AN1 Chrigfmas lasue MODELLER

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

Sole Distributors: E. KEIL \& CO. LTD., 195 Hackney Rd., E.2. Tel. Shoreditch 5336

 E.D. Mk. IV 3.46 Diesel Engine... Price 14. 2.6

E.D. 2.46 c.c. MARK 111 (SERIES 2) RACING ENGINE

THE REST OF THE E.D. DIESEL. RANGE

E.D. 46 Baby \ldots Price 2. 2.15 .0 E.D. Mk. I "Bee" | c.c. Diesel Engine.

Price 12.17.6
E.D. 1-16 c.c. Diesel Price 63. 0.0
E.D. 2 c.c. Comperition Special ... Price 63. 5.0

DIESELS

Size : Height $2 \frac{1}{4}$ ins., Length $3 \frac{1}{6}$ ins., Width $1 \frac{1}{2}$ ins. Specially desizned for use as a diesel, Glo-plug, or spark ignition engine, the two-forty-six develops I h.p. at $14,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. plus. It has dise inlet valve induction. two ball-race crankshafe and oxhausts as an integral part of the crankcase; World's best " $2 \frac{1}{2}$ "winning all speed contests. Weight $\$$ ozs. Price E4. 2.6

KIT SETS

E.D. MK.IV. RADIO CONTROL UNIT, TUNED REED, 3 CHANNELS.
E.D. Radio Queen Kit Set ... Price E4. 5.0 ED Challenger Hydroplane Kï Price \&2, 12.6 E.D. Aerocar Kit Set Price E2. 12.6 Challenzer C / L Aircrait Fuselaze complete,

Price $£ 2.4 .0$ (Engine extra)
E.D. Junior Cruiser, $30 \mathrm{in} . \times 9 \mathrm{in}$, beam.

Price $\mathrm{El3} .0 .0$ (Built hull)

Comprising transmitter, control box and recelver. incorporating reed unit giving output for three separate channels. The channels can operate either escapemene and/or olectric motors. 9 channels can be introduced. Convincing proof of its stability and reliability was given when used in the recent crossChannel success of 9 hours' duration under extremely adverse conditions.
HARD Valves with a life of over 3,000 hours are used throughout.

AND ACCESSORIES

E.D. REED UNIT

Suppliad in ehroen diffarens Irequeney ranges whleh, when combined. will tive up to nina channels. Dlagram of-suitable cransmitter and receivar also supplied to enable construetion of own equlpmant. Welght il ors. Price []. I5, 0

All prices include purchase tax.

Unit complete
Receiver
Transmitter and Con....... Reed Unic (separately)

E.D. POLARISED RELAY

Polarised by high flux daubla magnet system and incorporates fully balanced lealarmarura. Unafecred by vibration and capable of operating on current changet of under I m/a. Welghe toz.... Pricecl. 10.0

Here you have a choice of SOLIDS, CONTROL LINE AND DURATION FLIGHT MODELS-for the experienced modeller and the beginner alike.

Our range of Solidsisteadily incroases. Here are some of the litese " seale" rnodels you can build during. Winter eveningz. P. 1067 HUNTER (illustroted). Inc. P.T. 2,6 P.1081. Hawker's famous prototype.
inc. P.T. $2 / 6$ SABRE F.86. Korean front-liner. inc. P.T. $2 / 6$ BOULTON-PAUL P.III. Deirt Planform.
inc P.T. 2/6 SUPERMARINE 508. High speed plane.
inc, P. T. $2 / 6$ SUPERMARINE 510. Now developed into the "Swife" H.F.2 . All woather inc. P.T. $2 / 6$ VENOM N.F.2. "All weather "fizhter, inc. P.T. $2 / 6$ CUTL.ASS. The U.S. tailless fighter.
inc. P.T. $2 / 6$ M.f.G. I5. Soviet war plane, inc inc. P.T. 3/4 inc. $P, T, 4 / 3$ CANEERRA B.I. Ailansic record jes

VGRON

RASCAL

Thls 24"span Durarion model sis a tllck licila eatin jab wish modern Hines. Ensy to bulld and an ideal Insroduction ta aora- KIT modeliIng for the be- PRICE ginner. Waleht It ozs. Propeller 10 diamaer. Power: Four scpande of $4^{\circ} \times 1 / 30^{\prime \prime} \times 16^{\prime \prime}$ lons. Have achat wish your VERON Dealer-he will halp and advira in every wayand don'f forgat to ask him for our lully lliustrated FREE POCKET FOLDER.

SPITFIRE ' 22^{\prime}

273*1pan.
Scalo Constal Lino modal of the famous Brisigh flghtermot a plene for peginnerf. Will show outaranding performance In the hands af an ayparl. enced pilae. Drop of undormeriase, mould. undoracriage, mouldSorborubber whecli. Sorborterber Wh
Scal
So

KIT 3$\} /$ Inc
PRICE

MODEL AIRCRAFT (Bournemouth) LTD. Norwood Place, BOURNEMOUTH

Tel: SOUTHBOURNE 2783

As in the case of Pilot Officer Proudman....

PROUDMAN le:ft his public school intending to take up acronautical engineering after doing his National Service. He 'opted' for the Royal Air Force when he registered, and took his flying aptitude test (which you can now take as carly as 16). He passed the test and volunteered for aircrew duties. Within three weeks of call-up he was
trainiug for pilot; within 18 wecks he reccived his probationary commission. Afeer qualifying as a pilot he found that be liked the R.A.F. so much that he put in for a short service commission. He hopex to stay on as a regular with a permanent commission. The picture below showg him about to take off in his $600 \mathrm{~m} . \mathrm{p} . \mathrm{h}$ Metcor jet.

Proudman's story is by no means unique. The Royal Air Force today offers real opportunities to young and ambitious men. With the expansion that is going on, promotion is rapid - and pay is exceptionally good : inside 8 years, a pilot or navigator can be carning over

E 1,000 a year as a married Flight Lieutenant. There are several ways in which you can be granted a commission: through Cranwell . . . via the University . . . or during your National Scrvice. Post the coupon now for fuller details. You do not commit yourself by doing so.

TO: ROYAL NIR FORCE (A.M.IO3) VICTORY HOUSE, LONDON, W.C. 2 Please send detoils of life in the R.A.F. (tick which yoy require).
(A) In the Air
(B) On the Ground

RADIO CONTROL

E.D. Mk. 1, 3-valva unit. Complere cranimister, recoiver and escapement. $290 / 0+69 / 9$ P.T. E.D. Mk, II, 3-valva unit. Comolete transmiteor and racaivar only. $296 / 0+74$ 'O P.T. E.D. Mk. Ill MInature (Hivac) Unit. Complote transmitter. receiver and escapement.
159:6:38/5 P.T E.D. Mark iv Tuned Reed 3 -channals unle. Complete
$400 / 0+100$ O P.T. Any of the above can be purchysed ts separate liems. E.C.C. Srandard transmiteor. 10;0~20,0 P.T. E.C.C. International rranimieter. $1500+37 / 6$ P.T. E.D. lll receiver.

60/0 + 14/5 P.T. E.C.C. 951A hard valve ra caiver. $70 ; 0+17 / 6$ P.T.
E.D. Ill escapements compacs E.D. III escapements. compacs
and normal typa. $10 / 6+4 / 5 \mathrm{p} . \mathrm{T}$. and normal typa. 18/6+4/5 P.T.
E.D. polarized relay. $\quad 30 / 0$ E.D. Siandard rolay. 22/6 E.C.C. 5 A relay. $25 ; 0+6 / 3$ P.r. E.C.C. areapemenr.
$17 / 6+4 / 5$ P.T. E.D. Reed Unit (nlgh or low frequency, state whleh). 00% frequency Moterf/
Hivace Valva $17 / 6+3 / 10$ P.T. Milliamerar $0.5 \mathrm{M} / \mathrm{A} \quad 12 / 6$ Baseeries stocked for any of above.
VENNER ACCUMULATORS

ORDERING INSTRUCTIONS

HOME CUSTOMERS. Cash with order or C.O.D.
POSTAL INSTRUCTIONS. All orderi under 10% add 9 d. . $25 /-$ add $1 / 1$ 40/- add 1,6 , over 40 ;- pasfiree. For ovariens, according to posial sarvice requested and destination. Postal Information concerninz dispatch to any country givan on requese.
NOTE. Will 'all curtomara requiring intormation plaase include a S.A.E. or If overiaai International Reply Coupons.
oVERSEAS CUSTOMERS
See Octaber \& November issuta for complete liat of countrias which aceept. C.O.D. delivery.

Customers resident autsida United Kingdom, including H.M. Forces. buy free of purchase Tex.
Correct rates of exchange siven.
FORCES CLUBS, Recogniaed Clubs an buy on a cradie account. Desaila on request.
DELIVERY. Every affore will be mada during Xmas rush romaineain our wall known eervice.

ENGINES

The upply position varien from day eo day, and apart from E.D. products it is imposible to forecase stocks at publicacion date. We have been fortunate in obtaining large stocks co cope with the additional Chriatmal demand. In very ohort supply ETA lis 29.

 with mocor $\ldots 10 / 11+2 / 5$ Zyra Space Shlp kis only $5 / 9+1 / 3$ dexicopter 500 ... $5: 9+1 / 3$ Jeticoprer 100 ... a : -1/1 Fiying Wing 30 ... $5,9+1 / 3$ | Mor Dogss | | |
| :--- | :--- | :--- |
| Ourajer 350 | $\ldots .$. | 16 | $\begin{array}{lll}\text { Ouraice } 350 & \ldots & 16+3 / 9 \\ \text { Consers } 200 & \ldots & 1 / 11\end{array}$ Avro 707b 50 ... $5,9+1 / 3$ Vampire 50 ... $5 / 9+1 / 3$ $\begin{array}{lll}\text { Vampire } 100 & . . . & 8 / 1+1 / 11 \\ \text { Meteor } 50\end{array}$ Meteor 50 $8 / \mathbf{t}+1 / 11$ Saundori Roe Fly. Int Boar 8 日 $+1 / 11$ Piastic Race Car complate with 50 unit... ... is/4+3/5 Piastic Speed Boas complare with so unle $\ldots 126+2 / 9$ Hallicopter complate wish 2-50 units (ready to fy) 27/0 $+6 / 0$ GLIDERS

K.K. Soarer Minor.
K.K. Sosrer Baby.
$8 / 0+1 / 9$
${ }_{36}{ }^{\circ}$ Sosrer Baby.
K.K. Soarer Maior.
60°... ...
$5 / 0+1 / 1$
K.K. Minmas $50=1 / 6+2 / 7$
K.K. Invader, $40^{-} \ldots \quad 8 / 6+1 / 5$
$\begin{array}{lll}\text { K.K. Cades, } 30^{-} & \cdots, & 4 / 0 \text { +1/ld. }\end{array}$
Voron Coronetre.'
veron Verosonle."
46°
Mer.
3/6 +9 d .
.Norsaman, 5 8. $^{-1919}$
Frog Prince , ... 20:6. $4 / 6$
$\begin{array}{llll}\text { Fros Diena, } 36^{\circ} & \cdots & \text { 1/5 + 1/7 } \\ \text { Mer. Grebo, 49 } & \cdots & 12 ; 01.2 / 8\end{array}$
$\begin{array}{llll}\text { Mer.Grebe, } 49^{\circ} & \ldots & 12 / 01 / 2 / 4 \\ \text { Frog Vespa, } 0^{\circ} & \ldots & 5 / 9+1 / 3\end{array}$ $\begin{array}{ll}\text { K.K. Chlef, } 64 & \cdots \\ \text { Mer. Marauder } 65: & 18 / 6+4 / 2 \\ 17 / 9\end{array}$
Frog C.L KItS P.T.
$\begin{array}{ll}\text { Vanfire } \ldots & \text { 24/2 }+5 / 4 \\ \text { Vandiver } \ldots & \text {... } 12 / 3 \text { i } 2 / 9\end{array}$
Vantage ... \quad-.. $17 / 2 \div 3 / 10$
Keil Krafe
$\begin{array}{lll}\text { Rangar } & \ldots & \text {... } 10 / 6+2 / 4\end{array}$
... $15 / 0+3 / 4$

$\begin{array}{lll}\text { Skysirask } 26^{\circ} & \cdots & 9 / 4+2 / 1 \\ \text { Skyitraak } 40^{\circ} & \cdots & 10 / 6+2 / 4\end{array}$

$\begin{array}{lll}\text { Scout Blplana } & \text {... } 22 / 6+5 / 0 \\ \text { Phantom Mite } & \text {... } & 11 / 6+2 / 7\end{array}$
Veron
Bacbug $1210+2 / 8$
$\begin{array}{lll}\text { Panther } & \text {... } & 250+5 / 6 \\ \text { Miniburser } & \text {... } & 150+3 / 4\end{array}$
$\begin{array}{lll}\text { Phlibuater } & 23 / 6+5 / 2 \\ \text { Midgar Mustange ... } & 22 / 64.5 / 0\end{array}$
Midgar Mustang ... $22 / 64.5 / 0$
Focka Wull 190 .. $2110+4 / 8$
Focke Wulf $190 \quad 21 / 0+4 / 8$
Ses Fury Mk. IX
Solefire Mk. XXII $23 / 16+5 / 2$
27/6+6/1
$\begin{array}{ll}\text { SolfireMk. XXII } & 27 / 6+6 / 1 \\ \text { Wyvern } \ldots & 23 / 6+5 / 2\end{array}$

IF YOU BUILD FROM THE FINEST PLANS SERVICE IN THE WORLD－SELECT FROM OUR PHOTO－ILLUSTRATED LISTS

FROM OUR SELECTION OF HUNDREDS OF DIFFERENT DESIGNS WE OPFER YOU日ELOW SOME OF THOSE WHICH HAVE BEEN MOST POPULAR IN 1952．．．．

56－PAGE CATALOGUE

Of Model Alroraft Desigmi to atsract sha fincy of expert and novica aldke．Some 340 from which to choona，nesply all lllustrated with aceual phola picturas of the model، and complefe with specification of soan． aulabla angina，etc Included are 59 \＆REE FLIGHT POWER： 45 CONTROL LINERS： 27 POWER FLYING SCALE： 12 RUBEER DRIVEN FLYING SCALE： $6 甘$ RUBGER POWERED： 8 WATERPLANES： 59 GLIDERS： 10 INDOOR： 20 UNORTHODOX： ？JETEX AND AOCKET．ERC．，ElC． 46 AIRFOIE SECTION SHEETS．
Get youp copv taday by sending af 6d wish coupon belaw．In sididian you will recalve free the 16－page MODEL MAKER Plans Catalogue with rwo supple－ ments covaring BOATS．CARS．ENGINEERING．OBC． HAVE YOU TRIED
MODEL MAKER YET？

1This bright companion masaine to AERO． MODELUER dasls with avery other sort of model 1 －bozts，locos，yachis，rar．ofc．Samosize pagei

MADCAP．Vie Smeed＇s highwint beginner＇s dositn for E．D．Beol c．c．diesel tops thalizs．Span 45f lny．You can eet is too by quoting PET；470．
enYor．Tricycie uic semi－scale power by Cyrll Shaw－mase denign before he lale lar Caoda－ suleable for t－life．c．Span is 40 ins．Ouote PET：＇461．

LULU cortainly in a＂Lulu＂for glldar beginners thaugh parformasica is up wish the experts． Paralial chord wings，alabsider fuselase．span So ins．Quate Gi33日．Price 3／6

SNARK．A Dick Twomey Nordic A， 2 model with ierafolithipe furdage．Span 63 ins．Quote G／469．

Prica \boldsymbol{i}^{\prime}－
AMBASSADOR．Alan Hawlet＇s Champlan winmar ts still＂taps＂for looks and stunts． 2.5 e．c．engime．ypan $35 \frac{1}{2} \mathrm{ims}$ ．Quote $\mathrm{CL} / 457$.

