaust), starting and running characteristics were as consistent and foulproof as any other engine yet tested in this new series. Starting, in fact, could the given tup ponnts -appreciably easier than some of our own half-c.c. diesels to which class its overall dimensions compare, although its displacement. of course, is more than half ay big again.

Towards the end of the test period, and just as we were wondering how to acquire a McCoy buroglo for now personal use, it suddenly " blew ul'" on us! At the time it was making a high speed run ill excess of $13.5(\mathrm{CN}$ r.p.m. with a small propeller. Fexhanst note was steady and there was virtually no trace of hunting. Particularly pleasing, tow, was the virtual absence of vibration. Then, without warning, there was a sharp crack as the crankshaft broke is half and the front part, with propeller attached, windmilled across the roum. Subsequent examination showed that the shaft had parted at the print where the intake valve is formed. This consists of a hole drilled to give access to the hollow centre of the shatt, definitely weakened by the fact that a lateral " keyway " is milled across the shaft at the surface. The break was a diagonal one, starting approximately from the middfe of this "keyway", with little evidence of failure due to a material fathe. Whether. in fact, the shaft is actually uverstressed at this point is a matter of conjecture. -Replacement, provided a spare is available, is quite easy.

[^3]

Having no spare shaft available, however, this conclucled the series of tests. linough ligures were available to plot the complete power curve and we were down to the smallest size of likely propellers (6×2) and so the test figures are reasonably complete. We had, however, intended invesligating starting and running characteristics on various wther British fuels to complete the picture.

There are one or two " different " features, as conplared with small British diesels. The controls du not look any bigger, yet they seem that much casier to manipulate-a tribute to goonl dosign and propurtioning. The contra pistun, too, is fitted with a syuthetic rubber ring to act as a seal, rather than the lapped metal-to-metal fit which has previously been common practice with diesels. The adjusting lever thread also runs in a fibre insert in the head. This gives a much smonther " feel" to adjustment of the contra piston whilst the plastic ring climinates sticking and provides a somewhat better gas seal. What the anticipated life of the plastic sealing ring is camot be estimated. After approximately one hour's rumning tine, deterioration was marked in the amount of " crumbs" which had tlaked off. The compression scal itself was stilf perfect, however, or near-perfect, for only the very slightest trace of fuel oil could be detected in the head ind the contacting surface of the ring seal inpeared as gool as ever, and its bardness maintained. In other words, the fuel diod not appear to attack the synthetic rubber ring but adjustnuent and pressure might possibly account for some deteriuration by mechanical action. It is anticipated. however, that fuel in the head conld attack the fibre insert for the adjusting screw.

For the initial run it touk very litele time to estahlish the compression and necrle valve setting for starting. l'riming through the exhaust, compression has to he slackencel off about hall a turn from the final rumning pasition. The needle value was absolutely non-critical over two or hree turns. It was als) found just as easy to start the NoCoy - (14!) by tinger choking, although the procedure differed slightly

Priming through the exhaust, excessive fuel is introduced ink the cylimber and compression had to b. slackened off to start. Irovided starting connpression was within half a turn of running selting, then the engiae would contivue to ran satisfactorily and left plenty of time for final compression adjustment. With finger choking, two turns of the propeller with a finger over the antake produced ready starting with the compression setting left in the running position and mos further adjustment was required.

Resphanse to varying the neerlle value control was particularly diflocult to eletect. Erom rich rumung. continuing (o) clesit the needle valve produced a higher exhaust nute amd slight increase in r.p.m. which was maintained over another turn or se until closed ton much and the motor starved out. The compression control, on the other hand, produced a very positive response. The best ranamg gosition was very easily found by listening to the exlaust sote. Increasing the compression beyond the uptimmm produced a detectable " labouring ". Slackening off, the exhanst note became swecter. until fimally an occasional miss could be detected. From this point the emgine could be slowed right down over a further half furn decrease in com.
pression without stopping, although, ruming, of course, was now in bursts. Maximum r.p.m. was achicved by using the minimum conapression possible without " missing'" taking place. The compression setting was not greafly altered for optimum sunang at ext remes of low and highspeerl.

Juaging speed on the exhatst note can be mas. leading and particularly so with the Mecos belows alkout $10,00(0)$ r.p.an. the emgine secons partiendarly guiet and, apparently. slow rambing. An r.p.m. check, however. showed higher tigures thatanticipated. Above 10-11.000 r.p.m. the trae
" high-speed" nevise nppears, emphasised by a particularly gratifying smosthness of rumning. lhere was little tendency to hunt al high speeds. even during the initial rmming-in periok when ron. in consistency was marked at all speeds produced during the tests. No doubt the counterbalanced crank wela contributed materially to vibrationless running.

The Mc(oy (148 appuears fairly ecommmical un fuel but respronse to cut-out action is ratisi. 1)elay between shutting of the fuel supply and the engine stopping is a minmum. What was particularly pleasing, the appearance of an air bubble in the fuel line, produced only a monentary miss. The engine continued to run, in fact, when suckugh in a complete length of acrated fuel in the line, missing badly but not stopping, and settling down quickly to steady ruming once more when a normal fuel supply was resumed The suction on finger choke is alsu impressive, drawing up fuel successfully through a ten-moh length of fucl pipe with a head of several inches, so tank location should be no particular problem.

McCOY 04S DIESEL

Specificuetion

Dipplacement: 8 c.e ($049 \mathrm{cu}, \mathrm{in}$.$) .$
Boro: 405 in.
Seroke: 386 in.
Bore Strote Racia: 105 .
Bare Weighs: If aunces.
Maunting: Radial.

Material Spacification

Crankeses: Aluminıum Die Casting Crankeasa Beanne: Plain. Cylinder: Cold Rolled Secel. Cylinder Cating: Aluminium. Pitton: Siel. Contra-Pintan. Seesl (eynchetic rubber tosiang waher). Crankzhaft: Steel.

Manufaceurers:

Duro-Matic Products Company. 8509. Higuary Stroes, Culver Clity. Chlifornis, U.S.A.

Reral prica: 3595 (mpprox. C2.2.0 -quivalene).

The method of momnting the engine is a little strange to I3rilish eyes．The two bolts securing the back of the crankcase are made very long and are intended for radial monating of the eagine．Only one mut is supplied for each boit and therefore it is difficult to provide any surtatble locking of this assembly when mounted．The thread is an American one．The nearest 13 ritish equivalent． a 5 B．A．nut－is tow louse to grip the threads properly．I3ritish modellers，in fact，wonld prefer to enlarge the holes slightly and use standard fi l3．A．screws with locknuts for monnting．There is litule excess metal on the llanges to permit drilling out the holes the necessary uversize dimension with extreme care．

T＇u sum up，although the partirular engine on test suffered a major structural failure we still class the McCoy 049 in the＂ 1 want＂class．Maybe the crankshaft failure was just an unfurtunate accident．Apart from that，however，just about everything with regard to the ofreration and ruming of the engine is quite deliphtful．Fower nutput at various speeds．on the wher hath，is perfaps not quite as high as might have been expected from an engine from the＂＂McCuy＂ statble，although directly comparable，size for size， with current British）and（＂ontinental desels．

Mrfigy＂f fommaemt＊

In consequence of the crankshaft failure，we were quick to confact the fhro－Natic l＇rolacts Company so that in full fairnems，lxith to the manufacturers and unr realers，we should be able to publish an explanation of the breakage．Wie are therefore doubly pleased to quote from corres－ pondence received on the subject，which shows that the NicCoy perple have already made three important changes in crankshaft production to obviate any recurrence of this［racture．
＂．．．assure you that your deduction that the cause was incorrect material was quite accurate． The material has been changed：the theat treat specifications have been carefully engincered：the method of removing the sharp corner at the intake has been corrected to assure greater strength at that point ．．We are shipping to you a new crankshaft to replace the one damaged in the test ${ }^{*}$

The new crankshaft does，in fact，bear out these points，and we assure readers that no further trouble can be expected．

Finel：

Metreary Sio．

Notl．fiur the benefat of aver－ Nat remiers．Jrreary Nu．\＆［iJel rifilsulant forminla is

Нヵ世木J世1N	10\％
C入ら！0R（）ll．	－3\％\％
ETHER	34．5\％
А ไ\％．NITRATE	a． 6%

l＇rupeller Dia．Pitik			K．1＇．3．
0	x	4	6， 700
	\times	6	B， 4 （1）
	\times	6	6．${ }^{(1)}$
	x	\downarrow	0．714）
	\times	6	8，950
	x	t	$? .500$
7	\times	1	8.010
	x	6	10，0140
	X	4	11.850
	x	1	19，2tu
	x	3	18， 6 （10）

Constans Geometne Huch Wooden Prupellera．

N^{o}O official rules exist for Class 1 A team racing as yet: but each year the least Anglian leam Race lizally urganised by the Cambridge M.A.C. includes what is becommg a propular new class among the events of the day. The $10 \pi 3$ Cambridge Kally attracted a couple of dozen of these buby racers, but unfortunately most of them were overmight specials and were not evemfually entered in the contest. The Ginat was in fact one of those specinlly built for the (ambrigge lieting and though it camnot be reported that it won first place, it did at least prove that it could cover the required 50 mile eliminating heat non-stop at an airspeed between 45 and $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. This is the 35 sq . in. version, fitted with an Allbon Spitfire, the maximum capacity engine under the -g9 c.c. limit imposed by the Cambridge Club, and the best airscrew is a mouslen 6×6 of geometric pitch.

Thin nHumirnicion of the parita re. wudredifor ith tinged ardilibe hamdy irhem wead thernfunctions oflh tha full ndse plann prafallairisa foma papies. Ome of the maflear ome of mines monal amif. shbines minat anife Mendqu randi be a Mrr'on - H-4s alimal farthred on the onpnaifn yape, fhrugh phe ilria
$-7 \hbar$, B.p. Hee or .tibam Apifife mevide her rquodty auitobiar in iń meter clana.

One difficulty not readily realised is that with such a small wingspan of slightly less than If ins. propeller diameter is near to fol per cent. of the span and often more than half the fuselage length. This means a long undercarriage : partly overcome by use of an inverted engine. The 50 sq . in. version for the proposed High Wycombe Club rules using 1.5 c.c. engines, has a larger span and with its $7 \mathrm{in} . \times 8 \mathrm{in}$. airscrew is slightly more realistic in appearance: note the larger wing and tail detail on the plan.

Engine installation in the cinat is a simple matter and, in fact, the design can be adapted to take any capacity up to $1 \cdot 5$. Should, for example. an Allbon liurt be fitted. then the fuselage depth can be altered and the wheel diameter reduced accordingly.

The $\frac{1}{d}$ in. sheet wing should be sanded to shape. with the exception of the centre section on which are mounted two engine bearers with appropriate parting distance for crankcase width. Bellcrank ussembly and engine are fitted, then 古 in. sheet sides and bulkhead 1) with underearriage attached. Fit the push rod and deflector plates H. and parts 1.]. Add the $\&$ in, sheet bottom, the \pm in. square blocks in front of the bearers, the celluloid tank, and then parts A, 13, C, in that order. Butterlly tail must be firmly cemented in place and care be taken that the elevator is iree moving and noutral with the lead-out wires. Now add H, G and F , the pilst, cockpit cover, and decorate to suit your own whim. 8-thou. flying wires are suggested, the regulation line length for Cambriage being 30 feet.

16 S.W.G. PUSH ROD
! - HARD I/I6" SHEET SIDES-

HARD $1 / 16$ " SHEET TAIL $11 / 4 "$ DIHEDRAL AT EACH TIP EXTEND TO 8 " SPAN FOR BIGGER MODEL

CNOOERB

TIIF: Internatimal (ilider Rules require that the towline: must lse rewound immediately after latumching, and indeed this is essential from the modeller's print of view to enable him to get after the moklel without delay. Therefore the winding winch must be capablate of winding in the line in a matter of seconds, atnd so must either be highly geared or employ a large winding drum which takes the place of gears.

A small grinding machine is usually pressed into service as a towline winder. But firting this up is just as bin a joh as making the design shown here, because a drum still has to be mate and a handle fitted to the machine. which in itself is almost impossible to accomplish properly.