Prica 4／－
UNLIMITED．The unbreakable flying wing modelfor novicus．Dass all the stund（almose by ictell）．Englat $1 \cdot 5-2.5$ ce Span 20 int．Quota $\mathrm{CL} / 369$ ．

COMPER SWIFT．Highwing fying icale pawar with pandulum alerons and rudders．1．3－isc．e． englnas．Span $36 \mathrm{ins}. \mathrm{FSP/464} .\mathrm{Price} \mathrm{3/-}$

SUPER SAINT is winging for Team Racers cuerowhere，since firsi eahing the Davis Trophy． Engina Sc．c．Span 29 ins．CL／46S．Price 4／－

FLIP FLOP．A Waering deslgen In lightor wain for Open Consases－paralles ciord．alab．single tolder．Span 36 Ins－ $0 / 463$ ．Price 4 i－

Then there ar thene models shat you may fancy for a change－
BILL BAILEY－FREE LANCE TRAWLER Elecerically driven scale model 27 Ins．Iont－ideal for Radla Concral．Suitablabaginner．Prica S：－

MENANQ－AIRORIVEN HYOROGLIDER． Your｜cac，deatel and eircrem will drive this modal boak． 171 ins．tons．

Price 3：－
LE MANS TD MIDGET．Super decnil reale modal for 75 c c．c．Mills ar aimilar by Model Make Co－Ed．Dazion．

Price 5／－
DELLOW TYPE SPORTS CAM．AH electric minlature only 64 ins．long－but raal iealo appear． anco－for reymotor，otc．

Price 3／－
JALLOPY． 16 ta．Mydroplana for latent $\frac{1}{}$ e．e． engines．Bulte and tested by Madel Moker suif．

SAILING YACHT－DUTCH AUXILIARY TYPE．for sallor power． 16 ins，long，beam 7 ins． Scale $1 / 12 \mathrm{~h}$ ．

Price 3.6
admiaters batge．Maynificent R／C Naval Pinnace 331 ins．lone．of in．bsam．for diesel 2－2＊e．c．Onj shecesind doeriled 8 －pafeinstruc． elon talder．
price 10 ；－
Also Racing Yaches in all Clases，Can，Workshop Acressaries， 1 th

Boats．Model Cars and
ashar madel plans．（Deiece if not ecquired．）

Order in comfort-at home

Agent For

KEIL KRAFT INTERNATIONAL MERCURY

MODELS
VERON
SKYLEADA
SKYROVA
HALFAX
LAW'S
CELLON
TITANINE
BRITFIX
O'MY
E.D. PRODUCTS MILLS BROS.
ELFIN
FROG
E.T.A.

AMCO

EXPORT
SERVICE
Now avallable for overseas MODEL SHOPS.

WRITE FOR
particulars

Five Siar Reasons why is is to the advantage of Guaranteed. 1. Purchase Tax. All Overseas orgers, includiatomers co use my Manl Order Service :3. Packing. All Ordors ara despatchad ALL Forcos Overiga, Aer Service :-
4. No Dolay. Asaranted to stand passare day of recoupt and ack, aro FREE of Purchase Tax. As a Lleensed Exporter I cir to any part of the World Correct raens of excher cill supaly direca. World,

IF IT'S ADVERTISED
 AND AVAILABLE, 1
 CAN SUPPLY IT

An Opell

Leller 10 all my customers

This year, lam peased to say, has been one of stesdily increasing business. and for your co-operation and confidence in my ief per return, leaving the usual, is has been my polley to get the good there has been a little delay correspondence to be answered will know that this is due to pou who have corresponing pour queriet, You wilk personally to those olved, this is not in asswess. While 1 would ike to for prompt service recoive it all, to please
 written le, as I would want at lealt soll who have written me such nice lecters. possuble, this letter 35 my reply to reading them.
take this leter than fou and enioy reading the swing back so Solid and all trpes The joy in cerearine is ovianced by the swing bick to solsed to riurate in

 is always in stock.

In. theus proving
Ouerseas friends consinu so pour in. kens value for Ordars (rom our Oovers and Mccessorlet reprasent motors atemodellers sro shat British Kist, Mosoryar. As usual, the Americin more than welcome. money in the worde of Briush Kits: their orders are more than weric-Balss high is their prase ofpors the more raw materik 1 mom luppt to say that Wood being an impois, , ou se whse wod is being despatched for oxport. only the finest Solarbe eitive cut essis Woodis gratheins to hase that such from those of you th the forces is iormatian of Clubs and to know shas goed progress has been made is sho formatwan being is goed acsupationst tive authorities, recognise aeromodeling an bent being sent in the quickest
 porsible time. I cannot conclude without roletence to my sere coming in this service abroad. Judelng by the way repeat orders are can tratslay to obtan Is one which has proved more welcom modine products rom ono sourca a complest range of sll the hass modats down clerichl work, applicatont The benefic of this is obvious, as it curthermore. you only recelve leens that 17 , knors in the model for licences, ete. Furthermore, you acked by my 17 years in tho sellers-a knowlet that is back trade.

To One and All, my Seaf and I wish lots of Good fiying in the Now Yazt

REMEMBER All GOODS PURCHASED are both for the Home and EXPORT MARKET

WINGSPAN $13 \frac{1}{2}$ ins. LENGTH $14 \frac{1}{2}$ ins. Powered by Jetex 50 motor.

Make your next model a VOODOO and see for yourself how easy it is to build from a jetex ‘TAILORED' KIT !

- Anyone can build a zeally professional job from the Voodoo 'tailored ' kit.
- The fuselage backbone, formexs, wings, tail, fin, ofc., all key together in a manner that positively ensures accurate, symmetrical as sembly.
- The fuselage halves are ready shaped in thin sheet balea. Just slide them on tho wings as shown here, and cement them to the backbone.
- Voodoo is an all balsa model, thus eliminating the trickry job of tissue covering, and also resulting in a very strong plane.

Canadian Dintributor.-MESSRSS. MMEAIOAN TELASCO LIMITED. 55. WEST 42nd STAEET. NEW YORK IA, NEW YORK All other expore enqulrien chati Hobelims immiteb. b6. WELLINGTON STAEET. WESTT, TORONTO I, CANADA. Kindly mention AEMO.WhonELLER when rephying to adeetisers

Kindly mention iEROWOHEL, LER when replying to adcertisers

" Covers the W'orld of Aeromodelling"

Edirar:

C. 5 RUSHEROOKE

Asslatan! Editor:
H. G. HUNDLEBY

Publle Relations Officer:
D.J.LAIDLAWDICKSON

Publlshed monehly on the 15 th of the previous month by she Propriotors : THE MODEL AERONAUTICAL PRESS LTD.
3B, Clarendon Road, Watford, Herts.
Subscriptlon rate 21/- per annum prapald (Induding Chrisimas Double Number).

Contents

Editorial and Advertisement Offices: 36, CLARENDON ROAD. WATFORD. herts.

A Goud Yenr

LOOKING back, 1952 has been fairly kind to aeromodellers, for the majority of contest dates have produced flyableand in some cases almost unbelievably fine-weather. This onusual toleration on the part of the Clerk of the Weather has been nowhere more noticcable than at the major Rallies, for perfect model flying conditions attended the Northern Heights Gala (as usual!) and the All-Herts. Rally in the South, similar conditions obtaining farther North for the "Yorkshire Evening News" and "Daily Dispatch " Rallies, an unfortunate postponement of the latter meeting being perhaps fortuitous in the long run.

This clemency extended to the Wakefield and Glider Trials at Digby, though the abundance of thermals at this meeting made Team selection more of a chancy affair than usual. Unfortunately, conditions were just the opposite at Fairlop for the Power Team selection, and yet again that arch-enemy of aeromodellers, Wind, spoilt what could otherwise have been a memorable Nationals.

In the International ficld, Great Britain has cause for satisfaction. Our control-line stalwarts again swept the board at the Championships in Belgium, following up with a similar performance at an invitation meeting at Namur plus a World Record gained through the good offices of Mr. P. Wright, British control-line champion for 1952.

Success followed the sending of a team to Switzerland, and 1953 should provide a feast of motored flying should the S.M.A.E. find itself able to stage both the free-fight and control-line Cbampionships. Though not in the recognised Championship programme, the success of the fellows who travelled to Italy at their own expense and won the F.N.A. Cup is deserving of special mention.

Though similar success eluded us in the Wakefeld and Swedish Cup events, Great Britain has no need to fecl disheartened, for our lads showed themselves to be every bit as good as the next. providing Lady Luck proved to be on our side.

A dimmer side of the aeromodelling picture is the increasingly difficult situation relative to suitable flying grounds, a condition now making itself felt all over the country. Kumours of the carly loss of Fairlop Acrodrome to the London folk are not reassuring, for very few spaces are available to the large number of keen modellers in and around the London district. May 1853 see a speedy solution that will ensure the continued use of this ground.

For our part, 1952 has been a year of change and readjustment. and we look forward to the new year with every confidence, and the hope that we shall contimue to please our readers more and more in the coming months. This special issue is perhaps a sign of things to come, though necessarily our enthusiastic hopes must be dictated to some extent by the financial angle !

If 1952 has been good in parts, we trust it is not too much to hope that 1953 will serve us even better, and we close with the sincere wish that each and every acromodeller has better fiying next year, and a Christmas that will be outstanding.

Three Giolds :

Confirmation has been received from the F.A.I. that three British applications for International Records have been ratified. Two go to the credit of John O'Donnell of Whitefield, who set a duration of 4:20 and covered a distance of 1.720 metres with his Giro-glider, thus qualifying for categories in the special Aircraft section.

The other achievement is the speed of $165.708 \mathrm{~km} / \mathrm{h}$. sct up by Peter Wright of St. Albans at Namur last August, capturing the Class 1 control-line speed record.

Chrintman again!

Once more it is our pleasant duty to convey to one and all our "Happy Christmas" wishes, wherever you may be and whatever clime you may enjoy. For us it is the seventeenth occasion on which we've had this opportunity to pass on our blessings for the yuletide season, and we can happily rellect on the many memories from each of those past seasons.

We celebrate by including with this enlarged issue two free plans of models especially designed by popular Vic Smeed and Bill Dean. "Débutante" will be a stablemate for the already favourite "Tomboy" and "Madcap", It caters for the smaller class of engine, and is, with the Rev. F. Callon's excellent photographically illustrated building instructions, destined to be one of the most popular designs ever published. From Bill Jean's board we have a slick, up-to-the-minute revised version of that little rubber job that has started so many successful aeromodelling careers The New A.M. Cabin Monoplane. We know that you'll like both of them.

Congratulations to both of them for again placing Great Britain in the International lists.

The C. Itupert Noure Cover

There will be many among our readers who will sigh with satisfaction at the temporary return of Mr. Rupert Moore's cover painting, which we have alreadyannounced as a special Christmas extravagance re-introduced for this bumper issuc. Writing about the cover, Rupert tells us that the incident he has depicted was one frequently observed in 1917 at the Advanced Training School of the R.F.C. at Doncaster, where the F.E.8. was issued for training in aerial combat. Rupert goes on to say. " My memory of the F.E. 8 is of a very refined and agile little machine with many features of advanced thinking. Rigging wires were very complicated and I have been careful to show these accurately on the painting."
" The F.E.S. was a product of the Royal Aircraft Factory (now called the Royal Aircraft Establishment) at Farnborough. In those days, not only did it design but it also built aircraft, though it was not supposed to. The letters F.E. meant 'Farman Experimental and were so named because those in control wrongly attributed the origin of the ' pusher type ' to Farman. A total of 103 F.F. 8 's were delivered to France during 1916. Though a small number were clear doped all over, with, presumably, bare aluminium nacelle, most were 'camouflaged ' as on the cover painting with one of three colours, ' Nivo ',' P.C. 10 ', or ' Light Earth ?."
.. ' Nivo' was a dark green within a shade of ' Dark Green' of the last war, the 'Light Earth' was not unlike the 'Dark Earth ' of 1040 but with less red and more ochre, and ' P.C. 10 ' was almost a $50 / 50$ mixture of both. Undersurfaces were clear doped, this usually applied to fabric wheel dises but not always. Early dopes were sensitive to damp, and were apt to slacken unless varnished. Not only did this make all planes glossy, but ' clear varnish' varied from a deep transparent mahogany colour to the palest amber, which is colourless when applied."
" Varnish darkens rapidly, making examination of historical aircraft useless until the varnish is removed. Roundels were painted on after varnishing, with pure vermilion, white and ultramarine glossy pigment. Struts and tail hooms were varnished ash, and the four bladed airscrew french polished mahogany."

With that much authoritative information, and the perfect colour rendering so carefully provided by our skilled blockmakers and printers, we shall now expect to see some very accurately decorated F.E.8's on the flying field in 1053 .

Qulet nleaso:

A recent letter from that versatile American Jim Walker touches on a subject that British aeromodellers would do well to seriously consider particularly in view of the many instances where they have fallen foul of local residents and authorities on the question of noise.

To quote Jim: " I wonder how much longer we are going to suffer the noise problem before we all wake up to the importance of muffling this irritating sound. I don't think automobiles would have reached their present popularity if they exhausted directly out of the engine block without even a hood on the automobile-it is a cinch that life in the larger cities would be almost unbearable."
" We have developed a means of silencing that is very satisfactory and costs practically nothing. It does take away some of the power, but even so, with almost total silencing we can fy our models through the complete stunt pattern with ease. (When I say almost complete silence, I mean the sound cannot be heard more than 200 feet away at the maximum.) We would have introduced this sooner, but it seems that the average modeller wants to make as much racket as he can, even though his joy may be short-lived by nosing his flying sites."

Coming from the originator of control-line flying. this opinion is all the more worthy of the urgent attention of all power fliers, for no-one can deny that the noise factor has brought more than its fair share of troubles to the aeromodelling movement.

Thin year-Next year:

Under the present highly favoured method of selecting teams to. represent Great Britain in International contests, the beginning of a season becomes rather too crowded for comfort, for it must be remembered that two Area Eliminators plus a Trials proper must be fitted in well enough ahead of the Finals to give adequate time to the lucky (skilful) top men to make their individual arrangements for overseas travel.