THF PARTS REOU:RFID:

Twu s.3. tupe jumrnal beannes.
Uar in dia aterl hexagon head halt, 21 mas. lums. Bliteaderi lus ifing al lex lenath.
Twor hex jolum head bark nuts to surs boll (il in.)
One ilin. Tbackerar epring washer.
Uno ith. slaits wantur.
Une og D.A. Inelrumerte serew, If la. hotes
Tyw 2 H.A. bexamou back puls
I wa phyood or lazthrard hanpes.
One face bousime
six distanor piewre tronn!in. dowel.
Twelve No. A onumlermink screvi, y in. bogg.
siis No. \& counternunk sarewh. \& in. long.
bire winding knok, plathe, wual or metal.
Hasdmeod bullde.
(due porcerinin lino guide (ishitug rod end gittmx) Une Grass 14 siw, Oir 2 bush.

'Mas Componemis

The danges of the drom are made from two 8 in. dia. discs cut from a shect of $\frac{1}{18}$ in. plywisod or hardboard. (Jn the intended outgide face of one disc (wo cirches are lighny marked with a pair of compasses. One is $15 \frac{1}{2} \mathrm{in}$. dia. and the other If in. dia. Space oul six equidistant points on the large circle. Each point will be 38 ins. apart, this being the radius of the circle on which they are spaced. In the same matumer mark off three equidistant points on the inner circle.

On each of these points a hole is to be drilled, and for this purpose the two flanges are clamped together and drilled simultaneously. 'lhe size of each holc is at in. dia., and they should later be countersunk (on the outer side only, of course) to suit No. 3 screws on the outer circle and No. 4 screws on the inner. When all the holes have been drilled and the danges unclamped, another hole, s_{1} in dia., must be drilled in one of them for the winding knoh. It should be if ins. from the centre of the flange and conveniently spaced between the existing hnles. In the centre of each flange is drilled if in. dia. hole. When drilling this hole great care should be exercised to ensure that the edges are square and sharp.

Six clistance pieces $\frac{1}{6}$ in. long are cut from a length of in. dia. dowel. It is essential that these pieces should be accurately cut, as any discrepancy will be very obvious in the finished winch, and if the ends are not cut squarely, the line will slip into the bad joint between the end of the dowel and the side of the flange. These distance picces are drilled through with a in dia drill.

The race housing, which should be a circle of wood 13 in. dia., can be cut from an ordinary piece of board if in. thick. In the centre of this circle of wood should te dralled a F in. dia. hole to take the ball races, which should be a good press it.

Two distance pieces for the ball learing assembly are cut from a piece of bmss or steel tube $\frac{1}{1}$ in. insicte dia. and approximately oh in. thick. One prece is cut in. long and the other ? in. long. Care should be taken to ensure that the encls are perfectly sfanare, otherwise it is impossible to abtann a good running fit for the beraring. The approximate size of tho handle may be seen in the drawing, and its design and the type of wood to be used is left to personal taste. A $\frac{1}{3} \mathrm{in}$. diat. hole is drilled in the top end of the handle for the main
spindle, and another hole k in. dia. for the line guide hush is drilled $4 \frac{1}{2}$ ins. down.

The line guide fixed to the handle is a large porcelain end-fitting of a fishing rod, which can be" bought at any sports or angling shop. This porcclant fitting is put on by fieting it into a standard brass 14 S.W.G. prop shaft bush, which is then screwed into the handle. To enable the two prongs of the porcelain fitting to push tightly into the bush, the hole will have to be enlarged (a fine fret saw blade is useful for this). When it is pushed in, the tixture is completed by solderimg.

Any surt of knob will do for the winding knob proveding a holec can be drilled which will allow a 2 B.A. screw (with a countersunk head) to go through with an easy clearance.

For the main hearing spindle a $\frac{8}{8}$ in. hexagon heasl bult 2d ins. long is used. IHut to find a bolt which is a goon press fit into the races, a very careful selection has to be made and probably a number of bolts tried before the right one ds found.

With all the components made, it now remains to assembly them. Screw the race housing to the dange which has the hole for the winding knob. Monnt the biall races on the 3 in, bolt, one adjacent to the head and separated from the other by the f in. tubular distance piece. The mumnted bald races are pusbeal inter the race housing. and when
fitted to satisfaction the other fange may be screwed onto the housing, clamping down on the races. All the dlowel spacer pieces may then be screwed in.

In order to fix the winding knob to the drum. the instrument screw which is to be used for its spindle should be screwed into the tlange which has already had a an. dia hole drilled in it, to make a thread. If the builuer has a 2 B.A. tap, the thread may be cut in the flange with this, although it is quite satisfactory to make the thread just by using the screw. When this threal has been cut, the knob is slipped onto the screw with a washer which conmes between the knob and the flange. The screw is then finally serewed into the fange until the knob will just turn with hardly any play. Two back-muts (especially thin nuts) are then put on the end of the screw u hich projects on the inside of the flange and serewed down as lightly as pussible. It is a g(x)d safeguard to cuver these nuts amd the end of the screw with a liberal blob of balsa cernent.

Before assembling the hardwood latule to the mainbraring spindle, the porcelain line-guide which has been soldered into a bush sileuld be screwed lightly into the previded hole and filed off flush with the surface of the wookl on the other side. When a f in. distance piece and a washer have lreen put on the spiudle, the handle can then he addecl and clamped on with at Thackeray spring washer and two lock nuts.

JUST about atl of a mondel's ailments centre round, or affect, the C.Ci. I's design a troublefree moxlel is therefore simple don't let it have at C.C. " Fushy-Cat" is one moxdel which definitely hasn't one, for, although it balances where indicated on the plan, the vertical factors bring the true ($\mathrm{C}(\mathrm{r}$. to a position almost one inch outside the airlrame, in thin arr! Does this produce visions of the model scudding away and leaving its C:.G. standing ? !

Seriously, " I'ushy-Cat" is an attempt to get out of the rut while still retaining reasomahly simple cunstruction, easy trimming, and gond flight characteristics. The appearance is not far Irom scale (remember the " Scheldemeuw " and the " Carden-Haynes" ") and the lay-ont is of particular interest to concours buiklers, since the only part of the model likely to be affected by fuel is the leading edge of the lin, and the all-sheet fuselage uffers an excellent base on which to build upa high finish. The configuration also lends itself to llying boat adaptation, and a suggested removable " shoe " is shown on the plan.
(One minor shag is that rotary-valve motors will reguire a left-liand airscrew, since they will not run " backwarls '". A plastic prop of suitable diameter can be warmed in an oven until sult enough to be twisted to reverse pitch, or a wooden prop carved from a beech blank as illustrated, which takes less than twenty minutes. Side

1UITE the majority of models are flowa " for fun " rather than in contests, Not that contest flying itself isn't fun. It can be, especially when you are lucky enough to achiere one of the top places. Un the whole, however, contest dying can be far more disappoineng than "flying for fan ", even though the model may the performing much better. Just a fow seconds lost, perhaps through no fault of your own, may make all the difference between an extremely satisfying day out and one in which the sole consolation is that "there's always a next time", With "sport llying "' as nou-contest flying has, rather anomatusily, come to be termed, specific performance in terms of cluration does not really mean anything. Liecry goxi flight can be a suince of enjoyment and the tension accompanying a contest entry is absent.

FRICTION SLOWS UP AAP ANSSAM OUER GPOUWD.

Getting the best out of SPORT MODELS

Hemi meihod of lanmohing big motrer maindm in atim Ma A.F.N. Hres. Finat hente im otrem with tho right hand.

The sports model, therefore, starts with the advantage that it need not be trimmed out to peak performance and, also, that it does sot matter particuharly if all of its nights are gerel ones. It is desirable, in fact. that its performance should not be as goobl as that of a contest motel. In competition work, lung fights are the order of the day and, unless the weather is particularly kind, recovery of the model after cach ilight can be something of a problem. l.ong hights are alvays more attractive than short ones, but, at the same time, to appreciate a loug tlight you must he able to see the model all the time. There is litile point in making long out-ol-sight flights with a sports model if you catn only see part of the flight and have to spend most of the availathe flyme time nut in the coutry scarching for your missing machine. Generally speaking, therefore, the spurts flyer aims for shorter durations, keeping the model within the bounds of the flying fiedd so that recovery is easy and be can spenel ans mucla time as pessible flying rather than searching for tost mentels.

In practice this choes not always work out satisfactorily. More often than not the sports Hyer chouses a desigen which, inherently, has a restricted performance, as compared with a duration machine. Unfortunately the "amended" design, which possibly has more attractive lines or full-scale
realism ", may also be far less cunsistent. Good short flights may be interposised with bad ones su that the moxdel has to absorb a lot of punishment in the course of a day's thying. It has so be a tough model, to stand up to that sort of treatment.

Again, too. the sports Byer is generally less experienced at trimmong a model and handling it unter duferest contituons than his contest-Aying counterpart. Lack of experience is a primary cause of inconsistency-and damage. Model aircraft are not like other moslels which, if improperly adjusterl, are nut likely to come to serious harm. A mexkel acroplane which is not trimmed properly is virtually doing its best to commit suicide-and trimming is a fairly critical process.

Successlut sports flying then can be considered under two separate headings the type of model to lly and how to handle that motel if fying performance is your main aim: and the best appruach to adopt if you want a realistic lonking
model which may then he more tricky to handle, but where actual flving performance is considered seconelary. "Inc besi proposition is to get flying experience first and then graduate to the more exacting designs.

If firimg performance is your aim you call do no better than adopt a duration-type design, especially as regards rubler-powered and ghder mondels. These, inherently, should have a large reserve of stability. For sport Hying they do not need to be trimmed out to contest performance, so a somewhat safer trim can be adopted when, provnled the design is sound, they should prove particularly consistent. The majority of contest designs. too. are on the large side as compared with rypical " sports" models. Phis also is an advantage 1 rom the flying puint of view, the smaller the morlel, in general, the more sensitive it is to wrong adjustment or mis-handling and the lower its reserve of stability.

Unfortumately, of course, the Jarger the moxel the grealer its cost, and younger acromodellers in particular often have, of necessity, to start with the smallest of the kit designs. They have the consolation, however. that with a kit morlel the design itself has been proven and so sucli flying daults as maty develop are normally the results of their own errors. which practice can eliminate.

The lirst, and one of the most important considerations in sports flying is to choose the wather. There is little point in flying any type of mulel in high winds (only the contest flyer has to do this, for important contests and good weather only coincide by sheer accident). When the wind is strong the air is very turbulent near the ground. A steady wind in it self is not all that harmful, it is the swirling gusts which can do the clamage. And wind is seldom steady moless it is quite light and blowing over substantially tat groumd.

Fig. 1 shows, diagrammatically, how a wind blowing over the ground is slowed ap by contact with the ground and as a result tends to roll up into areas of up and down currents. Disturbances like these persist, although diminishing in effect. up to two hundred feet or sn, above which height the air is generally much sruouther. Since nearly all sports llying is done in this lower region, windy days are not really suitable for sports flying.

Any obstructions along the windward side of the flying field make conditions worse. Houses or a row of trees. for example. produce more burbles, as in lig. 2. indicating that the apparently sheltered points atre probably the worse for lannching. Y'ous call get the same sort of deceptive " shelter " in a valley-rig. 3-again a bad point for diying on wincly days.

Models just do not have a fair chance on windso days. Even a 80 m.p.h. wind is equivalent to something like exposing a full-size acroplane to a :36) m p.h. super-tormado with, in scale, even more marked turbulence. No full-size pilut would checrfully take off under such conditions!

I sually the best time for sports Hying is on calm evenings when the weather is not a lazard and the possibility of lusing mortels on thermal dights is remute. If you want the thrill of making uccasional long tlights, warm, but calm sunny days are productive of thermal activity and any well trimmed monel is likely to soma to considerable henghts in one. You may, however, and up by losing the moxel completely, unless you have litted a dethermalizer.

Normally a dethermalizer is smothing not used with sports motels. If you ate flying a durationtype mote]. however, it is not a batl idea to use one not so much to guard aganst the possibility of losing the mudel ou thermal tlights as to bring it down each time well within the contines of the Hying rield am! save you too much chasing the clesigg of mest duration monlels is such that fittong a simple tip-tail dethermalizer is yuite a simple job, as in Fig. 4.

As regards the actat trimming of the moctel. the three hasice tyese of free fight models cand he considered separately: Starting with a gliter, all

we really want is a reasonable glide and good towline stability. Vou should be able to adjust the glide by simple hand launcleed tests.