It is proposed therefore to only hold one Area Eliminator plus Trials in 1953, but to cater for 1954 and future seasons by holding a first Area Elim. in the latter end of the previous ycar. In this way contests will be spaced much farther apart, and should give competitors a much better chance
to show their true capabilities-and maybe produce cven more efficient teams than has been possible under the present rushed conditions.

For the 1953 Teams, thereforc, it is proposed to hold an Area Aliminator in April, with the Trials to follow in May. For 1954 requirements the 1st Area Eliminator will take place in Scptember. 1953, the 2nd Elim. in April, 1954, and the Trials again in May of that year.
We favour any system that will ease the pace for those keen modellers who uphold our prestige overseas, for the past method has meant vital contests taking place within a few wecks of each other, giving no time for proper practice.

Another " Control ' Axed

Since the beginning of the last War, power model fliers who wished to enter National contests were obliged to be registered with the S.M.A.E., this requirement being quite a separate obligation to Insurance, though many modellers have found it bard to remember or reconcile this fact.

They-and particularly Area Insurance Officers -will therefore welcome a recent decision by Council to waive this requirement in the future, though naturally proper and full insurance remains an imperative safeguard for all those who favour the engine-powered machinc.

All Ifalsa

All balsa exports, we leam from M.A.T.A. Secretary, are being co-ordinated for monthly returns to the Board of Trade-and have been for a considerable time. What so many traders do not realise, however, is that what goes out has a considerable bearing on what comes in, so that their possibly modest exports will all be of value in helping to swell what is already a formidable export total. Like so many governmental returns these figures are apt to be overlooked or lost in departmental renderings, and the M.A.T.A. are therefore anxious to see that they are offered up in the most readily accepted form. Retailers doing any exports therefore-whether or not they are members of the association-are urged to send in monthly reports to Secretary M.A.T.A., 14 Ladbrooke Drive, Potters lkar, Middx. In so doing they will be helping to ensure a regular supply of good building material for home use.

Gunic ${ }^{*}$ (1/2 Design

We are pleased to announce that this winning A/2 design will be appearing in our next issue. Readers will remember that we originally promised this for our November issue. Unfortunately the drawings were lost in the post between Yugoslavia and this country, which (dare we say it l) upset our plans! Happily a replacement set has been received.

The B.G.44, as the model is named, is one of the cleanest and most efficient glider designs to appear in the last few years. Plans and full size parts will be given in the January issuc and the design will also be available in the Aeromodellcr Plans Service.

THIS IS A ! SCALE REPRODUCTION OF THE FULL-SIZE PLANS WHICH ARE AVAILABLE, PRICE 6/-, POST FREE, FROM_THE AEROMODELLER PLANS SERVICE.

APUSHER model is not everyone's choice, and a scale pusher is one of the most difficult selections it is possible to make. 'The reason for this being the need for so much nose ballast to compensate the engine weight, that wing loading becomes too bigh for reliable flight. But if the model is relatively small, this difficulty is minimised to a great extent, and in choosing the famous F.E.S. and building to a scalle suiting his Mills -75, Vic King has proven that the pusher can be as realistic and reliable an old timer as any could wish to see.

Few can grumble at its 141 ounces for 350 sq. ins. wing area, a far more generous loading than we find on many a conventional scale model, and the hundreds that have been fortunate enough to witness the prototype's flights at Fairlop and thereabouts will verify that here's a model that definitely carries the air of 1914-18 about it.

The full-size aircraft has been magnificently portrayed by artist Rupert Moore on the cover, to give builders as accurate a colour guide as possible, and in "Hangar Doors", Mr. Moore writes further on the subject. The F.E.8. was produced in company with the D.H.2. to combat the "Fokker Scourge" and gave a very good account of itself during its ten months of front-line service. Fokkers were using interruptor gear to synchronise machine guns firing through the airscrew: but with the engine at the rear, such a device was not nocessary, hence the series of pusher "Scouts", before we developed the synchronised gun.

Constraction

Cut the fuselage sides from shect, add formers, cement in engine bearers and cover top and bottom with shect. Insert wire struts then cut outline of cockpit. Wings are perfectly conventional, except
for the brass tube fittings which must be packed to protrude just outside the wing contour.

Unfortunately the tallplane had to be altered slightly from true scale in that it is placed on the model in the inverted position to provide a downward lift. Its construction, like the rudder and fin halves, is perfectly straightforward. Make certain that the pendulum rudder will swing freely, and that movement is limited by the stop and also by the pendulum arm on the fin. Good quality spruce dowel is essential for the booms, which should be glued together and not cemented. It is most important that the brass tube at the end of the boom receives the wire spacing piece smoothly. At the forward ends, the booms are connected to the wings by the tube fittings, and a sccuring elastic band goes over the top wing as shown. Use elastic thread for the righing, build up a dummy machine gun and engine from scrap. colour à la Rupert Moore, add a pilot, and you are ready for trimming.

Bring the C.G. to 60 per cent, wing chord by adding weight in the ballast box. Check the glide as flat and slow, then get used to the awkward position for flicking the engine. After a time this becomes very easy indeed. Have the engine running at three-quarters throttle (8 in. by 4 in . prop) and launch into wind gently. Avoid a right turn, trim if need be for left hand circles. If there is any tendency to hedge-hop, insert washers under the engine bolts nearest the prop-remember, it's a pusher!

To date, the original has made well over 150 fights without major damage and has frequently shown how it can take a vertical bank without losing height, at times it has even shown itself to be thermal-conscious!
 Sicdtzerlasid.

GREAT BRITAIN competed for the first time this year in the World Championship International Power Contest. and was indeed lucky to bring home the magnificent trophy for lest incliviclual performance. But then, if luck is to receive any mention in this account, I should, in fairness to our official team, state that skill (in which our lads excel) fought a losing battle with a constant string of misfortuncs. whilst in marked contrast, team Manager Silvio Lanfranchi seemed hlessed by chance and good fortune.

For your reporter it was a memorable meeting. impressively preceded by crossing the Channel by Silver City air ferry service. Within an hour of arriving at Lympne airport, the family "Golden Flash " was on the road in France headed for the Swiss border and our first opportunity of assessing the standard of "Power duration " on the continent 1 Less than an hour from England to France 1 (The sea crossing and its attendant discomfort is definitely a thing of the past as far as we are concerned. and we thoroughly advise all aeromodellers taking their own transport to the continent to invest a few extra bobs in what is really a novel and invaluable " by air ' service.)

Saturday, September 13 th.

At Dubendorf airfield, which is the centre of Swiss military aviation and the base for countless numbers of Tampires, Mustangs, Moranes and C. 36 's, security was enforced up to M.I. 5 standards. Every hangar door was bolted and barred, and the entire field completely deserted. all for the purpose of the two-day meeting. This scrupulously clean Swiss scene was but one more example of the intense co-operative effort by oo less than eight separate committees which were appointed to organise the meeting.

Arnold Degen, " Oberexperte fur Modellng " of the Swiss Acro Club, upon whom so much of the contest arrangements rested, plied me with lists of who's who. from which I deducted that there were 38 competitors, and no less than 57 individuals with jobs to do, plus 40 Boy Scouts delegated for retricving.

With that kind of organisation what could possibly .go wrong ? Yet something wrong there was, and it

Dubendorf Aerodrome, Switzerland

came to us suddenly as we scanned the list of teams and managers. We were fielding a team one man short of a permissible five!! Hurried confab followed among the British group, and Silvio stated that he had forescen such a happening, and had accordingly brought along a spare job" just in case" 1 That it was Barry Whecler's model and not the next in line (Tony Brook's), smote the conscience of Give English heads, but there it was. Here was a model that conformed to the rules, and could be flown to bring us up to full complement. The job was test flown and a request made for an additional British entry in the name of Whecler, to be proxy flown by the Manager. (Silvio was not exactly unique in being a competitor, for the French Chef d'Equipe also flew to make his country's full complement.) The Organisation authorised the additional entry they said " for the sport". and if we could bring onr number up to full strength, then so much the better. Now there were 39 entries !

And so to the processing. All the brains in the Aero Club and technical types in Swiss acromodelling were lined up with alide rules and scales to give the models a thorough working over. With previous International team experience in Yugoslavia, Sweden and Austria, Monks and Byrd both remarked that for thorough checking this collection of back-room boys should take top honours, and from the slivers of balsa used to make up cross sections, or taped on grammes of ballast weight, it was obvious that things were strict.

Once models were passed, stamped and numberel, the next item on the programme was test flying. Weather was just about right with only a trace of wind so that any.exceptional thermal-free flights of up to $4: 30$ could be contained safely within the field.

Our lads were not altogether content. The altitude change was negligible yet something or other was playing havoc with airdraulic timers, and neither Byrd nor Buskell could get the best tones from their engines in their first-line models. Silvio, who negotiated many of his managerial obligations with singular dexterity, then turned his attention to Wheeler's model, which, by good fortune, was fitted with a clockwork timer. Evon

Described \& photographed by Ron Moulton

that was not running with the exact precision normally associated with clockwork: but son Tony and Papa Silvio examined the works and were soon happily acclimatised to full-length 20 -second engine runs.

With Silvio content. Pete Buskell and Max Bytd working hard to get their best. Ray Monks getting very high on $10-15$ secs. power and happy about his two models, attention turned to the unfortunate Jack North, whose chapter of accidents scemed to be neverending. First misfortune came with an inexplicable change of trim. which shattered the wing of his newest model. Whilst concentrating on the second job, a wayward Dutch model made a power dive into the British group, and poor Jack's model had its fusclage broken in half. Small wonder that Jack was quite ill in the evening and yet still further beset by troublo when his taijplane caught fire in the dormitory. Hy late alternoon, all except the Yugoslavs were checking up on trim, and there was little doubt that the very formidable teams from Italy and Switzerland wero going all out, with 20 -second power runs and early d / t 's. Others were making less spectacular efforts with, like ourselves, shortened power runs.

The Italians, a colourful group ably managed by Ing. Frachetti, were using one type of motor only for all of their ten models. Juring the afternoon their number was reduced to six, but there appeared to be little to choose between the first-line and reserve for they were all haring upwards at a commendable rate with G. 20 Super Tigres revving well into the 13.000 range on tiny 8×4 in props. Bacchi was obviously well in the running for a win. Ilis models were exceptional for climh. glide and construction, and were of the shoulder wing, flatfish fuselage type. With similar layout. but box fuselage, and with the same engine. Roger Maret and Ramscier of the Swiss team were also obviously in the top class for a high climb. Their compatriots, Lauchli and Schnabel flew a quite different type of job with a large area and Swiss made Castor $2-6$ c.c. diesels to get a steady slow climb to medium height. In glide they excelled. As one of our lads remarked, " I've been up and down since that chap

(1) Peter Buxhell and E.D. 2-fo 'sllek stick' tran harat hif by dosendraughts. (4) The best tray to erons the channel, and the onlu icay at faras une are ronrerned. (i) They'll go that'a'ras, Siltio telle the Scout reirierern. (1) Duichmen in mmart irhife oreralla at the procesting fabies. (5) Ramseier of Sivitierland primest him Super Tigre iefth mitrated fuef.

(81) Ifago lopport's bealu-
tifully finished mity had an tifully finisfird mitry had an
wlive-high alosa due to symetol morninh applipdi orer dope. Tos the right is fiepinam fermm manager 4. Sichitemhelm. (12) Kart Barth Hovbort Hange and Barih, Kerbert Lange and
lisuler Nupp of the (ierCunter Nupp of the (Fer
man trimi. The tant iteo mian trinth. The lait ited pete "t Helira" diesel. Dforerl at left has a papler marhé fuxplagn. (\{ij) A terhonical highlight arnst Mfar Ifyrd'a pertidulert controlifed " Shpracraper" . At the angie shoirn here, the jemifulujt arluales dosevt--lemator to limit the elimb angle and prepiont a loop. (1f) The preas dn arlion Fmylight flanh is atopped in this case bH Namrice flefry's phofograph of sicins Roger . Iafet relerving his 'A hul farourite' model for lia fafal semone fight. Gne of the fastest rlimider's, this mortel usery o Super-Tigre (i.to.

launched, and he's still on the glide 1" From that it was apparent that the Swiss, with two good climbers and two good gliders, were the people to be watched.

In the Austrian group we found evidence of " toothpick " influence in two huge modele with long fusclages. boasting large fornard fins, but they seemed to be dogged by motor troubles. The French too, were not without misfortune, for during the course of test dights, two of their entries spun-in with wing flutter, and a third repeated this hair-raising performance during the contest.

If lacking in performance. the German entries were not to bediscounted by any means. and if finish counted at all. Hugo Leppert's red and white pylon job would certainly take first place for Concours d'Elegance. Belgian reps., Lippens and Ficrber, also hand a pristine pair of models, each with that "Cow-horn-hedral which characterises the " Flanders Flier " type designs.

Retiring to the dormitory for repairs the British rcam was now more confdent and tach happy in his own way, though still sceptical of timer troubic. What could be expected of the motrow? "Tests had shown us to be in lise with the best that Italy and Switgerland could field, and if the big day was to be at all windy. it might just give us the edge over the others. One thing wo noticed was that less than 50% of the entries were pylon models, and the majority of the remainder had the wing mounted very close to the thrust line. Might this be an indication of a new European trend?
At that eveniog's dinner, which included the ofticial opening of this "Championship of the World" by Hers Director Landolt, President of the town of Zurich, a strangely accurate forecast was made by Herr Director Hermann, who welcorned the teams in their own languages and said that if Silvio won, then he would take the liberty of putting a Swiss llag on the trophy.

Sunday, 1 4th September, 5.30 a.m.

Not yct light enough to see quite who, but someone was making sufficient noise in the yard of Hotel Fecht to remind us that it was time to get out of bed sinartly and hic down to the airfield for early breakfast and the scheduled six occlock start of the first round. Within minutes it became light enough to observe $5 / 10 \mathrm{ths}$ cloud, no wind whatsoever, the grass very wet and temperature quite low. By the time the first man got away soon after seven o'clock, these conditions changed to a slight breeze. with warm sun and definite evidenco of lift, so all hope of a thermal-free contest was abandoned. Reason for the delay could only have been the late arrival of the Yugoslavs, with whom creryone had the greatest sympathy, for they had to get straight into the contest withont tests.
B. Iapierre, Freach team manager, was first away, and though be showed that thermals were about, he returned oniy 1: 43. Pete Buskell followed soon after, and missed the lift altogether but managed his usual average of $3: 12$; then in quick succession. Ray Monks and Silvio (Wheeler) caught a bump apiece to bring us on the leader board for the first round. Timer trouble dogged North and Byrd. so much that Max, in desperation (which earned him the nickname "Frantic') removed the timers from each of his models to sort out which might possibly be best! He was last man away in this round; but scored almost the same timo as lapierre, thougla from a pitifully short power nun.