Giliclers

Experience indicates that the point of balance should be no further aft than the mid-chord of the wing-Fig. 5. If farther back, towing stability may be affected. If, with this balance position, the model stalls from a hand-lannched glide, add more ballast weight to the nose until a smooth glide pith is olotained. Check the new balance point found. 'This should not be mure forward than one-lhird of the wing chord. If it is, remove excess nose ballast until the balance point is at one-third chord. Any stalling tendency still present should be cured by packing up the front or leading edge of the tailplane. 132 inch at a time.

In the rather unlikely event of the model dwing instead of gliding properly with the balance point at mid chord, pack up the rear of the tailplane (i.e. the trailing edge) until the proper glide is achieved. As a check on the ghide performance, from a shoulder-height launch the moriel should

glide forwards and downwards to reach the ground alsut eight to tell paces m front of you. with no wind. If there is a wind, always launch the mudel into the wint. The disiance travelled from the launch will be slightly reduced. according to the strength of the wind. One further point-the glide path should alsu be straight.

This glide trim established should be quite satisfactory for spotts flying. How well the mondel behaves on the towline is largely dependent on the design of the model itself and the accuracy with which it has been built. Warps or faulty alignment, for example, almost always cause trouble when tow-faunching. Any obvious fatis of this nature must be eliminated-Fig. 13.

I ikely laults-and possible cures-for failure of the model to tow up properly are illustrated in lig. 7. If the mondel wraves first to one side and then the other, as at " A ", theu either move the: tow-hook pusition back slightly for use a more rearward hook, if more than une hook is fittedl : or ath more ballast weight to the nose to bring the point of balance farther forward. In the latter case, of course, you will also have to re-trim the glise stightly by packing the tailplane ' $[$. 1 :

If the model just turns off and dives tu one side, try to get a stratight low by adjusting the rudder

or trim tab setting. If this proves too sensitive. (i.e., a slight rudder correction produces a dive to the other side), move the tow-hook position forsuard. Mure fin area in the form of small fins cut from sheet halsa and stuck to the tailplane may also be helpful in rendering the main rudder less sensitive. If trouble still persists, move the centre of balance and the tow-hook position forward and try again. Remember, howeser, that warps, etc., may nver rule all of these corrections. Another possible source of trouble is one wing substantially heavier than the other.

Incidentally, rather than a running tow-launch, sports gliders can be lannched much more conveniently by a weak catapult of the type shown in Fig. 8. Roughly one quarter of the length of this catapult is thin strip rubber, the remainder thread. The rubher end is staked down to the ground, the model hooked on the other and the catapult extended by walking backwards to stretch the rubber to about four times its natural length. Kelease the model and it should be pulled forwards and upwards in the manner of a running launch.

It ishbere anomales

Kubler-elriven sports models should be trimmed for glite in the same manner as gliders and then like any other rubler model for the power turn, using downthrust and sidcthrust to prevent stalling under power. Follow the same techmone. as advised in a previous article for contest rubler models, hut without working to the same fine limits. As a general rule. in fact, it is a goond idea to forget alout sidethmast entirely and trim on downthrust alone, letting the model ty straight or in wide leftor right-hand circles under power. To not try to make the model ty in tight circles. If you want to try sidethrust to get a right-hand circle nomer power, never ase more than $1 / 32$ in. packing.

when there shoulal be lulde or no danger of the model spiralling in under power.

It also pays, usially, to employ father more slewnthrust that would ix* used un a contest rubber soodel. Thas helps holl the mose down and gives a more stable llight, less bikely to be upset by gusis. This produces a mmaterate angie of climb, rather than a stecp climb. Iixcossive duwnthrust is basl. for thas will make the memelel tend to tly fast and that without climhing properly-lig. 9.
'Ho prolong the life of your rubber motor, lubricate it well in the first place. keep it stored in a glass jar or similar contaner when not required for flying, and never wind it up more than threequarters maximum turns. If necessary, add an extra strand or two to the specitied motor size to get " maximum power" By never tlying on more than three-quarters turns the motor should last a long time without breaking up and you will avoid that excessive initial burst of power, characteristic of a fully wound motor, which is so difticult to trim out properly.

Rower Madels

The safest type of sports power monlel is the unterpowereal duration design-a duration mandel fitted with an engine about one-half of the recom mencled capacity, for example. This will have an exceptional margin of stability under almost any conditions, yet still have enough prower to climb the mudel reasomably well. V'om can suon tell if you have got a " safe" combination. Filying speed under puwer sloukl not be appreciably faster than the gliding speed with power off. It is the high flying spend produced by the use of a powerfal engine which makes contest-type power motels tricky to trim out. With a low powered engine (for the size of montel) you have a low tying speed and quite generous margins for adjusting sidethrust and downthrust. Again. however, we would recommend ignoring sidethrust, or using only a minimurn oflset.

The balance of operating requitements for the mokids discussed combld be sumbarised under the heading " common-sense". In other words, make sure that the moclel is serviceable and properily airworthy lefore tlying. Make sure that rubler bands used to hold on wings and cail are secure, strong enough and not on the print of breaking.

Check hands that have been exposed to strong sunlight. IBands tend to breat up at an alaming rate under such conditions. Dicsel or gho fuet alsio attacks matural rubleer bands. I quick pre-flight check lxofore each launch is a wise precantion.

Kemember! Over ninety per cent. of all crashes are due to negligence on the part of the modeller bimself.

With regarel to flying semi-scale designs, the same general rules apply. Adupt. as far as possible. the technique and experience of trimming the "duration" designs to produce a stable flight pattern. The less the inleerent stability of the design the more sensitive it will be to bad adjustment and air disturbances. This means, fly such moxlels only in calen or near-calm air, at least until fully conversant with their limitations and do mot try anything " clever" with them. Two excellent rules in this respect are: generally underporer such morlels so that they fly reasonably slowly and are therefore less sensitive to adjustment: and fly them as far as possible un a substantially straight course or in very wide circles. If posisilble, avoid using any rudder offert at all as this is at freguent cause of spiral dives shoukl speed build up) during flight. This rule is esperially helpful as regards trimming Jetex-powered flying scale or near-scale models where speed does tend to buid up during power Hight and the elliciency of the jot motor increases proportionately. The merite of low powered tying are exemplified by the ducted fan inodels of scale or near-seale appecirance which, with consentional (airscrew) power wonkl probably le unstable for similar layouts. siuply becanse of the increased Hying spued prodnced by the more efficient airserpw jutopoudsion.

The mangin of snfety decreases with increasing flying specel. Thus heavier, faster moxlels become progressively nome tricky to 1 rim. Safe, consintent flying is the main requirement of the sports medel. The trickicr models are more exciting but should not be tacklerl until you have a sullicient back ground of practical knowledge in the art of llying the "safer" designes.

Developed for the North Western Area

I/3rd Rubber Weight rules Ideal for other groups adopting restricted rubber contests.

Abous the dedigner . . . Aged 27 . . Siractural Drangheman . . . menher Chendle Coniest Clich... in contet-only fing . . . later also cchuild, 2 wat hol-iod carin, play demus.

INV July, 10isu, the North Western Area decided to try out a new rubber model formula proposed by the Cheadle club. 'The important rule was that rubher weight should lee limited to one third of the total flying weight of the model, and, surprisingly, perhaps, the iden " took". "Yardstick" is no example of the type of moxlel evolved to take the most advantage of the specifications, and despite the restricted rubber weight, is capable of a regular near-three minutes on full turns.

The original morlel was first flown in November, 1152 , at J'ilstock, and turned in something over the two-fuinute mark on average, in rain. This performance was ascribed to a slightly nose-down glide caused by a slightly too powerful tail, so a 25% tailplane was built to replace the orgginal 33%. A mach improved glide resulted, though with a tendency to spiral which was not really eliminated by re-building the tailplate with an undercambered section. As a last measure. the wing was moved $1 \frac{1}{2}$ ins, and the incillences re-arranged, and prestol 'The trimming headaches disappeared and llights of over $2 \frac{1}{2}$ mins. became regular.

Frum this it is apparent that " Yardstick " is a model that has had at considerable amount of development work put into it. and with the perssibility of this restricled-rubber rule being adopted for several major contests, it is interesting to study the gencral features. The 2 B -in. 8 -strand motor is tant between the hooks, and takes moll turns: the fuselage is extended aft of the rean rubber anchorage to gain additional tail moment, and a fine-pitch airscrew is used to nake the most of the climb on the amount of rubber allowed. In common with most low pitel props, folling is the best answer to glide drag. Jightweight construction, even though it reduces the permitted motor weight, pays off in the llight performance, and gendesy proves worthwhile in reducing surface twist. Like most lightweights, " 'ardstick " uses a calbane-mounted wing.

Construction is straightforward; note that $3 / 32$ in. square is used alt of the motor peg, being spliced on to the longerons. After assembling the budy, the lower longeron is ciropped for extra rigidity at the tail, as shown, and the top longeron cut away. The $1 / 8$ in. sheet nose allows side and downthrust to be sanded in before adding E1. The fins and wing struts complete the basic assembly. which is then covered with lightweight Modelspan and given two coats of clear dope and one of banana oil.
'lhe wing is built over the plan, litting the W'2 rabs between the leading and trailing edges before installing the spar. (Jne set of ribs need to be cut in half for assmbly. The ribs adjacent to the outer dihedral breaks should be titted after the dibedral has been set up. Add W'Bs to prevent tissue sag, and cover with jap or lightweight tissue, giving one coat each of dope and banana oil.

The tailplane is built in a similar fashion, and after covering placed on its seating to allow locating keys to be positioned and the small fairing added.

Soft $\frac{1}{4}$-in. sheet is used for the propeller blades, which should be carved with $1 / 16$ in. undercamber. Drill the pivot holes accurately, fit hooks and bind the rout ends with mylon. The pivot tubes arc nicked and spreal over at each end. Bend the wire arms until the blades fold flat, soldering the stop arm in place when the correct position is found. The blades are, of course, removable, though this is unnccessary for winding.

Weigh the completed airframe and make up the motor, adding ballast to the C.G. if the airframe is underweight. Aim for a right-hand glide circle of about 00 ft. in diameter, and use sidethrust in preference to downthrust to control the climb. Don't forget the I.T.

Firll size copies of the $\$$ scale plan opposite, with extra detail added, may be obtained, price 4/6 post frec from the Acronnodeller Plans Service.

position was required for down elevator. Should this not be required, the cut-out could be simplified by using one peg only to hold the tube unkinked in one neutral position.