The Italians were well on form. Little Franchetti had his boys keyed up to high pitcl, and oach time a
model went off, grass was flung into the air for direction, and one and all howled advice in vain effort, for onco the Super Tigre was reeling off 13.000 r.p.m. nothing else could possibly be heard! Ifowever, it was big Bragaglia with his "hatchet" model who caught the lift, and fa wourite lacchi had to be content with $3: 15$. A sizaling climb in a perfect spiral to easily best height of the round announced that Roger Maret was away: and it proved to be a maximum. I.ippens too had found lift, and the close of the round found Great Britain in third and fifth places, in each case with 1.5 c.c. models (see photo 8).

With a brief pause between rounds, second flights began soon after 8 a.m., and by that time the sun was well up, the sky clearing fast, white local church bells added tone to a very peaceful scene.

Thermals were popping off the drying field, the runway and tarmac to such an extent that other less desirable features appeared in the form of large areas of downdraught. Soon it became a guestion of having to check ground run to sort out the timer, then wait in readiness for any evidence of a thermal. Silvio was lucky with what amounted to a maximum, yet only a fow minutes after his Hight. Max byrd's model was literally sucked down out of the sky for only 6 an seconds.

This second round was the decider of the contest. Hot favourite, Roger Maret, went up like a rocket and spun in at the same rate to record only 17 seconds: Bragaglia flicked his Tigre so hard that he snapped both engine bearers: Pete Buskell caught disheartening downdraught to be downed in 1:47 from a certain " max." height, and Lederer of Austria almost made a maximum on power run only when both timer and d / t refused to function. The motor he was using. happened to be on loan from Kay Monks I

Thanks to the thermals, the Swiss slow climb. good glide entries were doing exceedingly well, and Kermpens' low aspect ratio " Powavan "'type climbed straight and high for a maximum. Both Monks and North missed thermal and downdraught to record "average " times of around three minutes. There were mine thermalassisted hights, thirteen affected by downdraughts, ten " average" performances and the remainder subject to crashes. The order was now :-

1.	Whasler. E .	G. Brieain	507.6 secs
2.	Lantien H	Germany	431.5
3.	Kempen, C.	Holland	4476
4.	Lauchli, H.	Switzerland	4458
5.	Barth, K.	Germany	4446
6.	Caseiglione, S.	Itealy	4352

A good assortment, with the Germans contradicting all forecasts based on their previous evening's showing. Monks was now down to loth, and if lay press opinion wis to count, the number of flash photos taken of Kempen and his "Kemphaan" (" Fighting Cock "') made him odds-on favourite for the next round, a prospect upon which manager J. van Hattum did not speculate.

At this stage, genial Herr Professor Dr. J. Fritschi, President of the organisation, came around to announce to each team that a strong wind was on its way. and everyone agreed an immediate start of the final round. Anticipating drift, Tony Lanfranchi was despatehed to the boundary to retrieve Whecler's model, which was flown as soon as possible. Already in the lead, a maximum would make a British victory certain, and the tension of this possibility was affecting the entire Britisle contingent with the commendable exception of Silvio.

A quick engine check run, the timekeepers readied, and the little red, white and black model was sent away

(15) . 14 procpsing, Ham Dejace, dentined to ba dall man, explaine the poind of the forimard fin on his footh-pick entry. 10. Maurica Dufey of "Stelsa fero Hemae". Mancice rerorded the trieeting acilh athll and cire camera, and ahoicad the flmis to tho Dritiuh tenm before they left Zurirh. (16) Alcay for the third time, to gain a econd placro, fietine tamehil tripa his fimer before release. Noto obeence of fin. (17) Cario Bergamashitures us at the right angit, uchilat team manager Nino Frucheth eherten the timor rwn. (18) French equipe, Bowrthowmiesx: Thmo. Lapierra, tiuidici and Myme. Guldict, Reanesnon, faplerse and the indefalimabio Jacquen Aromenet.

(10) Ilefre Lauchil chatm tcith Gerhard Schmid last unir'a arinner, oxpt than " Kompiti ichirh Schmid devigned amd Lanchli flem ta merond plana this Urar. (20) Juffh Kifmjen mhoirs plan and nfde flerations of hia irupresaire * Fighting Cock" dealgin. Mostci unra Hutch "'ryphoon " dirmel.

(21) Inrgan Prolmaka, buly man ta makif fero " magimums ", lealds his turn at the Y'ugonlevian tahe-off point. Hemanmfacturpi a 1.j c.e. dinc falra diesel, knoich an tha " Oacar ". (22) Splling hin Super Tigre for climbinf atifiude, la Cavilglioni of Itaty, erho placed third. Hil comepatriol in caught in the act of throicirig groses for rend dirpetion. (23) Forunard wide aren ras a major painl 10 be obnerced among continesital deaigns. Lederar of Auniria has the fin abore hin ecing, Hragaglia of IIaly, facourf an underrudier. The latter icnis an the leader buard for the first round. but had the misforiumc to breat, hia engine hearira.
for a territic climb on 10-8 seconds power run. Within seconds it was obviously in the middle of a thermal, and with due regard to the drift, all eyes were strained and hopes raised for 300 seconds. We need not have worried. The magnificent Omega stop-watches (returned from use at the Olympics, for which they were specially made) were well over that figure when clicked off as the model disappeared into the village. Our jubilation was heard for the length of tho rusway, for Whecler's score was unbeatable, and with almost evergone else yet to fly, the highest any could hope for was a second place.

Minutes later. Ray Monks caught another thermal and made over 5 minutes, but the gremlins were against us now, for his flight was ruled as an " attempt" after a motor run of 21 secs. A great pity this, as his placing would have been sixth, some compensation for the string of downdraughts which brought Peter Buskell down again for a 1:53 sink that was heartbreaking to watch after so impressive a climb. Max Hyrd recled off a maximum which helped a lot, but Jack North was thoroughly off his stride and his model spun in for no apparent reason. Just as we were collecting the downdraughts, so others were fortunate with thermal aid. Of the leading six from the second round, only the two Germans and Ch. Kempen missed the lift in this very chancy air. Thirteen maximums were made in this final round, representing 38% of the flights made. Two other flights were near maximums, thirteen were affected by downdraught, leaving only six flights as unaffected averages.

What can we deduce from the results? Whecler's model went as though on rails. It hat a good clockwork timer and shut-off valve to get ultimate height with as near to twenty seconds power run as possible, and it is a real thermal hooker. The engine is an Elfin 1.49 c.c. More impressive perhaps was the second place winner, a low wing design known as the " Komet " by Gerhard Schmid of the Brown Boveri Club, which won first place last year. This time it was clubmate Lauchli's replica, fitted with a Swiss Castor 25 c.c. diesel and reliable clockwork timer which flew so well. Then in third place, a model based on the "Super Phoenix" using a Super Tigre 25 glowplug engine (which to the British lads, was the surprise power unit of the day). So pylons were first and third, fifth and sixth. The shoulder wing entrics gained fourth and ninth; but that second place with a low wing bears thinking about. $I f$ it is to be our turn to arrange this World Championship in 1953. and early murning flights are adhered to, I have little doubt that it will agoin feature on the leader board by virtuo of ity exceptional glide.

Anti-climax follors to a certain extent after each of these major events; especially when the contest is finished and the field cleared by 11 o clock in the morning. We had plenty to think about, with the unexpected happening and a proxy flown model placing first. Hut even that was forgoten as we enjoyed a coach tour of the scenery around Zurich, a succession of meals to tax our internal capacities, and finally, the dinner and prizegiving.

As a pointer to overscas readers. this win by a proxy fown model could very well be repeated next year, for we have a vast store of experienced flicra to draw upon for proxy duties.

We have no doubt that this contest in 1953 will be as memorable an event as the Wakefield in 1049 at Cranfield, which set the standard for organieation of International contests.

Model IE oc

A diversion from aeromodelling; but neve concerned with models that go into the alr wit article is based on material sent to us by ou in Los Angeles. Two major snags would b need for a flying ground at least 100 miles fror

T() all followers of Willy Ley, Arthur Clarke, and to all other interplanetary enthusiasts the unknown quantities of space travel are matters of great interest, and acromodellers being what they are, we are sure that the items revealed on these pages will capture the attention of all and sundry.

What is seen here, represents the state of progress eighteen months ago. Current experiments and their results are not known; but the reader might well deduce that the efforts of the American rocket development societies has proceeded at a pace which is only rivalled by the speed of their amazing products.

Two Rocket clubs exist in Los Angeles, California. The Pacific Rocket Society operates liquid-fuclled rockets, and the Rocket Reaction Society use solid fucl. They share the same launching site, and the inter-change of information in the form of published test reports, enables all astronautic enthusiasts to keep abreast of latest developments. To a large extent, members are employees of the large aircraft plants situated in the Los Angeles area. They all have a keen interest in interplanctary travel, and their experience in aircraft construction stands them in great stead when it comes to making a new rocket. Launching cquipment as well as the rockets are designed and built by members, each rocket costing between $\$ 20$ and $\mathbb{S} 30$ to make.

On the day when these photographs were taken, 100 miles from Los Angeles in the wilderness of the Mojave desert, six rockets were fired. Three in the morning were liquid propelled, three in the afternoon were from the solicl fuel club, and the peak altitude achieved was close to 20.000 ft . We take the liberty of exiracting the following from a Pacific Rocket Society report which was issued after the event :-

Hocket Details

The two single stage rockets, designated X1) $\mathrm{X}-21$ and XIDF2., were of the same basic design originated by E. G. liwing and further developed by J. Nuding, each having 4 in . diancter oxygen tanks of about 10 lb . and 8 lb . capacities re-

theless a subject great effect, this correspondent expense and the elvilisation!

spectively and a $2-5 \mathrm{in}$. diameter engine with a cast-in fuel charge of ceresin wax loaded with carbon black and organic dye stuff. The charges were stabilized and macie more resistant to crosion by ramming the chambers full of cotton prior to pouring the motten wax. The engine of the XDEr-2』 was 20 in . long and carried 2.5 lb . of fuel, and the engine of the XDF-22 was 13 in . long and carried $1-6 \mathrm{lb}$. of fuel. The foel charges were designed and installed by F. V. Sawyer. The two rockets were fabricated by R. W. MacCarthy, who also designed the recovery (parachute) installation for the XDF-22.

Flight histories of the two rockets are so similar that they may be described as one. At an indicated oxygen pressure of 250 p.s.i. occurring close to 6 minutes after the tank was sealed, the ignition circuit was closed. The engine came up to full thrust immediately and the rocket took off under strong acceleration, suggesting that maximum design thrust was being developed. The take-off was smooth and stable but the staccato roar of the engine indicated pulsating or resonant combustion. Within a few seconds before burnout as the vehicle approached maximum velocity the tail fins were observed to break away, destahilizing the rocket and causing it to fly into a fit of violent powered gyrations during which the nose was broken off in one case (XIF--21) and ejected in the other (XDF-22). The velocity was too great for successful parachute deployment, and in consequence the exhausted and desinbilized rocket fell to the ground in a flat spin. However, the nose cone of the XDF-22 descended safely and
the altitude recorder it carried showed that separation had occurred at a height of approximately $4,000 \mathrm{ft}$.

The XDF-2: Two Ninge Itocket

The primary stage of this rocket was very similar in design and configuration to the $\times 11^{-21}$ and XIDF-22 units, having an oxygen capacity of 10 lb . However, the 2.5 in . diameter engine was shorter and carried a cast-in fuel charge of 2 lb . of Thickol symthetic rubber, which has proven to be the most satisfactory fuel for this type of solidliquid propellant design. The synthetic rubber provides a fucl of high density, high fuel value, and great cohesiveness and, when cast in place, is a good thermal insulator for the chamber walls.

Booster rocket was a solid propellent unit $\mathbf{2} \cdot \mathrm{in}$. in diameter and 4 ft , long. The degign was based on the "micro-Grain" puwder rockets developed by members of the Reaction Research Society.

The peak altitude recorder indicated that the rocket attained a maximum height very close to 20,000 it.

A special timing device performed as designed on the descent, the nose cone of the rocket, containing the main parachute, two recording altimeters and its own parachute was blown of without damage at something under $5,000 \mathrm{ft}$. altitude and landed only a few hundred feet from the launching site.

The rocket was completely undamaged, needing only to be reloaded to be ready for another firing.

On ils uay up at extreme teft, is Hoeket XDF-22, uchich reached a haight of leyond $4,000 \mathrm{ft}$. Smohe in generated on the smog down to asataf in refriering. Hopkef descents by parackuete. Mght: The hmorily proterted conirol bane. Top, left : Inading a rocket inten the launehing rasmp, po eang. clun't droy dt! Top, might: Close up of a rocket motar shotes that it it mark than the arerage aeramodeller monta care to fockle.

TNE provisional tables published here are based on the S.M.A.E. contest programme completed to date, and include all the main events in each class. lkesults of the various international events, the Area Championships and the United Kingdom Challenge match, together with one outstanding open National event in both power and glider have still to be added in compiling the final tables, which will be published in our February issue.

There are several gool reasons for publishing the average tables in two parts. In the first place the provisional tables summarisc individual performances in the main programme of open events almost as soon as the season is over. Then it gives the opportanity for a full check before any further outstanding figures are added.

Compiling averages is quite a frightening task. Starting with the first glider event of the year, the " Hilcher Cup." some four hundred names appear on the full list, and logically each of these names should be catalngued and traced throughout the rest of the season. The fact that a fair proportion of these names do not appear again, whilst still others come forward to increase the running total, means that such a comprehensive system cannot be adopted in practice. As a result, possibly several names whose performances qualify for inclusion in the table are omitted. This we do our best to avoid. but the ord omission or two is unavoidable.

AEROMODELLING TYPES.-
"Our Friend, the Farmer."

Hefore discussing the tables themselves, let us get some idea of what " average flight " time over a whole season really means. In nearly every caso it is lower than the true potential performance of the model, and there are a number of good reasons why it is so. In the first place some of the possible flights have not been taken (due to the model being lost or damaged at an early stage in that particular contest). Some nights may also have been timed out of sight; here the moriel has certainly flown longer than the official time recorded. A single mistake in a contest, resulting in a poor flight, can make all the difference to the season's overall average.

Avorage figures, therefore, are mone truly an indication of consistency rather than actual performance at any particular time. Take any individual ayer in the top ten in any contest and you would be fairly safe in betting that, given reasonable luck and conditions, his three-flight average on that occasion will be better than his overall contest average by anything up to one minute. With this fact in mind we are in complete disagreement with our contemporary journal which recently implied that the 1952 British Wakefield team had not the potential performance to win the event. A season's overall results are a far more arduous test than the results of a single contest, where luck can play such an important part. The figures speak for themselves in the table. If a man does worsc in any one contest than his overall average performance, then he has either paid the price for making a mistake on that day, or he has just been right out of luck.

Rubber

Since we have brought in the question of Wakefield models, let us start with the Kubber Averages Table. As in previous years it is this competition class which has again produced the closest and more consistont competition. Most of the 1951 names are right there in the top of tho list, too, although shuffled around somewhat this year.

Ron Warzing, seventh in averages in 1950, and fourth last year, now climbs into top place. In achieving this be has deserted the " Zombie" design and fown geared models exclusively this year. The result has been that his contest average has jumped to exactly the four minute mark.

PROVISIONAL RUPEER CONTEST AYERAGES
（Gamage，Weston，Gutteridge，Trials，Nationali，Farrow，Flight）

Position	Nama	Club	Conteses	Flight	Grand Total mins．：sees．	Comp Placings				Averape Flighe mls．：sect．
						1	2	3	Firat 10	
1	R．H．WARRING	Zombles	5	14	55：55		1	1	4	4：08
2	N．G．MARCUS	Craydon	4	12	$46: 27$			1	3	1：52
3	R 日．CHESTERTON	Northern Helghts	4	12	42：05					$3: 31$
4	A．SENNETT	Whizefield	7	20	67：41				3	3：23
5	E．W．EVANS	Norshampton	4	12	39：51					$3: 19$
6	d．GORHAM	｜pswleth	6	17	55：52		1		2	3117
7	J．NORTH	Croydon	6	18	57：44	1			1	1：12
8	H．J．KNIGHT	Kontish Nomads	4	12	38：27					3：12
9	H．TUABS	Leeds	4	12	$36: 10$					3：01
10	J．L．PITCHER	Croydon	S	15	44 ： 40			1		2：5\％
11	R．COPLAND	Northern Helghes	6	17	50：49				2	2：59
12	J．ROYLE	Liteleover	6	17	50：19	I			3	2：58
13	E．BENNETT	Croydon	6	18	52：01		1		1	2：53
14	A．ALLBONE	Graydon	4	12	34：36			1	1	2：53
15	B．HAISMAN	Whisefield	4	12	34： 20					2：53
16	R．ATKINSON	loswich	5	14	3日： 02			1	1	$2: 43$
17	1．O＇DONNELL	Whleefield	7	20	54 ： 06	1	1	1	3	2：42

Qualification：minimum offour conteltsentered．

Yet he has placed no higher than sccond in a National event．Last ycar＇s leading man，Juhnny Gorham（who also achieved his 1951 success with a geared design）has not had such a gooll year and slips back to sixth place．

In second place comes all－rounder Norman Marcus．Last year power models and gliders gave him his main contest successes，but it seems that however good you are you just cannot maintain a top place in all three．Third place sees a very welcome return to the top of Roy Chesterton，now with the Northern Heights club，and who can almost certainly be relied upon to improve next year．Bennett of Whiteficld，by entering all the possible rubber contests throughout the year and maintaining an average of $3: 23$ is a welcome new－ comer to the list．（What Ipswich achicved in the contest field last year，Whitefield have done this，with Bennett also placing well up in the power averages and John O＇Donnell achieving the ＂impossible＂double of winning both rubber and glider events at the Nationals，as well as gaining a place in the Wakefield tcam．）

Ted Evans，flying in only four major contests， has this year achicved an overall average more consistent with his undoubted abilities．In pre－ vious years，outstanding performances in some events have been offset by bad luck in others．His ＂three year record＂reads：1950，fifth（av． $3: 03$ ）； 1951，eleventh（av． $2: 20$ ）：1952．fifth（av．3：19）． The top ten，it is interesting to note，all had average flight figures of over three minutes．

Glider

The 1952 glider contests table comprises an almost completely new list of names！Top glider flycr，without a doubt was W．Jiarrance of the West Yorks club－a 4：17 overall average being way ahead of the next man，＇51 A2 team member Mike Thomas．（IFarrance was not listed last year， only his brother．）Mike Thomas considerably improved on his 1951 performance，as did J ． Iamble who climbed from eighth to fourth place． B．Faulkner of Cheallie apppears in the list for the first time and Loughbornugh College is again well represented by fifth and sixth places．

PROVISIONAL GLIDER CONTEST AVERAGES
（Pileher，S．M．A．E．，K．是 M．A．A．，A2 Trialı，C．M．A．Cup．Thurston）

Qumlification；minimum ol thres consests menterd．

PROVISIONAL POWER DURATION AVERAGES
(Halfax, Astral, Hamley, Keil, Power Triala, Shalley)

Qualiflcation : minimum of chrce contanti antorad.

Probably the most significant fact about the 1952 Glider Average Table, apart from the almost complete re-arrangement of names, is the overall higher average. Right down to eleventh place the average is over three minutes per fight, while last year we had only to go down to fourth place to reach this limit. In other words, more than in rubber or power, contest llights just have to be higher to place anywherc.- Glider contests are so popular that there are always literally dozens of comparatively unknown flyers to top a good '5l average performance. Take the " Pilcher Cup', for example. A three-flight 12 minute aggregate is pretty good in any contest: in the "Pilcher" that would have placed you 55th! At the A2 Trials, unless you did three " maximums " you just did not make the team!

The lact that winning glider times are so high and the ausrage individual performances somewhat lower than rubber, by comparison, points to the fact that the luck element is greater with this class of model. Hence the inconsistency of so many of the experts. Winner of the "K. \& M.A.A." Cup with an aggregate of $13: 29, \mathrm{H}$. O'Donnell did not place in the first ten in any of the remaining four contests he flew in. All the more credit to the top men for maintaining such high times.

Plower

The Power Duration results are, on the whole, rather disappointing, and this type of contest did not seem to enjoy the populanty it has had during recent years. The fact that a proportion of the contests were decided on a ratio basis and the others on flight duration times added to the difficulties of analysis. In compiling the tables we took actual Hight times in each event, which secmed the fairest overall method. Judging by the results \rightarrow only three people topping the three minute flight average - we would say that this is the easiest class of competition to break in to if any would-be competition fiyer has ambitions in the " pothunting " direction. However, again the luck element seems quite high and the final list of names is considerably changed from 1951.

Wyatt and Gorham both maintain good places in the overall results, but with greatly reduced contest averages. Other top men of ' 51 have slipped right out of the picture. A. Brooks of Grange has probably been the most consistent power flyer in 1952, aithougl2 pushed into second place by Perkins of Croydon with his three-contest flight average of $3: 39$.

How have the Areas fared? Once again, as far as gliders are concerned, top performances belong almost exclusively to the North and Midlands. It was the same last year. Whilst possessing many excellent individual glider flyers, London and the Southern areas have never really got a look-in in glider results during the past two years. Rubber cvens this up, for fifty per cent. of the top men listed come from the London area. Power is rather more open, although once again the strength of the Croydon club is apparent, with first, fourth and twelve places.

AEROMODESLING TYPES.-
" The Wayward Spectator.'

ENGINE ANALYSIS No. 5 (New Series)

By Ron Warring
THE MARK 11
OLITRR TIGER

THE new Oliver 25 c.c. aero-motor is a most impressive power plant. It is, in fact, a model aircraft version of a famous British model car engine. What the Dooling is to speed fans in the $5 \mathrm{c} . \mathrm{c}$. and 10 c.c. class, the Oliver is in the smaller class. It has all the characteristics of a racing enginc. It " Explodes" into life on starting and the distinctive crackle of the exhaust is akin to that normally associated with McCoys and Doolings rather than a small capacity diesel.
Truly the Oliver has been designed and built by model engineers, and highly competent model engineers at that. Workmanship and finish is first class, and the whole job gives one a feeling of here is a power plant produced by someone who really knows his job.
Starting was particularly easj. Procedure adopted was generous choking with the compression slackened off somewhat and a smart flick of the propeller. Iland starting was used on all test runs, even with the smallest sizes of propeller.
and was accomplished with the minimum of trouble in cach case. The Oliver bursts into rough running which then settles into high speed bursts with " missing " when the compression is increased again until smooth running is obtained. Both the compression setting and the needle valve adjustment were delightfully non-critical.

The Oliver ran smoothly and stcadily at all speeds tested. It was just as happy at 8,000 r.p.m. as batting round at $14,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The controls. however, come in for a certain amount of criticism. The contra-piston is a tight fit in the cylinder and the usual tommy bar adjusting lever is close to the cylinder head. The top of the cylinder itself gets hot quite quickly after starting and so adjustment of the compression can be difficult and uncomfortable. And when there is a propeller spinning round at some fantastic revs just an inch or so away, caution is the watchword! It would be better, in fact, if the compression control lever was angled upwards, V-fashion, as in some other motors, so that it could be grasped more readily.

OLIVER TIGER Mk. H

Displacement, 2.5 c.c. (0.150 cu . in.). Bore, -550 in.
Stroke, -625 in.
Bore/stroke ratio, 0.88.
Bare weight, $6 \frac{1}{8}$ ounces (less tank and propeller).
Mounting-beam, 存 in $\times 1$ it in.
Material Specification
Crankcase, LAC.113.B.
Cylinder liner, EN. 8 steel.
Cylinder jacket integral head). aluminium alloy.
Piston, 'Uniflow ', cast iron.
Contra piston, cast iron.

Manufacturers

J. A. Ollver (Engineering). 136, Radford Road, Nottingham. Retail price : f6, 10s.0d.

The choke tube (crankshaft rotary valve) is screwed into the crankcase casting and can be slackened off slightly to angle the needle valve back away from the propeller disc-another wise precaution. Before the writer realised this, and using the engine as supphed with the needle valve mounted on the left hand side of the engine, he had drawn blook on the protruding end of the needle valve in flicking the propeller over. The needle valve control is much too near the propeller disc for comfortable handling unless angled back and it is doublful that the control could be reassembled on the (normal) right land side and still be angled back far enough by twisting the choke tube without danger of stripping the threads. A small point, perhaps, but this is a noisy, powerful motor which literally warns people to keep their fingers away from the propeller disc.

Torque figures achieved on test were higher than those of engines of similar size so far handled in this new series, and the main graph summarises power output characteristics over a wide range of speeds. These figures should be comparable with data published in the previous Aeromodeller series.

Fiven better results might be achieved with an Oliver run in for a longer period. There was still a slight trace of stiffness in the bore after a running-in time of over one hour, but the resulting peak 13.H.P. determined in excess of $0 \cdot 3$ must rate the Oliver as a very powerful motor for its sizeperhaps the most powerful in its class.

Being a racing engine its main appeal will, undoubtedly, be to the control line speed fan. Ilere, no doubt, the propeller speed figures will be of interest. All the tests were made on a standard fuel-Mercury No. S. Aetual propeller test figures have been related in the form of a graph showing the speeds relative to a different range of propeller diameters and pitches. "These graphs must be regarded as approximate and a selection of actual test figures are given for comparison. The graph should, however, be a guide for control line speed design.

From the tests one would anticipate a maximum speed of somewhat in excess of $90 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with a 6 or 7 inch propeller, diameter being trimmed for the motor to run at peak r.p.m. in the air, which is in the region of 14,000 . Actually, in practice, these figures could probably be bettered, especially using a different fuel with added amyl nitrate, or even by giving a longer running-in period. The figures given are the minimum that could be expected. Personally, we would say that the Oliver is a potential $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. plus engine.

The makers recommend a "doped" fucl for normal operation, consisting of Mills diesel fuel: ether in the ratio $2: 1$, plus 3 per cent. annyl nitrate. On test we found this fuel gave more critical adjustment for smooth rumning. with a

Full Size

Taken apart. The Olleer Tiger Mk. II rrerale a rery high stondard of coorkmanship. With the crankshaft mounted on tiro ball-maren. thin exgine enmer trell urithin the racing clany Concesulans bare twen mude in orprald iceiphd for inrreanoat performaser
the end of the crankshaft. To accommodate a pitch of below 4 inches either the stub shaft must be shortened or extra packing washers used. The shaft itself, $\frac{1}{3}$ in., is of generous diameter and certainly robust enough. Incidentally, with the length of stub shaft
definite tendency to hunt at speeds below 10,000 r.p.m. With the same propeller, in fact, speeds tended to be lower with doped fuel below this mark, but some seven to ten per cent. higher above.
liuel consumption was somewhat on the high side, as was only to be expected on a racing engine, but not exorbitantly so. No attempts were made in this casc to measure actual consumption, but the makers quote a running time of 2 mins .12 secs. per 15 c.c. of fuel at 14,000 r.p.m. This data should interest team race enthusiasts. For free flight we, personally, would favour a 8×4 propeller, although this would be operating the motor at below peak power. 'To make full use of the power available something like a 9×2 or 8×3 propeller would be called for.

Thinking of free light use, a criticism can be levelled against the use of an alloy stub propeller shaft screwing on to the crankshaft. Maybe this is purely a personal preference but the writer has always preferred the smailer hole and simpler fixing resulting from locking the propeller directly on to
provided, 6 in . pitch is the
maximum safe thickness of propeller which can be accommodated without cutting back the propeller hub itself. Use of the stub shaft calls for a $\frac{8}{8}$ in. diameter clearance hole through the propeller.

Of the main constructional features of interest. the crankcase is cast in LAC. 113 B alloy. whilst the cylinder liner is EN. 8 stecl in an aluminium alloy cylinder casing. The assembly is held by four screws from the top of the cylinder casing down into the crankcase. Incidentally, the fit of the cylinder liner in its casing is as good as the pistoncylinder fit on many engines. The hold-clown screws have a slight tendency to loosen up after prolonged running and need re-tightening periodically.

Summarising we would rate the Oliver an excellent engine for the competition-minded enthusiast who is after top performance and does not mind paying the high initial price for a power plant which should give him long and faithful scrvice. Being individually made and tested, consistency is more or less automatically gharanterd.

PROPELLER TESTS

10×4	\ldots	8.650 r.p.m.
10×3	\ldots	9.800 r.p.m.
9×6	\ldots	8.450 r.p.m.
9×5	\ldots	9.400 r.m.m.
9×3	\ldots	11,400 r.p.m.
8×6	$\ldots 1$	9.950 r.p.m.
8×4		12.200 r.p......
7×6	11.800 r.p.m.	
7×4		13.750 r.p.m.

Test prapellers used, carved wood typa, constant foomairic olteh, nor. mal outline, parallel blades with squarad elps.

Recommended propelleri:
Frea filghe: 9×4 or 9×3.
Cansral line speed: 63 or 7 in. plich (diamaser trimmed for operatonal r.g.m. (atatic) of around 12.500 r.p.m.).

ghe NEW A.M. CABIN DURATION

BY BILL DEAN

BACK in 1941, one of the writers' first magazine designs - the " A.M. Cabin Duration " - ap. peared in the August issue of the Aeromoveller. Its neat semi-scale appearance soon made it one of the most popular models in the A.P.S. range and over the years many thousands have been built and flown. Looking over the plans recently, we decided to simplify and generally clean up the design in order to bring it into line with present day constructional trends. The result is this completely new version of an old favourite-the "NEW A.M. CABIN DURATION".