A normal escapement has a spider soldered to the shaft, with a prong at the end of each of the four legs, as shown in Fig. 2. The escapement is mounted on a plywood bulkhead which has a hole big enough to clear the spider. On the other side of the bulkhead is fixed a piece of thin spring wire wo that it just touches a prong in the resting position of the escapement, and yet when the shaft is rutated (k) degrees the wire is pullerl across and released. A piece of eyele valve tuke is threaded on the wire as shown and the free end slipped on to a piece of brass tube that is soldered to a piece of strip. This is fixed to the bulkhead in such a prosition that the valve tube is kinked, and the kink opened out as the shaft rotates. On the other end of the brass tube is connected a piece of fuel tubing that is coupled up to the fuel line by means of a Tee piece. This Tee is best fitted within an inch of the engine, and if any difficulty is experienced in getting the engine to stop, at restrictor can be fitted in the fuel line from the tank. This restrictor can be a piece of aluminium to fit the tube. with a groove along it, the size of the groove being found by trial.

 semilat silidr．It are miamis tha to cherd the matio priar

Consiforl lhaxes

Mr．Riall mentioned that he used a rotating hatulle with double canas to operate a micro switch for the transmitter，so that winding the handle quickly would cut out the engine．Details of a control switch answering thix description have leen semt along quite indeperkiently by Mr．Morgan Hrewe of llemel Hempstead，who states that a namber of members of the λ gsley（club）use such a ＂I leep＂box．＂Their main use of thus is to obtam right turn witl the liandle to the right，and lefe turn with the handle to the left．after laving once synclurunised it．

This box is shown diagrammatically in l＇ig． 3 ； mote that a ratchet prevents the handle from going wrong way round．The mechet and cam can be solelered to the vertical shaft which goes through a long bearing ate tise top，and the handle would be besi held with a grob screw to facilitate dis． mantling．An oval cam nperates the usual micro swith which has another switch connected across If so that the handle and rudder positions can be synchronised．

Nore people are taking an interest in the more ambitions three value receivers these days．These receivers work on the same principle as the well－ known \mathbb{F} ．T）．set and use andulio，or tone modulated transmitter．Mr．R．N．Blunt of the Coventry Radio Controlled Models Club has produced the smallest and neatest the writer has seen and the circuit is shown in Irig．4．Iixcept for the relay it is mounted on a base of paxolin only $2 \frac{1}{1}$ inches hy $1 \frac{1}{2}$ inches．The relaty used is a 3.400 ohm Siemers

type，and is mounted forward in the moxdel so that in the event of a crash it is sut likely to knock hules in the valves．The valves and choke usd are ex－ gov．advertised in radio magazines by Messus． Flprea，though suitable new types are avalable from Messrs．Hivac or Mullard．The parts were a bit crowded on a photograph．so a（rawing（loig．s） has been mate to show the layumt of compranents． the values leeing ：－

$$
\begin{aligned}
& \text { CI 3.4) pf (} 6 \text { pfi RI, R: } 3 \cdot 3 \text { megohms } \\
& \text { (} 24.7 \mathrm{pf}(5 \mathrm{pl}) \quad 1122.2 \text { megohms } \\
& \text { (330 pf (\%) pf) } \\
& \left.\begin{array}{c}
\text { C4. CS, C月, C\% } \\
\text { CB, CO, C } 10
\end{array}\right\} \cdot(11 \mathrm{mfd} \\
& \text { 1《4. } 1 \mathrm{R}^{7} 1 \mathrm{meg} \text { ohm } \\
& \text { R3 22 ohms } \\
& \text { R6 } 100 \text { K.ohms }
\end{aligned}
$$

1．1． 20 turns 28 or 30 s．w．g．cotton or silk covered wire on din．iron dust cored former about $\frac{1}{2}$ in lonk． L2， 50 of turns fine enamelled wire womel on at 3 megohmresistor 1 in．dia．， $5 \cdot 16 \mathrm{in}$ ．long and ends soldered to resistor wires．I．3，Hearing aid output transformer primary winding only．（＂4 1.3 comprise a series tunerl circuit that will resmate in the region of $200-8010$ c．p．s．It shonslel be prosibible by using special chokes for 1.3 with approprinte values for C＇4 to get two receivers working on different audio frequencies which do not interfere with each other，and thereby have two models Hying at the same time．

The valves are V＇1．V3，CV＇3n7，V2，CY＇443．New valves of the same characteristics for V1 and V3
 and for $V 2$ ．Mullard Dlion，and llivac X X Wro 7 als or XIFW＇10．The XI＇types are a litule smaller than the others，being the same size as the XF（il．The rectifiers marked X are often referecl to as crystal valves，germanium diodes．silioon dioxles or Xial diorles，or at least sumething like that，and prices

range from about 2/- to $4 ; 6$ each. The bias battery can be made from a 15 volt hearing aid battery. Only 30 volts II.T. are neederl to give a current change in the relay of $0.2 \mathrm{~m} . \mathrm{a}$. up to $2 \mathrm{~m} . \mathrm{a}$. with signal.

Ansther interesting development with this receiver that Mr. Blunt has succeended with, is substituting a relay for the choke L3. Ile actually used a Holton, or Aeromoteller hard walve circuit for the first valve, though it is possible to get a current change in the anode of this valve of abont 1 m.a. without quench coils using 4.5 volts $11 . T$. This means that f iwo sequences could le operated, one by keying the modulation to the transmitter. and the other by keying the transmitter otf. . further development to this Ly Mr. Blunt has been to use a 3.45 vallve in place of $\mathrm{V}^{\prime} 1$ and $\mathrm{V}^{\prime} 3$, and in this case VO 2 whe not necessary. The unly disarlvantage with the $3 A \tilde{J}$ is the heavior filament current needed.

A high power transmitter suitable for use with the above receiver wan described by Mr. Sinfied in the January 1953 issue of these "Nutes ". but a fairly low power should give good enough range. Such a transmitter has been built by Mr. Bropliy. also of the Coventry R.C.M.C., though at present range has not been checked. The circuit is given in boig. B, and at will be seen that only one value is needed. and unly 90 volts M.T. This transmitter

can be operated from dry batteries. The tuning coil l.2 consists of 14 turns of 18 s.w.g. wire $\begin{aligned} & \text { inn }\end{aligned}$ inside diameter stretched to about 1 in, lang, with I.I being 2 turns inside its middle, though of cuurs. insulated from it. L.B is an ordinary R.F.C. of about 60 turns of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. cotton covered wire close wound on a \ddagger in. diameter former. $T \boldsymbol{I}$ is a frame blucking oscillator transfonmer as used for television receivers and obtainable at 4 : 18 each. The price is mentioned because some cust very much more, but they are not necessary for this eransmitter. The condenser Cl° is chosen to suit the frequency at which the receiver works best, and is found by experiment. The value is not likely to be very critical and will probatily iw: somewhere between 0.1 and $0 \cdot 001$ mfrl. Sl is a switch for switching on the transmitter, and Ill is to key the modulation. Normal anode current is 20 m . a. which drops to 19 in.a. when the modula tion is keyed on.

Queries are often received regarding relays, and these are about the most difficult item of the amateur constructor's equipment. A home made type was described in these " Notes " for March 1950 and the only improvement that can be adifed to that is a better pivot for the armature. The bracket would need to be altered so that a hole was provided on each side and a shaft put througi, see Fig. 7. This shaft could be a staff mounted in jewelled bearings by a watchmaker for finest results, and is well worth the surprisingly low cost. The armature is then soldered to the staff.

There is no doubt that the best relay that has been available was the SCR522 ex-government type, even though it was a little on the henvy side for lightweight receivers. One of the best hight types was an imitation of this and was fitted to the more recent Ivy receivers, but unfortunately the Ivy suffered from manufacturing difficultics. The typer inentioned so far had balanced armatures. That is, the armature was pivoted about its centre of gravity so that no matter in what altitude they were mounted, there was no out of balance weight tending to pull the ammature one way or the other. Another advantage of the balanced armature is that any vibration has very much less chance of causing the contacts to chatter.

[^4]

The wext best thing toa batancer armature is onse in which the moving parts are very light, the lighter the better, and is not very likely to llop abnut from one position to another with dif. ferent attitudes of the relay. Of this type one was shown in the photograph of the AEromonelzbr Baby Receiver, and another is the E.il) polarised.

Some hints were given on adjusting relays in the January 1 ย5: " Notes " and there scems nothing to add to that.

The next thing is the uses of different relays. since actuating schemes have been described in recent issues using high and low resistance types. Some people naturally do not know what all these differences ire about.

Mov the IReIng Workw

firstly, a relay is a device whereby a small"force can be used to control a larger force. The type we come across most often is that used in the anode circuit of a valve. 'The signal causes a small change of current through the relay which operates the contacts and allow's the larger current required for the actuator or escapement to be switched on and off. As the relay has to work on very small changes of current it needs to be sensitive. The inore force it produces on the contacts the more current they will handle. The force created depends on the current, the number of turms of wire in the relay bubbin, and the area and length of the iron in the magnet. There will also be an air gap between the armature and the magnet which has the greatest effect of all. The force varies as the square of the gap. That is, if the gap is two thousandths of an inch the force will be only a quarter of that at one thousandth, and at four thousandths only one sixteenth of the force at one thousandth. However. it is generally the resistance with which we are most concerned, since this is usually a measure of the current required to operate it. With a small current a large number of turns will be required and thin wire has to be used to get them all in. This gives it a high resistance. 1 f a relay is used in the actuator circuit there is a lot more current to play with so a few turns of thick wire can be used which gives a low resistance. In the June " Notes" Mr. McCullough mentions 3 ohms, whereas the sensitive relay in a valve anode circuit will generally be something like 5,000 ohms. Anuther thing must now be considered and that is the voltage lost across a relay. This depends on the resistance and the current flowing. Take the anode relay for example. If the current fowing is 1 ma.a. (one thousandth of an amp) and the relay resistance

5,000 ohims, the voltage lost will le b voles. If then the II.T. battery is tis volls there will be only 40 left after the current hos passed through the relay. This relay would work the same if a 5 volt battery was comected across i1. A similar type of relay, but wound for a resistance of 3 ohms would require a much greater cument. It would not be likely to work out in proportion to the resistauce because of the different wire that would be used, but let us consider the surt of uses for these relays. "This is shown in liig. 8, which is a copy of the bystem described by Mr. Mecollough. Here is a 3 ohm relay in series with the actuator and a B volt battery. To sre the sort of thing that happens let us take easy figures. Suppose the actuator resistance to be 5 ohms, then the total resistance wonld be 12 ohms and the current flowing $\frac{1}{2}$ amp. ()ut of the 11 solts, It will be absorbed by the relay and tid by the actuator. 'This working out comes from (Hhm's Law which says that the current in ampes equals the volts divited by the resistance in ohms. The contacts of the 3 ohm relay are used to switch current to another relay, this time of 8,000 ohms resistance. If a 11 volt battery is used the current will be just over 1 m .a.. which should work such a relay satisfactorily. The 8,ore ohns relay has a largo condenser across its coil, and this slows down its release after the current has been switched off. If now a high resistance is connected in the circuit, siay next to the battery, the battery voltage would nect to he increased in proportion, but the pull on of the relay would also be slowed down. This sort of scheme is called a delayed relay. A low resistance relay can ise delayed, but it means such an enormus condenser. as a small one would be discharged too quickly by the low resistance. To delay the pull on would also need such a high resistance with a much increased voltage that many more volts would be wasted. It does work but is not practical for model aircraft control. It might be mentioned here that delayed relays are used with vihrating reeds. The relay is usually about 5,000 ohms with a 15.000 ohm resistance in series and a condenser of $-5 \mathrm{~m} / \mathrm{d}$ across the coil This can conveniently be used with the receiver II.T. battery, and in this case the high resistance is practical. Very little delay is needed because the reed vibrates quickly.

 International

 International TAILLESS

 TAILLESS}AT BREMEN

Reported by HANS PFEIL

T1f: second International IFlying Wing Gider contest, held over July 18th;19th at Bremen in Germany, attracted full teams from Austria, Holland, Yugoslavia and the host country, Gennany. In all there were sixteen competitors. showing a considerably improved interest over the mitial event held last year when International flavour was supplied only by one visiting loutch competitor.

For the first time as far as we are aware, this was an Internatimal contest to the five, three-minute maximum flight ruling. The new glider line length of 50 metres (164 tt .) applied and the five tlights were spht up over the two days. Starting at 3 p.mn., the first round on the 18th took place in strong winds of up to 20 or 30 S.p.m. Kain fell later in the day: but not until after the first two rounds had been completed with A;2 champion Bura Gunic in the lead with the only three minute maximum. He was flying in his first tailless contest, having commenced construction of his Bremen entry only six weeks before the contest. It featured pexuliar slapeal elevons, hinged high
aknve the trailing edge as with all the other Yugoslav dessigns-and was a piece of superb) design and workmanship.

On Sunday morning the third round began at the early lour of 7 a.m. with highest times returnerd by the Germans I ange ankl Krom, the team placmg berame detinitely in favour of the German contingent. In this round, Gunic managed a meagre 23 seconds, which he improved to bil seconds in the fourth round and capped with a beautiful maximan in the fifth round to clinch lus position as mndividual leader. During these last two rounds, thermal assisterl dights were much in evidence. Thunder clouds were browing in the distance: but it was apparently difficult, with the su-metre lise, to make positive contanct with the updraughts. Thermal base would appear to have been fairly high off the ground.