Simple stage-by-stage instractions are to be found on the next two pages. Before you start
construction, let's pass straight on to flying hints.
Check glide first-adding or taking off nose weight until a stall free flight path results. Adjust the wing trim tab to give a gentle right turn. When satisfied with the glide, wind op 125 times (clockwise) and launch the model into wind from shoulder height. If the model shows a tendency to spin in either direction, check carefully for warps as these are usually the cause of erratic flight. Gradually work up to fall tarns (about 350), correcting any tendency to stall by increasing the downthrust. Average duration when fully wound is about balf a minute, but longer flights are possible in thermal conditions.

Heloic, Inft, tha modirl wneorared, and right, feady to fiy, Plastic prop and tcheels simplify construction.

Follow this simple Stage-

1 I Begin by cutting out all the parts. tracing or pin-pricking the patterns on to $1 / 16 \mathrm{in}$. and $\frac{1}{\$} \mathrm{in}$. sheet grain along longest dimensions. Chonse soft sheet for the tailplane and fins-to keep the tail light. I3uild up formers 2. 4. 5 and 6 flat on the plan. Select good medium-hard strip for the wings and fuselage. 13end the undercarriage, prop shaft (hook end) and tailskid from 20 gauge wire. Protect the plan with greaseprosf paper

2 Wing construction is conventional-an upper spar being featured to prevent tissue sag. In the final version it was decided to add all additional rib to each wing panel (as on plan). Tho photos ($3-5$) show an earlier wing panel with six instead of soven ribs, but the construction is similar. Pin LEFT L.E., 'T.F. and W:3 pieces to plan-then cement the tip pi.ces (W4WG) to them.
is Cement Wi dihedral braces to L.E. and T.E. then add ribs (A, B and C). tilting the rout il) with the aid of the angle template (W) to allow for the dihedral. Note the use of pins to hold the ribs vertically in position. Cement the W2 dihedral brac s to either side of the upper spar and slot the latter into the rib notches.

- When dry, unpin wing panel from plan and pack up tip 2$\}$ in.-checking with a celluloid sfuare that the L. E. still lines up with the plan. Secure left panel to plan with pins and start construction of RIGHT panel by cementing L.E. and T.E. pieces to W1 dihedral braces.
in From this point the construction is the same as for the left pancl-the tip pieces, ribs and upper spar being added in that order.

6 When quite dry, unpin the wing from the plan and trim away the surplus T.E. portions at tips (shown doted on plan). Carefully sand down the tips from $\frac{1}{1} \mathrm{in}$. at the L .1 F . $\mathrm{to} 3 / 32$ in. at the $\mathrm{T} . \mathrm{F}$. , then sliape the outlines to the indicated sections with a sharp razor blade and sandpaper.

7 Shout sides simplify the fusclage construction and ensure accurate wing and tailplane rigging angles. Lise a ball-point pen to mark the positions of the formers on the inside faces of the fuselage sides. Hegin assembly by cementing sides to formers 4,5 and 6 . Cleeck that front and rear of fuselage sides are level with each other, then add ifin. Sq. wing supports.
8 l'ull in sides at tail and cement triangle Fr in place. Insert furmers 7, 8 and 9 and add motor peg reinforcements (F_{1}). Pull in sides at nose and insert former 1, followed by former 2 . Place former 3 in position over plan, then position undercarriage over the top of it. Now add U1-C3 pieces, allow to dry-then sand down until the level of the wire is reached. Secure the undercartiage by well cementing U4 over the top of Ul-U3. Join nose block pieces together (F1-F4), using the cross lines to obtain correct alignment.

9 Cement former 3 to fusclage sides, attach nose keel FG and add upper and lower $1 / 16$ in. stj. stringers. The position of the rear cabin struts is clearly shown in the photo and on the plan.

by-Stage Construction

10 Cut pattern " Z" from cartridge paper and cement to fusclage sides and former 3. Cement front cabin "V" struts in position. Trace front and rear cabin templates on to notepaper, check fit on model and trim if necessary. place templates flat on building board, lay thin celluloid over the top of them-then cut out the latter and carcfully cement in position on the model. Add the wheels and hold them in place with solder or cement. Cement the $3 / 32 \mathrm{in}$. dia. dowels in position-for the wing retaining rubber bands. Cement scrap balsa to tail (underneath) and hold tailskid securely in place with silk patch, cemented on.

11 Round off the leading and trailing edges of the tailplane--and the edges of the fins-then cement the latter in place, checking that they are at right angles to the tailplane. When dry. cement the tailplane to the fusclage and chock carefully for correct alignment in the front and top views. Add the rubber access hatcli (F 8)-hinging at the front edge with a small piece of silk or cloth.

Hold the noseblock in place with a dab of cement, then carve and sand until it nows smoothly into the lines of the fusclage. Remove the nogeblock and clrill to take a piece of 20 gauge brass tubing. Note that the tubing is inserted at right angles to the nose-block-downthrust already having been incorporated in the fuselage. Push the airscrew shaft through the noseblock from the rear, then thread on a cup washer, followed by a $7 \frac{1}{2}$ in. dia. KK plastic airscrew. 1kend over the shaft at the front as shown or alternatively. instal a simple free-wheel device of your own choice. A single loop of $t \mathrm{in}$. Hat rubber provides the power. Knot, bind with thread and then cement before treating the motor with rubber lubricant.

This completes the framework, but assemble the model and check that the nose plug fits snugly in the front former and the wing sits firmly in place. Check carefully for broken joints and sand the entire framework smooth in preparation for covering.

This brings us to the covering-the point at which most modellers seem to run into difficultics. Work carefully and methodically and be prepared to strip and recover any portions that are badly wrinkled. Use coloured tissue for the fusclage and fins. Cover the wings with white tissue but leave the tailplane uncovered. Several long strips will be needed for the fuselage and the wing requires four pieces. Use tissue paste as adhesive and tighten the covering by spraying with water. When dry, give the wings two coals of thinned dope pinning to the building board (with edges packed up) to prevent warps developing. The fuselage, fins and tailplane may be given three coats of thinned dope.

Instal the rubber motor, securing at tho tail end with a $3 / 32 \mathrm{in}$. dia. peg. Hold the wing in position with small rubber bands looped from the dowels and check that the model balances level at I/3 of the wing chord back from the L.E. (see plan). If tail heavy. add a small piece of old cement tube behind former 1, to give correct balance. If nose heavy, weight the tail. Cernent a celluloid trim tab to the leit hand wing tip (see plan).

EIGHT HUNDRED individual entries were registered at this populat North-Western area rally which tinally got under way (after the false start reported in November "Hangar Doors"), on sunny October 5 th. It is with some gratifecation that we find the names Monks, Wheeler and Ianfranchi at 3rd, 4 th and 5 th places respectively in Power to verify their successiul combined efforts at the World Championship reported elsewhere in this issue. Brother G. C. M. Byrd, and not G. M. (Max) made certain of his first place in clider by recling off a 14:43 llight after two max's. But it was a Whitefield bencfit meeting. the O'Dommell's taking home six prizes and the Bennett's, including Mum, another two. The Eddie Riding Memorial Trophy for scale was very keenly contested by a large entry ranging from a Jetex Lavochkin to the large radiocontrolled Ercoupe illustrated here. All credit to Avro man Fred Lees who produced a larger version of his last year's winning Luscombe sa to make a perfect flight with a perfect model. R.G.M.
6. Almost tandem ving "Mauboussin Hemiplere", by Ifran Cameron flew acell. 7. Fred Lees releases his "Skypat". a red beauty. zeas firsi in scate. 8. J Bridgetcood and planked Curtis Oncl, zeas second.

control on Dennymite engine. By H. Keble of Crosby. 2. "\$ Welt-
meister" Barry is'hevter and ucorld champion model was fth
in potcer with same modet that went to Steitserland. 3. T.
Simpson's glider, from Timpericy, had endplates all over and
novet anti-zarp zig-zag structure. 4. Barrg and Mrs. Haimman
cere there rcith'a Wukefteld. S. Smallest scale nower entry, a
Kalper 0-32 c.c. Sopreith Camel by P. Ward of Ashton.

AEROPLANES IN OUTLINE - NO. 6
BY G. A. CULL

The
 GLOSTER G.A. 5

0N November 20th, 1951, the Gloster G.A.5 took off from Moreton Valcnce for the first time, and was airborne for 35 minutes in the hands of S / L. Waterton. Thís was a notable "first flight "for the G.A.S is the Grst twin-jet delta and will be first delta fighter to enter squadron service.

In 1948 an Air Ministry specification was issued for a heavy all-weather fighter with interceptor performance and capable of long patrols in any weather and at night. resuiting a design known initially as the Gloster F. 448 . Later designated G.A.b, and now named Javelin, this big fighter undenvent evaluation trials in competition with the D.H. 110 in the same class, and a superprority production order favouring the Gloster design was announced on June 7th. The delta layout was chosen as the best to meet all requirements without sacrificing aerodysmic cleanness. Apart from its superior high speed characteristics, the stiff delta wing provides ample stowage space for a wide-track undercarriage (which is fitted with tixi-lampsj and the large fued load for patrol work without recourse to drag-creating drop-tanks. To ensure maximum manoeuvrability and enable the fullest use of flaps, a delta-form tailplane is employed. This has a short fixed centre section

 grotpher Runcelf Adothn, mhate nhimence of parachule

but the main outer pancls are movable in conjunction with elevators, which, together with the relatively fow wing londing. endow a tight turning radius as well as dealing with fore and aft trim changes. To offset the delta's short moment arm, the fin and rudder are very large to provide directional stability for high speed gunnery. Large flaps are litted forward of the trailing edge so as to reduce the usual nose.clown coupte, and the Javelin louches down without exaggerated incidence. These tlaps may be lowered at ligh speed when their strong braking effect may be added to that of the dive brakes on the wing top surlace. Iradar equipment is very extensive and fills the nose of the Javelin which will so be enabled to intercept bombers llying at speeds and heights where human vision can easily miss the farget in the few moments it would be in sight. The radar operator is housed under the same sliding canopy as the pilot and both have cjector seats. Although very much subject to ofticial secrecy, the Javelin is reported from foreign somrces to be armed with four $30 \mathrm{~m} . \mathrm{m}$. guns, but neither prototype has any visible armameat.

The tirst Javelin was numbered WL) 804 and on June 30th, 1952, was wrecked at Boscombe Down in a crasb landing which tore off ane wing. Waterton had experienced severe elevator trouble but managed to get the G.A.5 down and so made possible the salvage of vital test films. Numbered IVD 808, the secand machine first flew on elst August, 105\%. and was demonstrated at the 11952 S.13.A.C. Show where its docile manocuvrability was apparent with a fast rate of roll.

The Javelin has not yet demonstrated its ligh speed capabilities, but it is known that thrust in excess of $14,000 \mathrm{lbs}$. from the two A.S. Sapphire jets puts this new fighter in the supersonic class.

Abstract

Designed by lic Smeed for the "Especially for the Beginncr" scrics, and described photographically by the Hec. I'. Callon.

IN many way:s Débutante is the ideal model. It eaters for any of the popular range of small engines from '5 to I c.c. It combines a very pleasing appearance will a robustness of construction which should outlast many seasons' regular flying.

Hullding the Wing

Prace the central wing rib outline W.: onto two pieces of $1 / 16 \mathrm{in}$. ply: cut ont, sand to uniformity, and then pin together a sandwich of balsa rectangles between the ply ribs-nine $1 / 16$ in. and two $\frac{1}{}$ in. Ribs W. 3 - $\mathbf{W} .0$ will have to be traced and cut scparately in pairs. Next, trace and cut out the $1 / 16$ in. ply dihedral keeper and cement the three sections of the $1 \times \frac{1}{1}$. manspar against it, checking the tip dihedral.

Fig. I shows the first stage in the construction of the wing. The top edge of the three W. 1 rils (two $\frac{1}{}$ in. and one (1/1t in.) must first be lowered by trimming off $1 / 16 \mathrm{in}$. all the way along to leave room for the sheeting and the mainspar slot widened. The that centre-section of the mainspar is pinned down over the plan together with a short length of trailing edge and seconclary ($3 / 10 \times 1$ in.) spar, the latter packed up about 3 :(64 ins. of the board with scrap halya to accommodate the undercamber of the aerofoil. The three $W . l$ ribs are then cemented in place, a short length of leading edge is added, and gussets secured into the corners. When set, the overlap of L.E.. T.E. and secondary spar is trimmed off square with the outside ribs.

Fig. 2 shows what is virtually the same process repeated in the construction of the port half of the wing; mainspar and T.E. are pinned down, secandary spar packed up, and ribs cemented into place.

In lig. 3 the l. . F. all necessary gussets has been added. The same method is used for the starboard hall of the wing, the completed port half being packed up with a block of wood.

Wl that remains is to cement rectangles of soft 1 in. sheet to the tips and sand them to shape when dry; to sheet ower the centre-section, and to build up the becrap balsa fairings on to the I.E. and T.F. of the centresection. (The T.F. fairing was omitted on the original.) Final shaping of the fairing is best left until the fuselage has been completed. when the wing can be put temporarily in place on the wing mount.

The Fuselage

Start by tracing and cutting out the thirteen formers. 1.1, 2 and 4 in plywood, the rest in halsa. Bend the U/C legs to shape. drill all necessary holes through F.e. and F.I, and bind and cement the legs against them. Bind together with fuse wire. and solder the two vertical wires of the single front U/C strut. but do not and the wheels as yet.
lig. 4. Choose four longerons Irom equally hard $3 / 10 \mathrm{in}$. sq. stock, and build the two sides of the basic fuselage (shown shaded on the plan) one on top of the other on the workboard.

Fig. 5. Cement the two sides against the ply formers F.1, F. 2 and F.f, and draw the sides tugether
and cement at the tail. Jingine bearers are cut to length and the bolt loles marked and drilled to suit your particular engine. U'se Darotix, not balsa cement. for securing the engine bearers to formers E. 1 and F. 2 and bolt the engine temporarily in place to keep the bearers properly spaced as they set into position.

Fig. 3. Cross spacers (cut to follow the natural curve of the fuselage sides) and cabin rool are next added. followed by the sheet balsa stringer formers F. 3 and F.5 F. 13.

Fig 7 shows the natherside stringers with plenty of thin, straigit pins pushed through at the joints to ensure a firm hold.

Fig. 8. Side panels of sheet are next added, and then comes the rather tedious joh of filling in between the lower stingers betwen formers 2 and 5 . ending in a fluted edge betwern formers 4 and 5 if preferred.
lig. 9 gives details of the incorporation of the trim-tab into the fin, the last item itself being quite a straightiorward jol). The tab starts by being norhing more than two extra lengths of alis in. sq. built into the inside of the top rear panel of the fin but cementerd only to each other and to the T.E. and top of the fin. When all the joints are dry and the fin sinded to shape. cut through the top and T.E. of the fin so that the top rear cormer comes away. A metal foil or soft wire hinge is then inserted into the rop of the cut away face and ${ }^{\text {a }}$ pin pushed partially up through the spar supporting the tab corner to form a pivot. All that now remains is to put the tal, back in place with the hinge half in the main fin and half in the tab, and push the pivot pin up into the hingeing vertical edge of the tab, which later should be sanded slightly round in order to permit a free to and from movement. The completed fin is now cemented firmly to the fusclage.