Hans Domberger of Austria, whose simple but superbly finished model did well in the initial two rounds, was a close rumer-up for first place but unfortunately failed to find a thennal for his last nighe. On the other hamd, Heine Kirm of Germany

connected lift to return a time of only \boldsymbol{G} sconods short of a maximum and bring his excellent example of goud aerolynanuic design into third place．

From a constructioual proint of view the com－ petition did not introduce any particularly out－ standing new ideas，apart from the separate elevons of the Vugoslav models．The average size of the 10 n entries was between 6 and y it．span and it is to be expected that the logical development will be for a radical increase in wing area in future． Undercambered sections derived Srom the MVA 123 and MVA 309 were most common，in combination with inverted soctions，or the use of symmetrical airfoils at the tips，with wash－out．

In all this was a very well organised Inter－ national event and thanks are due to Herr W＇． Grass，who handled the technical side，and the Hremen Airpent Association for the Inan of the commerrial airlield．Even though full size aircraft werc landing asd taking off all the time，full co－operation with the control tower（via an ultra－ short－wave walkic－talkie）ensured smooth running with every safcty precaution and but in few brief interruptions．

Now that it is established on the F．A．1．calendar and is obviously arousing considerable Inter－ national interest，perhaps the tine is now oppor－ tune to remind British tailless enthusiasts that they would be very welcome at the 1951 com－ petition．there 1 i hope also，that the same meeting will include power and rubber classes to make it a complete＂International liying Wing Champion－ ship．＇

			Sece
1.	－Suric		527.4
2.	H．Damberser	鳥mptrin	42
3.	H．Kron	Germany	475
4.	H．Lante	Garmanv	451
5.	6．Inaname	Curmany	43
4.		Mallend	384
7.	J．v．ed．Caal	Helland	313
－	E．Makisins	Molland	300
－	W．Zullhafer	Garment	280
10.	J．F．M．Mekhint	Molland	250
11.	L．Peeltoviti	Yupotavia	217
12.	－Ianic	Yuearlavia	100
13.	©．Aancin		181
14.	A．${ }^{\text {a }}$ irice	Auperia	$1{ }^{14}$
15.	H．Jamex	Auntria	178
16.	M．Girak	Austria	－
	Team	clage．	
1.	Germany I，3］	．Yumoslavia	94
2.	Holland sma	．Auptria	䔒2

GUNIC FLYEN WHNG

Consenilonal strasture，whith iwo part wing． small pod for cratral luselage and selecthon al towing pusitíoas．Wiva section blithly under． camtered with slight netpex at the trailing edee and wing lapers of at ihm upr，producing s degrece washout anglo．［．endlos edge is ahcel covered．and＂nd－plate fin also berves at a supporf for the unlque elewons．

Span：7以 Ine
Rout Chord：of ins．
Tip Chord： 72 lms.
Total Area ： 540.1 Eq. Ima．
19户口ht：14．gi oxy

ALL－SHEETT WING

Helheri Jausa＇s nowel all－ghet wing th of twh part cnontrtetson in more than one sense．The wrmag halves are foisied by a steel strip and nuk aned bofts，whilst the furtemra wo per wonl of tho chord is shext，sanded to normal Clark Y＇secthon． Artached io tbe tralliag edze of this an a rear I／Jish thwert，making bighy undereamhered selion，vilt rive oil tha undetyive to act as homailary fonces Due iu iack ul iminming esperience，model placell lasl on scoreboart．

Span：10w fus
Chont：RJ tat
Weigut ： 17.80 cm ．

Described Pictorially by Harry Hundleby

Hematirus pholed drpirfa shlidr. Pillim Ianamhint his spilfire purirwed drlta irhirh irvigha ma_{1} osn. and men a Clark 1 alofoh. A.jl. lir biom Dharshal idr /irrmot d. Hanir, H.H.f:. Cill. A.f.C', esamimen a ambe Riownemng flomen bus S.A.C.' Elidn, iruirhed
 Shar, Chatymasi of the H.A.f.M.A.t. Helore 1/.1ppr. Onhourna af Hulten pllen the furma an his Jightuvight rahber model held bM A/tppr. Manter.

TIIE Royal Air forco Mosel Aircraft Asexciation mon cloubt pirked st. Athan aeventrome for thas year's (Isamysionsifips mot only for its virtues as a flying kreund lant alsol because it is one of the largest stations in the K.A.F. with the neressary accommordateen th house the large number of competitors. St. Athan lies in Wales and whon it rains in Wales it rertainly rains' Atter a fine stars on Saturdiay, esth July, which did enable several of the free Hight contests to get umater way, down it came in torrents until late afternown fortunately a rommy K.A.F. hangar was at the disposal of the organisers so that many of the control line events and the concours classes were able tu continue uninterrupted. In the concours Sgt. Mchard
 and Sgt. Edward's Jooker D IV flying scale model was a pleasure to behold with a dying performance to mateh. wimning fust place in its class. In the $\frac{1}{}$ A team race which attracted many entriss, Jun. Perch. FSecketi's delta racer provided a good deal of ammsement ly tmulating a race car, and digging its nose deeper into terra firmat every tume up elevator was applied.

There was no doubt that S/Ldr. " Bill" Verncy. the Contest lifector with war twenty difierent events to run, was relioved when rain ceased after tea. Taking advantage of the last few hours of daylight, free Hight events were pushed ahead at all prissible speed.

Next moraing bresught no rain but that We:sha Weather Man produced as nice a gale as we have ever flownin. Theye K.A.F. ladsate, however, made of stern stuft and atl the contests continued unabated. Fiven the flying scale concours entries attempted their qualisying fights and the radio control event saw many stout hrated attempte at making the upwind pylon.

AFrIER Wiorld War I, R.A.1F. Fighter Squadrons remained equirped with war-tine types, namely, a few s.f:.5A's and a number of Snipes. Eventually the powers-that-be sanctioned the buidding of three Gloster machines for fighter trials and three " Grouses" airfrimes were modified and re-engined with A.S. Jagnar Ill two-row radial congines. Re-named Grebe I, these were a great success and earned an order for a production version. Lighter and faster, these joined the K.A.J. a year later, powered by the 385 h .p. Jagan IV and armed with two Vickers gums on the cowling. Great improvements were mate over the war-time tyfens: the radial angine contrasted with the Snipe's rotary, the bungie sprung $11 / \mathrm{C}$ was gone and the wings emberlied the H.L.13. sections. The high hift top wing did most of the work in flight, when the lower wing was at minimum drag incidence, hut this was effective for take-off, and the staggered hiplane layout made possible the short fuselage, so aiding manoenvrability, of which the Cirebe had an excess. The fin and rudeler, however, sinclled strongly of IV.W.I, being simbar so the S.J.5, and stamped both as conng from designer H. I. Folland.

In 1925 a batch of two seat trainer (ivebes was buift for squadron conversion of new pilots. (hate of these. JFisen with Racing No. Dis. flew in the '29 King's ('up lkace and was a likely winner until a flying wire broke; a forcod-lansting for a temporate repair with string enabled the firche to reach Liverpool for a new wire. The dolay caused No. 23 to linish in Ithh place. Considerable reswarch work fell to the Grebe, which at Martle sham becane the first machine to survive a $\mathrm{I}^{\prime} . \mathrm{V}^{\prime}$. dive undertaken, at last, when parachutes were first issuted. F'ulling out of thin dive at asto m.p.in. caused some lift wires to streteh! The lfele-Shaw variable putch prop was test fown on a firete, and (ibosters carried out three experiments mongaining a gerel forward wiew. These comprised (i) normal wings but with thinned down centre-section.

 da aftehing io the fallahida. (Phote: "fitign'
(ii) Grebe outer wings faired straight down into the fuselage, and (iii) normal wings but with no centre section at all. At the end uf tests in July 'ins it was found that the thin centre section was the bent jroposition, also giving best climh and speed, and so was used on later designs, starting with the Camecock II.

The Greve II of 102 f embodied the experience of dive and spimning tests and had slightly improved cowling lincs, while stiffer, narrow-chord ailerons were fitted. A number were supplied 10 New Zealand m toth single seat and dual forms. Three other firms built Cirebe parts. Ilawker's making bottom wings. Avro's did top wings. and I).J.'s turned out ablerons and smaller parts: a total of 130 Grebes were buith. Nos. ㅁ.. 29, 32, i0 and 111 Squadrons fiew the delightful bee-like Grebe with great zest until re-erpuippexal from 1927-30 with the Gamecock (which owed everything to the (irebe), and the Siskin, of which many were Gloster-built.
 above upper wate liph, hrhw hater wing tiph, overlapplint alrons,

 dises.

 $2 /$ hrs at 16 , f(M) It
 spruce virith and wire bracsmg. Whale talred by spetuec stempers.
 aikrons Tait unit annilar fa winks with adjutable tailplans. Whate thhrie roverrat with ali analrols unbalaneed.

THE CIASGOW MODEL . MRC:RAFT CLDL (iala Day can be faitly safely described as the number one scottish model flying event of the year. as tho prize list includes the Royal Dutch Airline's " Fiying Dutchman Troplay" and the magnificent C.M.I. Imphy, which is presented by the Clyde Model Dockvard Co. to the winner of the rubber duration event. An additional attraction to the K.I.M. Airline 'rophy is that the winner is presested with a flight to Holland, where he becomes the guest of the Joyal Dutch Aero Club for the Jutch National Contests. The (iala Day, hekl at Abbotsinch derixirome. lbaisley, un August 9th, had only moderate entry, compared with previous years, but never the less, some interesting morels turned up, in particular an AI'S Schmid Swiss Kiomet, powered by an E.D. Pacer, flown into second place in tho K.I. M. Trophy contest by Joe McMaster of (ilasignw M.A.C. Winner of the troplay was lan Donald of DUNFEIRMLANE M.A.C., who sorsed 8 min. 38 sec. with two flights, his model being lost after the second hlight. McMaster's time was $4: 17$. alson scored with only two out of the possible three flights. Thind place score was returned by W. Howie of Glasgow, who clocked 4:37. Jock Finlayson of STIRLING M.l.C. wont the Clyde Model Dockyatd lrophy, his " Wee bit bigger than Wakeliedd " F.A.I. rubber job being timed for 0 min .42 secs. Bill McConachie, Glaseow MI.A.C. was second with anly one tlight, his model flying o.o.s. at over 0 min. The l'unternline Club come into the picture again, with member beorge Simpson scoring 4 min. 32 secs. for third place in the C.Al.1). Trophy. Alec Clark of the (il.ASG()W IBARNSTORMERS CIUH brought his interesting Wakefeld to Bu for the C.M.D). 'rophy. 'Shis model features a long Bilgri style fuselage with return gears into the bargain. Unfortunately the model was unable to show its paces due to damage by the gusty weather prevailing. The usual hevs of sport flyers attended the Gala, and John fox of I'OLLOCK M.A.C. drew a large crowd of spectators with his " Jetex Hawker llunter".

Thc WEST OF SCOTLAND AREA Tran
drace l.ongue is lreing led at present by the S.A.s. AUCHINNHARVIL: M.A.C. Keeping at the gowel work in both stass A and If racing are thom Fark, Bol, Jinnore, Dlee Conk and the kiddo himsself, J. G. MincArthur. 1'it stop specıalists are Dave Norwood and " Magic Mitts " Andy Walker. who have been timed at seven seconds for a pit stop. The Clasgow Barnstormers, who race the S.A.S. boys at the next fixture, hive every intention of clanging the league placings around sormewhat, as recently acquired Oliver Tiger two point fives are circulating class A planes at io m.p.h. for a hundred laps-so the Barnstormers claim anyway. Other Area news is of the tean selected to represent the area at Long Marston. The two (ilasgow cluts, I.ANARK M.F.C., PRESTWICK, S.A.S. M.A.C. and the IRVINE \& II.M.A.C. The final threc Scottish S.M.A.I. areas eliminator contest was held at lanark on July 2tfth to decide the Scottish leath for the United Kingdom Challenge Match. to be Hown in N. Ireland this year. This eliminator saw more interest from the liast Coast Scottish Areas than of previous veary, but the West of Scotland area again constitute nincty per cent. of the ultimate team. Exceptions were Pete Russoll of Stirling M.F.C., who was the worthy winner of a place in tho glider team and clubmate Jock limagoon in the rubber tean. The weather at this competition was of the foulest uature-even for ducks; a high and exceedingly turbulent wind blew all day, accompanied by steady rain, which internittently broke into reaf Illlywood style hosepipe downpours. The final comp. results elected the following club and area members to the Scottish team.

[^5]

CLUB NEWS

1 hampl fyromp at this merent rally Hefarevin hiffarima B..B..A.C. monf man gun ldmilfy?