Fig. 10. Shows the rear of the fusclage with the upper forward fin fairing and the underfin added and the T. P. slipped into position.

Engine Cowling

A cowled-in engine certainly looks very pleasing and professional, but it often calls for some careful modelling. The following method is suggested for those who cannot think of a better one.

The outline of the noseblock C. 2 is traced onto solt $\frac{1}{}$ in. shacet and cut out with a slight overlap all round. The $1 / 14 \mathrm{in}$. former C. 3 is traced and cut out accurately with the centre-section left in and the engine bearer slots cut out so that correct registration may be made with the corresponding slots cut into the $\frac{t}{b}$ in. sheet. These latter are best constructed by drilling $\frac{z}{t}$ in. holes just inside the bearer rectangles traced from

the plan. The actual rectangles can then be cut out by means of a narrow blade or preferably a coping-saw. working from one drilled hole to the next, and cleaning up alterwards with a nail file or sandpaper wrapped tishtly round a thin strip of wood. Check the position of the bearer slots against the ends of the actual engine beasers on the model. Now place C. 3 in position against C.2. mark its outline onto the latter, remove it. and trim out the centre portion of C.3.

In Irig. 11 this has been done. and the top right-lanad quarter of C..2 has been cut away. Use a small hacksaw for this. and keep the cuts absolutely square. (Note that it might be simphar at this stage to drill a $\neq \mathrm{in}$. hole through C. 2 for the propeller shaft, before cutting out the guarter segment.)

Replace the quarter of C. 2 lightly cemented, and securely cement C. 3 to C. 2 all the way round. The edge of C. 3 must coincide exactly with the outline marked for it on C.2.
[Fig. 12. Cement the noseblock unit (C.2 plus C.3) onto the bearers-using Durofix-and C.t against F.l, leave a margin of in. along top and sides.
N.B.-The top right-hand (starboard) quarter of C. 4 should nof be cemented against $\operatorname{li}^{1} 1$. since it has to lift up with the moving part of the cowling.

Secure the four bolts with cement through the bearers, and prevent thens from turning by means of a pin or piece of thin wire feyed across the screwdriver slots of each pair and soldered or liberally cemented in place, the nuts being screwed home beforchand.

Fig. 13. Slip a piece of waxed paper in between F.l and the top starboard corner of C. 4 to prevent the planking sticking to F.I and cement the port side of the cowling in place.

The starboard side of the cowling is cut through along a line coinciding with the horizontal cut in C.2, lightly cement togelher again and then firmly cemented in place in contact all the way down with C.4.

At this point it is a good idea to give two or three coats of banana oil to the engine bearers and those parts inside the cowling which will later become inaceessible, but sec that no banana oil touches any parts which will later have to be cemented.

The bottom cowling planks are now added ($1 \times+\mathrm{in}$.) extending from C.e past the bottom of F .1 to F .9. Start with the two outer planks, shaping them to fit snugly against the sides of the cowling. The first two planks on the top should be the centre pair, with a gap of $1 / 04 \mathrm{in}$. between them opposite the vertical cut in C.2. Next shape the two outer planks and cement into place, then work your way back from these two to the middle. Make sure of a tight edgo-toedgefit: vertical unevenness can be sanded away later.

Coment C. 1 (thin ply) in place. This was omitted on the original. Remove the piece of waxed paper, and thoroughly sand the exterior of the entire cowling to slape, the top planking leeing flu ih with the top of F.l. If the in. hole lea, not yet heen drilled for the propelier, now i , the time to do it. The hole can later be bled out a little if necessary to suit the engine.

Using a large sharp blade, cut out the quarter segment from the cowing. It will come away quite neatly (iee Fig. 14). Replace it, and cement a strip of finen tape down the centre joint on top of the cowling to form a simple and effective lisige. The wheels can now be soldered on.

Now is the time to colour the cabin interior and include a name and address label if desired.

Cut nut the card fairings from postcard-weight material and cement them in place fore and aft of the cabin. Jrace the two winlshield templates onto writing paper cut out and try in position. trimming as required. Then paste the paper tomplate onto sheet celluloid and cut round the oulline with sharp scissors. N.B.-This part of the job is much simpler if the wing mount dowels have not yet been attached. Pin the celluloid shields temporarily in place down the middle. and then fold round the sides to make sure they are the correct shape. Remove them, and cenent the wing dowels in place. When these have set. it will be possible to cut out small sections of the windshiclds to fit round them. The celluloid shects may then be cemented in place and secured with thin pins while the coment sets. The side cabin windows are then added. Fig. 15 shows the paper template for the rear of the cabin, and in Fig. 16 it has been pinmed in place for checking and pussible further trimming.

Fig. 17 shows the cowling opened up. Tise aperture for the cylinder head and compression lever has been cut out and shaped to suit the engine. For the Mills • 7 .5 it may be necessary to enlarge the aperture as compared with the size suggested on the plan. Remember that the quarter segment must swing up quite frecly when the engine is in place. On the ariginal it was found necessary to unserew the cylinder head in order to bolt the engine in position. A tube spanner was needed for this. It will be noted that a couple of small vertical dowels have been added to assist a firm joint when the cowling is closed.

Fig. 18. The cowling closed over the engine. Note the air vent cut through the noseblock unit against the cylinder head.

Covering

The model is now ready for a final sanding and covering. hearyweight Modelspan for the fuselage and lightweight for the wing and tail units. Two coats of clear dupe should be given all over, then if de.ired the fin, fusclage top and centre-sections of wing and 「C.L', cabin outline and U/C wires may be painted with white dope. A coat of banana oil (thin) was added to the wing for extra sirength. (Incidentally it was discovered that "O-MY" banama oil could be painted over transfers without any bad efiect-and some sort of an over-varnish is necessary for the transfers which are liable to becomo smeared with diesel oil).
lior holding the cowling closed a wire spring eatch may he installed, or Sellotape may be used as long as it is kept away from contact with diesel oil while a rubber band. though not very professiunal, is most e【ective.

Hying

No trouble should be experienced here. Trim for a wide right-land glicle- 10 degrees of right turn on the tap, should be ample. With a wooden $8 \times 4 \mathrm{in}$. propetler the mudel then climbs in steady feff-hand circles and glides to the right. It may be of interest to know that on the original, selid sponge rubber wheels were used throughont, instead of a prenmatic pair at the rear, and the model weighed 14 ounces instead of the scheduled 12, but in spite of this the glide was beantifully flat and called for a one-mile retrieving sprint after a 20 -second eagine run on the second flight! Moral : choose calm weather...

 TRADE
 A mhole miscrilariy of modirdizla areassomian hora romm fo awr atifntiom in fivae for the fatime mavom. Junt in rane fin fintion fo be tumbing for anmpthing that Aumfle Agois might conalder erilhin the bourudia of hitr gurne, hera ure some temma for your aplection.

WIE Slways build and test ny "trade review" kits for that reason there is always a delay between the kit reaching the market and our published revjew. The many events of the recent llying season have clipped the editorial building time to a regretted minimum, so on this occasion. we are unable to include all the kits we have undertaken to constmet. There are two among then that we can thoroughly recommend on the strength of part completed structures lying pationtly in the workshop, and the flights we have been fortunate enough to witness in the past season. First of them is the now very famuus Veron " IMP ", LAVOCHKIN 17, for ducted fan propulsion. This kit is in the " super " class with beautifully stamped parts and hard stringers, plus a fully detailed brochure of building instructions that leave nolhing to doutht. We've seen quite a number of customer built La 17's this scason, most of them with Allton Dart's (the new ones have a red-head, integral tank and go even better than ever), and one La had an E.D. Bee that sounded as though it might blow-up any moment! All of them flow the same way. Slow to gain height, and tending to fly in very large circles, the high revs giving the impression of a real turbinc. It's quite a big morlel that sells very reasonably at $30 / 10$, and ove which by virtue of its propulsion, appears to be very difficult to prang.

Another fighter kit will soon be on the counter \{rom Wilmnt Mansour Letal., this time of the famous HAWKFR HUN'IER. Prototype shown, held by Miss Pat Deane, was demonstrated at the recent Jetex contest; actual kit will be entirely preformed.

The other kit we feel coufident to reviow as a very good buy for as little as $10 / 7$. is what must be the most novel flying scale kit obtainable. A twin Jetex 50 powered model flying boat would in the normal way, be classified as perhaps a novel "one-ofl' experiment. Yet here is one in kit form that all can build with the sure satisfaction that it will be a success. We refer of course to the Jetex SAUNDERS ROE $A / 1$, a fine kit with a neatly printed fully detailed plan, and a good selection of balsa.

A block. $2 \times 3 \times 6$ in., two feet of t in. sheet. four feet of $\frac{1}{f}$ in., a foot of $\frac{3}{4} \mathrm{in}$, and nore of $\frac{1}{3} \mathrm{in}$., $\frac{1}{2}$. and $\frac{7}{} \times 1$ in., all neatly contained in a cardboard box and sold for $3 / 11$. That's the BALSA-PAK recently put out by Plantation Wood (Laacing) Lud., and of course it's all first class " Solarbo " balsia. A very handy pack to keep around for odd items in your modelling. and, as many will realise, a two-shilling sowing in the overall price helps the modelling budget considerably.

Attentive as wo always are when lowking for something needed in the house (which might serve a double purpose for our modelling), we were agrecably pleased to find a new household lubricating oil in a very attractive container which sells for as little as half-a-ctown. Its the BIGREN oiler, a smart plastic four-ounce pack of green coloured fine lubriceting oil, that has already found its way into stored engines and bicyclo hubs in our domain. With offset spout to get into awkward places, and the distinct advantage of dis playing its contents, the oiler will no doubt be subjected to aeromodelling ingenuity when its supplied contents are exhausted. We have plans for it as a priming can, it is methand-proof-need wesiay more?

A couple of very interesting. bright yollow colourod handbooks have appeared in recent weeks, and we can recommend each of them as items that should cortainly be handy to any aeromodeller's building board. The KEILKRAFT HANDBOOK for 1952-53 can be bought for a modest $1 / 3$, and far from being a tabu. lated list of all the many

and varied desirable items to be olftained from the house of Keil, it reads pleasantly as a booklet design. ed to put beginner or expert on the right track to the hobby. Seventeen articles, copiously illustrated with excelient photagraphs to outline everything from " introduction " to " covering ". " Jetex" or " team racing" make this mora than just one evening's reading. The other bright booklet deals with a more specific subject. and it is the \mathbf{X} - $\mathbf{A C}$ C \mathbf{O} handicrafts manual. known as " More skill at your fingertips" written by W. A. G. Bradman and publisled at $\$ / 6$

X-ACTO touls are by now well-known enomgh in this country to be classified as a household name in the modelling fraternity. Wc counted ourselves fortunate to obtain a tool-chest of this breed when serving overseasin the last war, and through kitbag and suitcase. the little box of tricks has travelled thousands of miles and clipped hours oft our morlclling in many a strange climate. But though the tools have been in use for all this while, it was not until we read this book, that we realised the many applications of X-ACrO.

And now a couple of kils, which, shame on us, but all praise to our secretarial staff, were made in recent weeks by two of the fairer sex. seen in the photo below.

FROG Rubleer model. Span 30 ins., Length MINX 24 in . Area $118 \mathrm{sq} . \mathrm{in}$. Weight should be 3] ounces. Our weight 3 ounces.

 1rice $8 /$This is yet another of those "press-the-parts-out " Frog series, which have already achieved high reputation for casy building. The Minx is no exception, it is casy to make, very pleasing in appearance, and the kit

is complete to the last detail. For the money, it is remarkably good value and we have no hesitation in recommending it for novice or experienced modellers. We particularly like the simple yet very practical 11 inch prop which is built up from parts supplied. On test, the Minx flew remarkably well, sufficient, we might say, to spur the novice huilder to further efforts, which we trust will appear in future kit reviews.
$\begin{array}{ll}\text { FROG Glider. Span io in.. Length } 22 \text { in. } \\ \text { VESPA } & \begin{array}{l}\text { Area } 118 \text { sq. in. Weight slould be } \\ \\ \\ \\ \\ \\ \text { Price } 7 /-\end{array} . \quad \text { Our weight, } 3 \text { ounces. }\end{array}$
As may be secn by the similarity of dimensions, the Vespa uses the same wing and tail as that on the Minx. The fug"lage and fin are smaller but follow the same general lines, and of conrse, the kit is to the same high standard. A few of the press out parts showed reluctance to part from their sheces, but a prise with a pointed blade is enough to free the part where die-cutting has not penetrated right through. On test the Vespa, like the Minx, flew very well indeed. If you are looking for a beginner's kit that has been recently introduced to the market, this would be an ideal choice.

J's model centre have always specialised in various types of transparent plastic tanles, and in cmascquence, yet another SLIPSTREAM product comes as no surprise. The latest item is a neat, round faced tank with an etched transparent front. The coloured back has integral mounting lugs and a conveniently disposed "spout" for detachable fuel tube, so that the tank may

In inexpensive modelling knife, supplied with three surgeon's scalpel type blades and yet costing only

$2 / 6$. is the SUPER 51° Kinfe marketed by Woodside Mexdel Aircraft Supplies of Croydon. A simple coloured plastic handle effectively locks the
be bolted either to bulkhead or fuselage side. The etching is on the inside of the tank, and these finely spaced lines will give reasonably accurate judgment for timing the power run, all that needs to be done is to "spot" whichever of the graduations is correct for your engine. with a dab of colour dope. The price is $2 / 3$.

NYION, the womer material that bas almust ougted the unfortunate silkworm in the lady's underwear business. also invaded the acromodelling world some time ago. Buying " by the yard "over the millinery counter has nus heen prassible until recent months. and even now, we find it hard to locate a suitable grade at a price to make it a proposition for covering. 1lowcver, W. K. Smith of l3ackpool, sent us a sample of the grade he sells at 111 per yarel, and this we find to be just the right thing. A good strong grade, suitable for four-fouters and above, the material comes in plain white, 40 inch wide lengths. Satislaction ar moncy back offer by Mr. Smith makes this worth a try.

Having bulthead trouble? or bother with ellipses? All would be solved if you have a GYRO ELLIPSE TRAMMEL, price $32 / 6$ from Messrs (iyro Developments, Yeovil. An all plastic instrument, the trammel enabled us to constract perfect ellipses of any proportion, right up to 10 in . deep, which should be large enough for the larg'st of cabin models. If. you want perfect drawing without tears, this is just the job.

blade in place with a small screw so that no matter what the cutting pressure, the blade will not flex in any direction. Also from Woodside M.AS., we have purchased a very useful bundle of $2 \mathrm{~m} . \mathrm{m}$. dia reed, of the type that was so popular at one time for wing tips. In our bundle we had just over 15012 in . lengths for 2/0. or in other words. enough wing-tips for 75 monoplanes. for a half-crown . . a very good buy.