今S another contest scason rapidly passes. we are again miltly astonished that min man concuurs exents don not stipulate that a flying model should prose its cligibility. We have known "flyiug " models win live or six concours prizes whhout any attempt being made to fly them. One such medel. built tos a commercial desigh, has a beathful funish. The tesign weight is 17 ozs. and this particular example weighs $\$ 2$ ous

East Anmina Aren

A repeat shmw has been requested aiter the surcems of WARE D.M.A.C.'s first puble demonstratmon this seagon, ame Jetex speed and duration evenis will also help to keep the members' timo accupied. As Opers Glider Cup has been pressonted for compotition by Mr. Hills.

NORWICII M.A.C. also reporl preat succesy with an exhibition at a local fete, the value of tho cxhibtes necessitating an all-night guard. Stunt and combat went down well. but the crensl's excitenent resulted in diamage to models and lines, and 18 . Sallis of CAMHRIDGL M.A.C. Was forced to land ontsido the grounds with his \mathbb{K} / S, mudel. When some measure of control liad heen established. the models tlew again, the radio job in particular proving a big atiraction with landings six feet from the Tx.. etc. R.A.F. St. Faithes saw the annual comps. Alown off in wind. J. Rant winning rabber and Jetex, B. Ilolden power, and A.]. soames sailplane.

Three members and an ex-menber of 13ELFAIRS M.A.C. were among the nine to tly oll in the Thurston Cup, and the glider poople have been doing extremely well. "Ugly Ducking" is a popular design Az fy2 ins, $\$ 6$ ins. lo. 2., 21 per cent. tall, cabin-style borly). sinco Wixs P. Healev won the Clwyd mecting with this design and 12 year-old 11. Kawlings placed 6th th the Thurston with an idrutical model.

Vorth-Wemtern Area

A standard programmo fur exhibition Alimg has been eleveloped by the WORKSOP clab: starting wits a
smgle noisy machine as a cromedrawer, the display moves through stunt, sperd, sea/e, and formation atunt, (a) a combat session chmax in the middle of which a judicinusly plased fong-fuse fireworlk produces spectacular pesults. 'libe ancrease in linal interest more than offects the reduction in actual contest flying.

Ilustle up those weary contest jolus, for un September goth HYTDE M.A.C. is layilse on a rally covering rubber, power, glitler, Jetex and tean racing A and is with a useful prize list and one of the tinest flying sites armund. Exira prizes ior \mathbb{R} / C specd and stunt, are ready if anyone wants to $11 y$ in those categorics No. 125 'buses from Hede take visitora to withen 1 wo minute's walk of the field. so, if you want a new moter or some useful electrical sear (presented by Messra. Oldham \& Son liti.) ar iny of the other excellent prizes, nuw's your chance.

I new N.W. club is the Aircraft Section of the COLNE D.M.E.S., which is eveenly divided inter contest and nom-contest fyers. Now mombers aro welcomed and a "recruiting slrive " is scheduled for the near future.
The novices glider competition loeld by WhITEFIEi.I) M.A.(., and won by (1. V.. Will is with 7 : 36. was amusiry in that the times returned were all considerably higher than the club's c:M.. N . scores, Hown at the same time and heached by \int. U'Lumnell with it:01. Successes at the Northern Iloighes pala were marred by the loss of E. Morwich's Nordic in a cornfick! on its sccond flight.

Eant Midilamil Arean

Coningsby was the site of the Fast Midand Area Rally and tho weather was isleal. Litteover's Jacksou brothers tonk the top three places in rubber. \mathbf{G}. E. actually wiunug with a danble-max. T. Boothnd of Scunthorpe beat T. (ionddard of Cirimsby by 20 secs in the thyatil of the two double-maxs. returned inglider. and Ke Bunkley (Skegness) totallod 4:47 to win power. A sput-landing event. the spat being about 300 yards away, was wenl with int errne of sul freet by W. L.

Trotter, and the tean race (A) by Forester's, D. Bolton. who atopped only twice in the ent lap final, but averaged over $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Northern Area

Rubler is favourite at present with A MPJ.EFOIRTH COLLEGE M.A.C. R. Zollowski has raised the Wakefield record to $\mathrm{H}: 33$ (pylon, single-blate folder, 1054 job) and R. Johbinsen the F.A.I. to \& : 20. The lightweight record still stands at $21: 00$. Most interesting is a $2 \boldsymbol{i l}$ in. "Mustang ", Dart-powercel, which thes extremely well with pendulum controls. The third "Thunderwing" (A.A. 14n'1) has appuared and Hies well. while contest power morlets are unusual in that high-thrust-line jobs untmumber pylons by chree to nace. A very auccessful summer exhibition has been held.

FORFS'IFERS M.F.C. are unbeaten in class A racing this scason. duc mainly ter chot mate folin Oliver's fine motors, and addied further to their successes at Walsall and the fi. Midland Kally. At Sohmull, K. Oliver (no relation) leme his glider in crops after two maxs. and had to be content with sixth.

A 2 minute maximum was agrect on when BRADFORD M.A.C. met BARNSLRY in the second K.O. round, due to the latter'slimited fying space. Only one nuember of the lharnsley three-glider team failed to turn in a treble-max., whereat the Bradford team (R. Calvert. glider, A. Collison and]. Sannett "Hogans ") declared: even if all their remaning tlights had leen maxs. they coukln't have gulled it ull.

Western Area

The well-organisc! TROWBRIDGE M.A.C. Kally was spouled by a mid-afternown donmpour, but early conditions were favourable so much so that J. Down of South Bristol lost both his glider and power models for firmetround five-minute maximums, despite D. T'ing. Results wיre: J. Ralph (Clevum) $\mathrm{y}: 22$; glifer, 1). Wrancis (Bristol and W.) b: DO: power ratio,

D. Turtall (Swindon) $34: 4$; concours. A. Waters (Bristol and W.) 1).H. Beaver.

SOUTH HRISTOL are hoping to popularise a now class of team racer--max. engine (i) c.c., min. area 200 sq . ins. 3 oz. tank. $2 \frac{1}{2}$ in. wheels, 5 in. cockpit, and 65 ft . lines. Good news for fuel manufacturers, if it is taken up!
A flying sale mbuer event was tried by HRISTOL AND WEST, winner being G. Wiohlls, 1:29 with a 24 in. Max Ilolste. J. Berryman's Cessna C. 34 and A. Cole's Fokker D. VIII placed second and third. A big crowd turned out to wats:h this interesting contest and was most impressed by A. Cole's Jetex 50 Avro Vulcan, which hew beautifully. Control line is on the upgrale. a twice-size E. .1., 3-4í powered "Arrowhead" being among the interesting medels. Eleven "Wondford Specials " have been butt by various clubl members. who have nothing but praise for this popular model, but who take the precaution of welbing the spars in the esentre few bases, thereby adding a useful sulety factor for windy weather flying.

South Western Area

A novel idea of BARNSTAPLE D.M.A.C. is an annual acromodelling rsmining holiday, near Kentishury lown. Normal llying takes place regularly on Chivenor Acrudrome, and radio and ducted fans are receiving attention. At least five members have been working on Pistoad morlets for the A.M. design competition--you have. incidentally. just a forinight left before your chasice of a gold watch expires. September 30th is the closing date.

Goulla lamterm Ares

The third round of the E.M.M.A. Championships, held at Kingsdown Common, Deal was again troubled hy strong winds, but the Herne Bay, Ioover, lleal. Thanot, Sittingbournc. and Canterbury clubs combined to make it a worthwhile meeting. The Pilgrims once again collected the fron's share of the points. It is rimomred that C . Ashby of this club dropied some cement in his box threc monthy ago, and can't get his models out . . Full marks to C. Follington who hes made a first-class job of his first power model, an " Envoy ". despite the less of noe arm.

Londion Arean

Goud news from the Dagenham district is that the use of a fying ground has been officially granted to Bernard Piyer's " Brotherhoorl of Boys", a club with probably the youngeat average age in the country. but, as Fairlop halituós will remimber, brimful of enthusiasm and real ability. Snilplane, F.F. scale ami semiscale are the duminant interests at the moment, and the new ground has proved quite suitable for power mondels of up to 60 ins. spant.

A recently formed club, NORTHWICK PARK M.A.C., now includes iwenty-five members and a fine list of records. Evampless hlider 12:35, D. Leech ; power 13: 45, C. T.poon: distance 45 miles (klider to Lewes). A. Bevan; chuck glider 3:50, 1). Leech, Interest is mainly in gliders-a.d., A a's or "Quickies" but contest surccoses have so far been in the power sphero, notable being G. Upson's qualifying for the British team.

Congratulations to Lauric Rarr of W'EST MIDIDLESEX M.F.C. for his Quern Flizabcth Cup win, which has given the clubs a bigg tillip, aided by R. I.aw's third place in this contest and second in the N.H. Gala

CONTEST CAINRDAT

Championship．Tho Northern Heights are the cluls＇s opponents in the semi－final of the London Cup．

BUSHY PARK M．H．C．squmehed to 3rd and 4 th places in the team races at the above mentioned Gala． and have been having fun with their glights for the ＂News Chronicle＂gliding comp．J．Castle established a new junior record of $5: 12$ ，bust best flight proved to be 了．Simmens $10: 00$ o．1．s．The wolel disappeared in an easterly direction，but 1 h hours later a dot was descried approachang from the north which turned ont． on landiag lesa tham lall a mike away．to be the same machine，＂Chip－Cloop＂．a 520 sq．ins． 7 ozs．light－ weight！

Midland Arma

The sixth annual C / L rally staged by WALSALL M．A．C．was ant sutstanding huceres，frojoying thu splendid weavther of Hank Holiday Monday，and a large crowd drawn from the adjacent fetc．Alan Itewitt of South Birningham pruvided a diversion when he lost the outer wisg of luis original＂Amtassador＂but carried on threught the biok with the remmants to place second to K．Buck（Five 「owns），who siso touk class $3 / 4$ sperd with $10 \frac{1}{6} \mathrm{~m} . \mathrm{p} . \mathrm{f}$ ．Outlaws M．A．C．gave an excellent combte silow，and loresters M．F．C．swamped the team racing．Concours prize went to a＂Benarcat＂ by N．Fletcher．

Tuestays， 8 p．m．at Bingley Schonl，sers WOLVIES M．A．C．ready to welorme new sucmbers anong other advantages this club has two excellent fiving fields．A coach trip to the N．H．Cala saw K．Trumper son besi， totalling 4 mins old with a 2 in sq．ins．，7i ness，Ellin 1.49 job which fritures a sharpish climb unfortumately a misjudged motur run sjoilexd his chances of placing．
［31．ACKHEATH \＆HALHSOWHN M．A．C．is another club gripped by the combat fever．up to $1 \cdot 6$ and $2 \cdot 6$ and over beng the classes．Hesults are so far a toss－up bef ween the fast．semi－acrothatic model and the slower，full－stunt job．F／h，interest is still strang，iLs witness $ل$ ．Adunnon＇s A2 100 qualification．

Sontheril Aran

Torm racers nre still the vogue in WEST IIANTS A．A．and Salisbury，Swanage．Southampton and Amesbury clubs recently visited for a most successful race meeting spansored by the S．R．I．fo．company． Tutte of Salisbury took the class if cup home，thus preventing a clean sweep by the host club．

HOURNEMOUTII M．A．S．thoroughly cajoyed an attempted scaplane contest staged recently－even the type who found a discrepancy betwren water－depth and gum－bont－height ！Cinfortunately mentrant suacealed in getting unstuck from the pond used，so the event is heing held again later on．The serialnsed clab history in the club jourmal las now reached la3l and makes fascinating reading．The club durntion record was raised that year from 33.5 secs．to $47,48.5$（with a 90
oz．mondel If and finally to 81 secs．later in the yas G．IF．Haster bad pushed it up to $3: 10$（a British record）with a Wrakcickd．Happy days！
l＇en［xal secker is James G．Gray 1JI，5Hiow，54th Avenue．Riverale，Meryland，U．S．A．．a 20 year uhl atudent who is inerested in conteat F；F．（all categories） and C / L and wants to exchange supplies，ete．In this comery J．Cranc of 89 ．Lower（irasel Jowarl．Bumley． Kent，wants to return an J\％．J）． 46,34 ins．cabin（tricycle model to its clueless uwner．Wonder if writing one＇s name and address on a morlel would help to iclentify it ？

Remember those skorice of stunt models free flight－ ing？Here＇s a new twist a Blackpool clab mentore flying an Amco 3．5＂Kanger＂lust the handle on take－ off ；subecquent fight reached sito It．and landed in a tree．where the lines made recovery virtutlly impossible． Who＇s first with at $1 \pm \begin{gathered}3 \\ s q\end{gathered}$ ．in．Amco free thighter ？

The CLLHMAN．

NEW CLDBH

COLNか D．M．\＆．S．（A．S．）
K．Maclinere，16，Bhater Avenue，Cohne，Iamer．
No1tt
J．Curry，13，liyton Ruad．North Wembley，Mddlanes．

sferferarial chanuls

AHDKNHAM SCHOOL，31．k．C．
 Horta．
SALFOitl M．A．C．
 HIDE（CHE：MIHF）M．A．C．
T．Wuller，100，V＇rearla strmet，Nimsuth，Hyde．Cleesbre． AMPLRFORTH＇COLルKM M．S．
 College．Yore．

（i．Wheluou，31，Shenstone Fints，Keut Rund，Qulaton，

＂Look，son，when 1 sald＋Free Flight＇I
didn＇t mean you get a ride for nothing！＂

At the recent "Model Enzineer" Exhbition where many ot zhe finose model sifcraft ever saen ware on display, is wat an establithed fact that the winning entiles all used "Modelspen'" tisuue. The acromodeltang expert knows that for real strength and iuper finish at the expense of very liete waighe "Modelipan " cannat be beaten.
Long equeh fibres ensure that covaring. often the trichiast of modelling jobs, becomas easiep. for this "supar cissum" even in itr undopad geare can be handled wich impunity. Don'z torget eithar, that watar ipraying is nat nocossary whan using " Modehpan " as its agecial shrinking propertiex enture that covering is drum tight after application of dope only. Sroched in sheesi 20 ins. in a solendid varicey of colours: Yellow Mid-Elue. Dark-8lue, Red, Black and White, is is available in two zrades.

- LIGHTWEIGHT

Ideal for Wakefields where the weight factor is vital and eminently suitable for the smaller gllder and rubber model, not forgetting the flying scale type.

- HEAVYWEIGHT

Tough enough for the largest of power models and ideal for conerol line jobs, is is also especially sultable for the A/2 glider class where strength is the keynote, and welght not quite so important.
"MODELSPAN" is included in all the wellknown kits and is available from your Dealer

BUD MORGAN

The Model Aircraft Specialist

WHY NOT JOIN MY SAVINGS CLU日' Send for full parciculara. All ordars POST FREE ovar \&l, under and li- pastage. Sand cath with order or C.O.D. Yau pay the POSTMAN ON DELIVERY. All ovarseas ordors FREE FROM PURCHASE TAX, Approximately 15 ner cent. off lise pricet. MY NEW MODEL AIRCRAFT PRICE LISTS now ready-FREE.

AOAT KITS
Veron MARLIN. 36^{-1} long, 10° beam. Completely pro-fabricated balsa and ply congtruction.
Veron POLICE LAUNCH $26^{\circ} \mathbf{i n}^{2}$ SPRAYMASTER. Lengeh 24°. Bam $8 \frac{1}{2}$. for motora 1 to $1 /$ c.c. anginas or alectric motor, 36 WAVEMASTER. Length 34*, Beam II=, lor anginas $2 \downarrow$ to 5 c.e. All plyword and hardwood pra-
 Beam 5t.. All balsi construction For elecerie motor 20 ; ELECTROTOR. Type 240 for above.

JETEX KITS

NEW TAlLORED KIT

Swife, for 50

lavalin, Jor 50
Yoodoo. for 50
Hawker Huncer
M. 7 with 50

4

1 win 30 10.
JETEX MOTORS
50 ourfle
12 ?
50 moror
8.

50b motor
5.10
$28-$

Jermaser 1000^{2}
NEW dETEX MOTORS ready
non-
Sob $\quad \cdots$...̈
SOb wish Auemontar Tube 10,1
Scorplon with Augmanter
Tube
39 -
50\% Ausmenter Tubë - $2-$
Sand for the latost JETEX PRICE LISTS
NEW KEIL KRAFT "SPORTSTER" Price 3,6

ENGINES

nco. 15 ccc. P.B. ...	
Amco. 3.5 c.c. B.B.	1..
Allbon Dare ll, 5 ce.	-
Allbon Spiffra, I c.e.	,
Allbon divelin. 1.5 ce	-
D.C. 350, 35 e.e.	
E.D. Baby. 46 c.c.	1.
E.D. Bes. I c.e.	...
E.D. 246 Recer	-..
E.D., 2.46 Watcrcooled	-ri
E.O. Me, IV, 3 the.c.	tr
Mills, 75 c.c.	\cdots
Mils, 75 c.c.	
Mills 1-3 c.e.	
Elim. 5 c.e. ..	\cdots
Elfin. 1-49 c.c.	
Elfin. $249 \mathrm{c.c}$	
Frog 150	...
Fros 500	

22, CASTLE ARCADE, CARDIFF

where strength is needed.. You will need ..

BRITFIX DOPES

COLOUR RANGE

Gloesy : Demp Orange, signal Red. Crimson, Sky Blug. Arure Blue. Arown, Dark Asmirsley Grey. Gold. Cream, Canary Yollow, Emerild

Graen. Aluminum. Biach, Whute, Matt : Camouflage Graen, Camou= Gage Beown. Tralner Yellow. Dusk Ess Blue, Red. Darle Grej

Transparent, water and heatproor BRITIIX cement combines rapid drying with the utmost tenacity. It is ideally suited for power aircraft and other models of halsa and hard woods: also for plastics. leather, glass, potlery and electric cables.

$$
\frac{1}{\frac{1}{2}} \text { or. tube 6d.: } 1 \text { oz. tube lod.; }
$$

${ }^{2 f}$ or. tube 16
Quailable from you local model shop

THE HUMBER OIL CO. LTD (Mira-Callulare Dept.). MARFLEET, HULL

Sule Ayeners avalathe in several Overacd corantrex Enquiries invited.

 IMIPOIRTEIRS OF TIMIELR FOIR MIOHEL, MANUEACTUIREIRS

AFRICA HOUSE. KINGSWAY. LONDON.W.C. 2 TELEPHONE: HOLBORN 7053 TELEGRAMS:'BALSAWUD'LONDON

RAWLPLUG PRODUCTS
 INDISPENSABLE
 IM THE FORKSHOP HANDY IN THE HOME
 THE RAWLPLUG POPULAR OUTFIT
 Lofper swes ore obiainoble.
 Whasever your fixing problema, there's Raulplag Device that will molve it for you -rasily and quickly. Kawlpluas make ncat and absulutely firm fixinge in any material from biick or tile to atone of slite, with g sise for every screw from No. 3 up to conch actew's. Rewlplug'loode are chay to unc und ensure pertect hole without dumage to muprounding surfaces. Onhes Ruhlplug Devices inTugele Bolts for thin or hollow mutcrials and Rawiclips for instant fixing of sonduts and cablet to girders-u devise in fact for every need.

 DUROFIX
 The indispensable adhesive for instant use on crockery, glass, wood, metal, celluloid and the thousand and one things handled by the hobbies enthusiast. Instantdrying, insulating, waterproof and heatproof. Durofix is grand for repairs to electrical, sports and leather goods. Durofix Thinner and Remover is sold in handy 2 oz . bottles.

SOLDERING IRONS MakEs solotang
Thls is a muarantecd electric tool which will pay for itself many tomes siver by repgiring and givins longer lite sometal household goode. In the wortsthan it ta indiapenmale. Supplicd with Sinndafd bit, Hatchet or lencl bit. Voltages 100/210, 200/220, 230 i250.
silent operation OUICK PENETRATHON

CAN BE: USED IN A ILAND BRACE

Spiral Bured namoruy dillin which can be used in a hand-bruce fur bozing clean found hallen easily and quickly in hricta gtone, marble, ile, etc. They have firty cimes the life of urdingry drills because

[^6] $5 / 32^{\prime \prime}$ to $1^{\prime \prime}$ diam, and in longlengthe for penes rating fight theough walle.

PLASTIC WOOD

applied like putity dries like wood
Can be cur, planed, polished and painted like wood. Will take nails and screws like wood. It does not blister, crack or decay. Rawiplug Plastic Wood is actually the best quality product of its kind on the market. Plastic Wood Softener and Remuver is sold in handy 2 oz. boteles.

[^7]

Flying High
 HIGH POWER ELFIN

$1-49$ c.c.

Two high capacity Elfin models which have proved their worth against international compecition, and with continual refinement are providing an efficient answer to many power problems Made by AEROL ENGINEERING LIVERPOOL, 3

Home Trade distributors through:
E. KEIL \& COMPANY LTD., LONDON, E. 2

R.S. , oo RELIABLE SERVICE ROLAND SCOTT 147 DERBY ST., BOLTON

* popular engines * E.D. 46 ce. Diesel $52 ; 3$ Dirt Mk. Il S cie, Dimel -. 6t:2 Mith P. 75 Dianal Mills 5.75 Diesal E.D. Bee, I c.c. Disel … 61/10 Splifire icc. Diesal EInn 1-49 c.c. Dienel E.D. $1-46$ c.e. Dienel 5y:Marain Mk, $11,149 \mathrm{ce}$ Diasel 65
 Einn 249 c.c. Olmal $\begin{array}{r}664 \\ -\quad 78.5 \\ \hline\end{array}$ E.D. $2 \cdot 16$ c.c. Alacer
Ollver Tiger. 2.5 c.c. Diwal Ollver Tizer. $2 \cdot 5$ c.c. Diasel 130;-
D.C. $350 \mathrm{Mli} .111,35 \mathrm{c}$ c. Diesel $78: 5$ E.D. Mk. IV, 3 4fe.c. Diestl 70.5 Fros S00, 5 ce. Gilowplus ... 71/= Amso ${ }^{3} 5$ BB Diesel Araco 35 PB Diesel

\& 9. S. DOES IT AGAIN SUPER TIGRE ENGINES now avallable 29 follows:Sugar Tigro G22. I 23 c.c. blasel or Glowpluz Super Tigre G20 Sport, 2.47 c.c. Glow. Wi 31 ous.
Super Tigre
S20 $2 \cdot 47$ c.c.Glow. We. 31 czs . Super Tigre G19, 4 di e.c. Glow. W. 忮 ors.
Super Tigre. G2l 482 e.c Glow. We. 7 oxi. $131 / 6$
Purchasere will be liable for Purchase Tax and Duty of approximately $\mathbf{2 0 \%}$ of above upon receipt.

* SPECIAL OFFER *

Until the end of October we offer Second-hand Encinal at the followine reduced pricasall guaraneeed. MONEY BACK IF NOT OELIGHTED :Milis S. 75 c.c. Dienel Mins. 75 c.c. Drer Amea 87 c.c. Dienel E.D. Bee. e.e Diesel Frog 160, J. 6 c.e. Glow Elfin 1.8 Diasal
lavalin 149 Diesel
E.D. Comp. Speciai, \mathbf{z} c.c .. Efin 249. Beam
D.C. 350 Mk . II Diasal

Amco $3.5 \mathrm{c.c}$. Diesel
E.D. Mk. IV, 146 cc . Diate

Fros 500, 5 c.c. G.P.
Yuion Eagle, 5 ce. G.P.
Yulon 29, 5 c.e. G.P. Mille 24 c.e. Dinsel McCoy 19 G p.
tFULL LIST ON REQUEST Your Engine will be caken in pare exchange for ANY madel. line goodr if in good condition.
Plezie forward return gostage which will be credited if your angine il aceepted.

t R.S. for REPAIR SERVICE t Now and Second-hand parts ar vevilable for mose anginet mnd we normally return withln 4 day. Out of date enginet a upeciality.