How good can a model be? The maximum performance allowed in competitions is a flight of five minutes. and three of these live minute flights in one contest should surely constitute the best that can be attained. Add to that a fourth consecutive maximum of no less than 0 min. 47 secs. and certainly you'll have a performance par excellence. Such were the times recorded by 1:. ' 1 '. Upiold of Headley Club when he won the Hamley Trophy on July 0th with his standard MERCURY MALLARD. All credit to Mr. Upfold and this performance with a kit model that has become a most popular selection among the power fraternity. An Arden 100, running glowplugged, using Mercury No. 7 fuel and a Stant prop was the power-plant in this case, the same combination also torok first place at the Southern Area Gala.
NEW "FROG " MINIATURF SERIES
$\begin{array}{ll}\text { SCAMP Midwing. Span } 10 \mathrm{in} \text {. Iength } 91 \mathrm{in} \text {. } \\ \text { PUP } & \text { Biplane. Span } 10 \mathrm{in} \text {. Iength } 8 \mathrm{l} \text { in. }\end{array}$
MINOW Highwing Cabin. Span 12 in . Length喑in. Price $\mathbf{3 / 6}$ cach.
To use an Americanism, this latest Frog series of die-cut, easy-build prefabricated kits are definitely " cute" in appearance. and in addition are attractive enough to tickle the taste of the seasoned aeromodeller. Of the three models built and tested, one was easily constructed by a nine-year-ohl, and the case of assembly clearly demonstrated the accuracy of the formed components.

Each kit is complete with plastic prop. and nose-plag. ready formed undercarriage plus plastic wheels, and a fully detailed step-by-step illustrated sheet of building instructions that can bo understood by the veriest novice. In producing these neat and inexpensive kits, International Model Aircraft Led. provide models that should appeal to all classes of modellers, and we have no doubt that many club nights will be enlivened by contests staged between these light and very flyable quickics.

Our one criticism is levelled against the difficulty of discovering certain un-numbered parts, no doubt occasioned by the fact that die-stamping was not always thorough according to the differing texture of the balsa shect. Apart from this, our experience of these kits shows them to be of the highest quality, the extraordinary degrec of prefabrication ensuring accurate assembly with little effort. and producing models that Hew really well with practically no trimming time.

The neat linos of this aimple serias of models are shourn to goud example in thin uncorered viewe of "Scamp."

An exact scale reproluction of a joiner's plane has been marketed by the Multicraft Tool company and selis for 4 . 6 . We checked this baby plane on an odd piece of tabar and it murked just as efficiently in its fulf-seale counterpart . . and balsa really does requirc a sharp blade. We understand that it is made by a firm who have becumaking the bigestul for over a contury. which accounts for the gmart pmlished finish on its well made twedh parts. Look for it at your model shop, it is known as the MINIPLANE.

An eyedropper shaped kraduated FCEI, TANK. with a special, "Easy-to-fill, hard-to-spill" top and nozzle bottom is now available from the Model Shop. Newcastle-on-Tyne in two sizes. The standard size is now 5 c.c. capacity, and the " IKaby ", for smaller motors, 25 c.c. Mounting lugs are provided, and a typical installation is shown in the acconpanying photograph. Prices are $2 / \mathrm{B}$ for the larger, and $2 / 3$ for the "Baby".

The new F.is. 1.46 diesel witl be coming into your local mudel shop shortly, in fact, this latest motor from a famous stable, is on fonrteen days' dolivery at the present time. Motto, yet your orders in now

Mark If versions of old favourites, the Al.h.BON DARTC and ALLIHON JAVEIAN recognisable by their red cylinder heads. are available on immodiate delivery.

All the above chgine'z will shortly bo appearing on test in our Engine Aualysis series.

How far is it? How long wonld it take to get there? We ask ourselves those questions before travelling to each rally er distant meeting Now, with the MAP MEASURE sold by John buck and Co.. we can easily check the answer as to distance. by quickly running the small plastic devico over our routc. A calculation in case oi a change in scale. some mental arithmetic, and we soon know how far we have to go. and how long the journey will take. For ${ }^{\circ} /$ this little gadget will be a boon to all who like to plan their travels.

\%
 GADGET REVIEW

 NOTHER Christmas issue here already! Seems like only a month or two ago we were sorting out the last Christmas selection of useful gadgets, and bere we are again at the end of another season. Must be the high concentration of contests we've had in '52, hardly a week-end to spare but that there was another comp. to prepare for, time has passed by very quickly. With so much activity, the gadgets and gimmicks have popped up faster than mushrooms in a fertile field. So much so in fact, that we've had to weed a few of the less useful out to make way for the brighter brainwaves. Not that we are turning away ideas . . . if you have one, just seud it along, we'll soon tell you whether we can publish it or not.Let's start the ball rolling with one we found on the flying field at the 'r2 U.S. Forces Niationals held at Weisbaden in Germany, in the hands of L.t. G. Evans Codding, who is stationed at Shattesbury in Dorset. Principally used where the tip-up tail d / t is not a practical proposition, the split rudder dethermaliser shown as \mathbf{A} is an effective methor of bringing the job down swiftly but safely. A double thicknesy rudder is made, the halves being held together by a fuse loaded rubber band. When the band is burned tbrough, the other rubber around tho front hinge post pulls the halves apart and so the rudder becomes a super drag producer, also destroying part of the tailplane lift.
Scale models present many difficulties, and not the least of them is true scale reproduction of the undercarriage. Wheels have to be beld in place securely and axles or legs should be scale thickness: but how often do we see this part of a scale model sadly out of true proportion? In H, J. Bridgewood of Doncaster, whose photo appears in the " Daily Dispatch " rally report, shows us how to have 16 s.w.g. legs and yet use airwheels bushed for 12 or 14 gauge. Flattened brass tube solves the problem here, and in \mathbf{C} we have another means of holding wheels in place, this time by R. Duncan of Farnborough, Hants. l.V.C. plastic insulating material can be found on most electrical wiring and will git right down to 18 gauge wire. For larger sizes, fuel tube can be used to the same effect.
for radio fans, D and E are similar means of obtaining a turn without tears. I) was submitted by FI. /Lt. Burton of Knaresborough, Yorks., and he christens his idea the "Kick elevator". Whichever way the rudder is turned, the elevator is pulled upwards by the threads. Of course, if a spin is required, one thread can be left off, so that a climbing turn results one way, and a spirs, or to be correct, spiral dive results in the other direction. From Exeter in Devon, Sam Hecker suggests his elevator idea in \mathbf{E} for radio-controlled gliders, each half of the elevator works independently to assist in maintaining beight throughout the turn.

Inexpensive one comes from David Webster in Scotland, who suggests in \mathbf{F} that an old dis-used toothbrosh can be effectively employed on Jetex units as a scrubber-out. Grind or file the handle so that it has a sharpish edge on one side, and use that to loosen up the carbon, then brush out with the bristle end, and the unit is de-coked for another session.

Simplest of this month's ideas is a quickie \boldsymbol{C}, borrowed from Peter Wyatt of Ipswich, who finds that fuel or exhaust can certainly affect the efficiency of an Elmic timer. To protect the valve if you are in the habit of handling it with oily hands or it is placed in the slipstream, cut a small length of rubber gas hose, and slip it over the and with the widest side forwards to defect the gon and sludge.

In II we have something, J. Chacksfield of Dorking, has found to be the auswer to extra sonsitive trim of twin-finned 'plancs. Attach the tabs to a central pin, then when the tail is swung to trim for a turn, the tabs move in an opposite direction to give partial correction and reduce the effect. Try it, it really works !
Last hut not the least is \mathbf{I}, yet another readymade tank off the grocer's shelf, this time a thin aluminium Dylon dye container (price 0d., with dye) which can be cleaned out and cemented direct on to the fuselage side.

AEROMODELLING TYPES.

" The plan enlarger'

Design betow is knowon as "ALB 17 ", a class A racer which won the second K.N.V.v.L. contest, held at Schipot airport on June8th. Designer/builder is Aarts of Haarlem, the engine an E.D. $2 \cdot 46$ Racer top speed 68 m.p.h., weight 18 ozs. and colour red all-over, with white trimming.

IBY IR. IDAS

ALTHOUGH team racing originated in the U.S.A., the following of the branch of the hobby in Holland may be regarded as a child of British parenthood. S.M.A.E. rulings for both class A and B racing were adopted, and after a period of trial use, were slightly altered in three ways to suit the Dutch modellers.

First alteration came with a shortening of class A line length to 37 ft . $11 \mathrm{ins.}$, making them equal to F.A.I. Class 1 speed and also enabling the Dutch lads to take advantage of smaller sized fying fields. Then the rule regarding pilots came up for review, and with due regard to the ugly monsters fitted in some cockpits, it was decided to make pilots optional. Thirdly, the wheel size rule was dispensed with altogether.

Towards the end of the 1951 season, a more or less standard system of construction became the fashion, with built-up fuselages, solid balsa wings and duralumin undercarriage legs. Though heavier than the average British model, the Dutch equivalent was then tougher and because of high wing
loading, could be flown in almost any wind force and remain unaffected by gusts. Loadings of up to 43 ozs. per sq. ft. are not unknown, requiring, of course, heavier gauge control line wire as a safcty margin. With everyone fiying heavy type designs, more effort can be spared for appearance and general realism. Side-mounted engines with dummy cowlings sometimes housing the tank, and neat inverted engine cowls are most realistic, although there is a feeling among many Dutch enthusiasts that upright mounting is more practical.

Coupled with the trend to "uprights " is also a trend to what are referred to as " ny only" efforts of questionable semi-scale appearance. Fortunately the number of un-realistic entries is in the minority: but recognising that it is all too casy for a low standard of appearance to become commonplace. beginners are instructed how to finish a team racer attractively. Some attention to realism may be appreciated in the sketches on these pages.

Approximately 80 per cent. of the team racers in Holland are Class A and the favourite motor is the British E.D. 9.46 diesel. Enthusiasts have banded themselves into groups of threc, each member capable of being pilot starter or refueller, and usually each member has his own model so that the three men constitute three different teams. This can of course, be somewhat embarrassing when all three models manage to win the semi-finals !

Above, is the author's class A racer. known as "Cheerfoll Charley". Whumer of the firnt Kin.V.E.I.. rantent af Schipol, on dpril 27th, thim Job han a top aperd of 76 m.j.h. Colowr in arange reilh urhile ton, metal cotel asd black irim, enfime an E.f. $2 \cdot 4$ dienel and wreight, 20 afn.

SLOTS and related devices should have a particular interest for aeromodellers because experiment is cheap, and models generally fly at greater angles of attack than their full-size counterparts. Furthermore, the model ofien gets into some odd stalled attitude in the air, and slots properly applied can both increase lift and flight after the stall.

1 believe that even the stereotype pylon duration model could try with advantage these devices to increase lift for rapid gaining of height, provided it shuts the slot and returns the flap for the glide.

AEROMODELLING IYPES.-_" The Coward."

SLOTS AND

A DISCOURSE ON A

By Colone
controlled model is fitied arilh
forig mbotel und tall endplate lline.
Haif cireta an bo holed by radin
rihhat fuiniag hejght miandily.
(Jn oppunife prage, tat H. Hultan of
France, scith a full span slatied
midel memmanifaled at Faton

Some readers will remember, back in the dark ages of acro. modelling, that 1 was one of the earliest individuals to fit wingtip slots to my landplane models, and watercraft. These were crude affairs at the wingtips only, as 1 then knew little of the subject. Some of my models performed better with slots, whilat others were upset by them. I remember one case of a flying boat that turned violently in one direction whatever I did regarding rudder and offset of power. This was found to be due to varying gap of the two slots. One slot was effective whilst the other one was merely causing loss of lift, a fact that can happen as we shall see later in this article. One has to learn I Incidentally, flying boat enthusiasts should cover their craft with cheap butter mushin, and dope it like a real aeroplane with full strength aeroplane dope. This makes them waterproof, like the real thing, cutting out the soggy warps from seawater usage that assail the average model covered with nylon and model dope. Slots will keep their shape and gaps if kept watcrproof.

Now, why this article on slots from my pen? Well, during the past few ycars I have been actively engaged on " Wingsail" research in an effort to apply the lower drag and greater lift of aeroplane wings to boats, in licu of soft sails. This has meant a careful and intensified study of all things slotted, flapperd, and yielding greater lift at high angles of attack, such as when a boat is "broad reaching" across the wind, and even "running" before the wind. Many of the things I have found to suit the subject have first been tried on radiocontrolled model aircraft. This has led me to the discovery of how to make a radio model hold turns and gain height on the turn instead of the more usual spiral dive with loss of height. The use of slots, endplates, twin rudders and fins and a suitable fuselage shape can do this. To my way of thinking it is more intriguing to gain height on turns than to start "stunting" involuntarily on a turn. One can radio fly more smoothly, and I am

related devices

RELATIVELY UNEXPLORED SUBJECT
C. E. BOWDEN
now interested in using a third (elevator) control having a limited down novement. Slots also permit a slightly over-elevated model that glides in nose high for landing.

I pay respect to four sources of knowledge on slots. namely, a little smoke wind tunnel of the Lippisch type which " shows the spray" when I want to check up on theory; that magnificent library on everything acronautical of the Royal Aeronautical Society, and two full-size aircraft designers of great experience.

One of my simple radio-controlled low wing models was fitted with nearly full span slots and twin endplate fins and rudders, with delta tail. plane, and started its life under-powered and over-elevated, a nasty and dangerous condition for a model! Instead of a crash on the first flight, the slots ironed out each stall so that the nose sank back on an even keel until the model landed on its squashy torsion bar undercarriage (acknowledgments to Dr. Thomas). An unslotted low wing under these circumstances would have been something to marvel at after the crash. The model is 0 ft . span and now has a more powerful $3.46 \mathrm{c} . \mathrm{c}$. E.D. diesel instead of a 2-5 c.c. motor to keep the climb going. Incidentally the new baby Mark II, three-valve F.I. radio set, is a wonderfully reliable sonrce of control for the radio minded.

Pelta Shnyen

An interesting fact that cxplains the remarkable. nose cocked right up in air attitude, of the experimental Delta machine displayed for slow flight and slow landing at the last S.B.A.C. Fanborough show, and also explains the satisfactory flying feats of our schoolboy paper dart days, is that a delta wing can fly at angles up to 40 and 45 degrees before the stall gets really busy. I have photographs of an unslotted delta wing with its wool tufts showing good aimlow up to these angles of attack. This is of course a tremendous angle for an unslotted wing, and it is evilent that the old Fokker delta tail and the triangular tail of the 1013 Blackburn monoplane were not too bad as stabilizing planes! One might almost term a delta wing a" related device" for us aeromodellers. Does that start a train of thought?

The Slot

As a matter of interest, G. 1.achmann's patent in