* JAP SILK

Your model will withstand a heavler "prang" if covered wish silh. Ideal lar Gliders and all Power Modals. The wife or girl friond may also be interasted.
1f sa. yds. In each panal, $4 ;$ - each full " cnure "al 16 pinels co Apply to the framework with

Trado өлquiriø inviced.

t POPULA員 KITS + Phantom Mice C/L Trainer 135 Elf Kine. I 5 ce. Siuni ,- 126 Ranger Class "A"T.R. 121 Pacer Class " B "' T.A. . 178 Stunt Queen, 5 cic, Stunk 246 Mercury Mk. il Class "A Mereur
T.R.
 Yantaze Closs ": B "' T.R. 20 Hornar Clame "A "T.R. i- 106
Vorrex A. 2 Sailplane

$21 / 6$ $\begin{array}{lr}\text { Vortex A. } 2 \text { Sailplane } & 21 / 8 \\ \text { Marauder A. } 2 \text { Sailplane } & 16,11\end{array}$ Ace $30^{\prime \prime}$ a pan Rubber Gypay Wakefleld, 40" Skyshooter. 18' Power Juniar 60, 60° Power Monocoupe $66^{\prime \prime}$ seaía Ladybird $11^{\text {n }}$ semi-icala Monosoupe 40° icalc
 Yeron LAAT ${ }^{2}$ Imp'
Veron Sabre "Imp Eliminator Duration Ambassidor 2.5 c.e. Stunt .

* TO ORDEA *

List your requiramentn and forward P.O. or chague-I will do the rest. C.O.D. servien available. Add posfage on all ordara under 20 -

All Jetex Motors and Kies always available from stock. We use and recommend the followint accesporiet :-
P.A.W. "Trucut " Propy, BrieHy Dapan and Camant, H.M.G. Hardwaod Cemene, "Solarbe" Ealge Wood, E.D. and E.C.C. A:C Unire.
 AGENERAL ACCESSORIESt IS c.e. Team Racu Tanka ... J/3 30 c.e. Team Rice Tanks ... J'6 Small Stunt Tanka Light Laystraca, $70^{\circ} 3 / 4: 100^{\circ} 4 / 4$ Transíers-Assorted pkt. .. \&d. Kayloe Cution … ... 7fd. Fual Tubing Parfi. od. Pilots. Small 2:4; Larga 2;11 H.M.G. Hardwood Coment j/3 Elfim Jar Aasmbliea EO. 246 Jets 210 ; Needles 1.2
 Rubber Bandg-Asesd. pitt, bd.

Buildine vaur own tranamitter?
JA4 Valvas to clear at 10 -

> GIG EIFFLAENDER REBORING SERYICE FIELD日ANK, CHESTER ROAD. MACCLESFIELD Bees a Elins $12 / 9$, othurs $16 / 9$ excepe -5 e.c. which are 18:9 and umder '46 c.c. 20/9. We undertake repairi, End when aking lop estumate, send s.a.e. All wark carrias our guspanese. We cannos supply cast parts, e.e- crankeases, or iwo speed timars, and do NOT accapt ANG MOTORS ar motors with ipor wald linart tor boring. COMMONWEALTH \& FOREIGN SERVICE now operatIng SEND DIRECT: W\& AIRMAIL cons. and on rucelpt despasth pose free by firs SURFACE MAL.

CHANBHEIEID ADERE'VNEMENTN

PRESS DATE for November, 1853, iseue, Sepember 20th, I*53. AOVERTISEMENT RATES :

> Prvato Minimum 18 words an. and ed. per word for Eroch sublequent word.
> Minimum it words i2s. and ed. per word for Mach subaequent word.

Bay numbernare parmisuible-tacount at worde when costing the advertisament.

COPY and Box Nb. replias should be gent to the Clasified Adyertinement Departmene. The tain omodeller", 18, Clarandon Road, Watford, Merte.

FOR SALE

 Gainder, Four Windm, Hroumblil, Harrow W'cald, Middlomex.

 sunth, :3v, Fogaton Cipenvinh, Nowport. Mun.

 Yorkn.

 Dirmisigiant.

 308, Whitalall Hand. New F'arnlos. Ircovis.

SITUATIONS VACANT

Manmen wanted far Toy and Modol mion, munt bo fully oxperi-

 man. Apgly with cons reforminces. Itox. No. 405.

Thade

 omine mervicu. B, Ryton atrext, W'orkmpl, Notta,

 tralo cunulrís inclf cti.

 hall refunt vornhor. delld for yuar capy now Lo Sodeleraft Led. it (k), (irevyezner jined, london, Ew, W.

 torins. Cuoper C'rait Idd. The BMdewnll. Norwleh.

Amarlata Maghainow: ouo year "Mond Alrplane Newso" en ;
 (Dept. E), 101, Fleet struet, iomalon, ki. ' 1.

EXCHANGE

 suffulk.

NYLONFurther supplies of this wander matcrial have jusi arfived. 38° wide.
The perfoct I.glinn 11 Covaring for your modele. Dom not taar. Wm. K. SMITII $\mathrm{Br} \%$
 HI.A(CMPOON., N.

Money Back Guaranteed

Did You Know?
 that

 AEROMODELLER

 AEROMODELLER SUBSCRIPTIONS

 SUBSCRIPTIONS}
can be sent to any country in the world for the Sterling equivalent of $21 /-$. Full detalls from :

ARGUS PRESS LTD. 42-44 HOPTON STREET, LONDON, S.E.I

top－flight jobs deserve
top-flight

finishes

jOY－PLANE BALSA CEMENT
Is the strongest，lightest and highest quality adhasive． Available in display boxes of 3 doz．Tubes 6d．and $10 \mathrm{j} d$. Extra large tube $1 / 6$ ．Note long eype nozzle for applying In awkward spors．Also supplied with normal nozzle and scrow cap．

－

OTHER HIGH QUALITY JOY．PLANE PRODUCTS ARE AS FOLLOWS： CELLULOSE DOPES－Marc ond Glosar RHgen LUBRICANT．PLASTIC WOOD．GOLD DOPE．SILVER DOPE BANANA OIL No． 1 Thick，No． 2 Thin－ HIGH GLOSS WATERPROOF FINISH GRAIN FILLER．FLAMBOYANT FINISH－THENEWCOLOURGDMETAL SHEEN FINISH WHICH IS MORE durable than dope．coloured AND CLEAR FUEL－PROOP FINISH

Fricas andsizas tosult allpupposes．Ask your lecalseokiat for＂＇JOY－PLANE＇products If any dificuley in oblaining，a pasteard to TURNRRIDGE LTD．，london S．W．I7，will bring the name of yaur napeit stackns．

> \#

SILVER

Superb Solids

SWIFT，SKYKNIGHT， METEOR，MIG－I5， SKYROCKET，SABRE， GLOSTER JAVELIN， HUNTER，SCORPION， YAK－25，ATTACKER， THUNDERJET

At lase．DAY－GLO In 2 small handy pack selling at 2：6 per jar．
The BRIGHTEST DAYLIGHT FLUORESCENT COLOURS IN THE WORLD
In five glowing shades：Neon Red，Signal Graen， Arc Chrome．Fire Orange，and Sasurn Yellow．

[^8]

272－274，Hjph Strect，Sulton．Surrey．
ofuranowe：
Viliilant 4291．2．
＇I＇El．EGnams： Timberlow，Suten．

small in size

 Light in weicht

 Light in weicht}

BIGIN ENERGY AND
PERFORMANCE

Thit th the aecuinulator which model englmeen wave beet wonitong for tewr. The Venare sllver. loc mecuntulator in the lighten rteharteable wecumulator In the world. Amp./hour pittiency if well aver 90°;

Write for leaplat Y.A.006/4/A for full imformat nom.

The Model Makers SPRAY GUN

 for Cellulose, Lacquer, etc. complete with $*$ AIR BULB * CONNECTOR * CONTAINER and the speciol SPRAY UNIT with the 5 year guarantee.For a perfect finish using coloured and clear cellulose or any paint. Cellulose, ready for spraying, is also available in uny quantity from 2 oz. WYrite for full price list.

AIRSCREWS

 3. 3.4.5.6.12 4.12 4.12° 4.12 42° 6.80 6° PITCH each inc. P.T.

OBTAIN FROM YOUR MODEL SHOP I
PROGRESS AERO WORKS, CHESTER ROAD, MACCLESFIELD

THE SHOP WITH THE STOCK

-FLYINGKITS -

Skyleade at 3 each. Hunter. Supermarine 5wils, Ayro 707A Avio 698, Avro Vulenn, Javelin, Comper 5wils. Pusu Morh. Tiear Moth, Grasshopper. Autter, MIG. IS.
Shylageda ar 8 each. Avio Vulcan, Comet
Frat Senior Sepies at A E each. Raven. Linner. Rodwing
Fros Tarquin, 35 min. apmen, or 0.5 Engine. 12 thiscan liob be used a a Glider.
ORECHI RALSA WOOD, PROPELLERS RUBRER
DOPES. CEHENT. ETC.
Please add portage for Parompr Mail Order Service

JONES BROS. of CHISWICK Euduti 1211

1 min. from Turnhom Green Statum. Open Salurdori until b. Kop.ri B8, TURNHAM GREEN TERRACE, CHISWICK, WA TEI.: CHI 08S8

THE NEW SUPER ADHESIVE for all CRAFTSMEN

MEVALTIX

TwANSPARENT - 1 from Timathy Whire \&
Two kinds: COLDSOLDERI 3119 Handicraits shops. ete. I Handieraie shops. ete. In
cave ol difficuley wrises.
MERCANTILE MARKETING CO. LTD. 22 HANS ROAD, LONDON, S.W.3. KNightsbridge 1241

Conrlitions of Scele

This persodical is mold subject to the followint condicton: Thas is shall not, withove the wricten consent of the publishers. be lent, resold, hlred-ouc. or orherwist disposed of by way of Trade except ae the full ratall price of $1 / 6$ and that th ihall not be lent, remold, hired-out. or orherwite disposed of in a mutilated condicion or in any unauthopited covep by way of Trade: or affixed to or as part of any putlicasion or advertising. Jiferiny of piciorial macter whay memer

 WATFIHD, IIEIATN. Tulephon WATFORD 5445.

[^9]
IT'S HERE!

The 18 INCH WINGSPAN

First of the

(FIE/RAAFT
 [3ze Bll
 KITS

Remember these "EABBILT" facts The Sportster is designed to fly several hundred feet. It can be assembled in an hour on your first try, and has actually been put together in $\mathbf{2 0}$ minuses! There is no cutting, no tissue covering no painting to do - you just assemble -then fly it. All parts are die-cut and pre-decorated, so that a snappily finished model grows into shape before your eyes, even if you have never bullt a model in your llfe.

Watch our ad. next month

READ KLL ABOUT THE CHMM?

Another fine EeZeBILT kit

Amyonere cuth asssomble unill I!y the SPoiftstelt in lass dhum I home:

The Greatest Name in model kits

[^0]: pallime the tant fou turnis on the nemond motor for hin thivel mardmama fight ai

 of Mifenourl．U．＇．А．A．，aefa me auchor．man．

[^1]:

[^2]:
 i．Onicial uspenius of the thampiosnshipn thy the Prexitent of the
 firrmamy arith their intercaling mherl corcred models，esmplouing finll
 Chalkn us lienf．Hurd＇n marimum．B．R．hiford and Bramks urepare to lausch

 prepare their makenhlf midela for nowed 1．12．The tuam frum

 and kevenucus．I：I．Harr stuppi of the sinar reated a furore iften
 Tuak holp，hith th as nerand course．11．Mas Hachifiycr（Giermang）
 a apmint araral far the terzt piece of compirwetiom th the entry 13．Nilide sule reryun normal－－binl irho imas right is anybady＇a auese

 Auariam endrant inationiliently for the rerdict．

[^3]: - Sice menamfeciarcis comments on porge BOL.

[^4]:

 equipmentill foing denafalled.

[^5]: Powor:
 」. Bell
 A. Clark
 R. Parsons L. Blair Glider: P. मuysall R. Barf B. Harel d. MecArthur

 Rubber

 1. Finlayson
 W. MeConachie A. Oustan N. Shanks
 S.A.S. M.A.C. Weat of Scotland Aran

 Stirling M.F.C. South East Scottinh Aren IrvinaD.M.A.C. Ware nf Scotland Araz Prestwich M.A.C S.A.S. M.A.C.

 Selrling M.P.C. Glasoow M.A.C. Glasow M.A.C Lanark M.F.C.

[^6]: the Durilm Carbicetio ir harder than any meta or alloy Sizer from

[^7]: ByIOP

[^8]: HALPAN MODELS LIMITEID
 RICHARDSON STREET，HALIFAX，YORKS．

[^9]:

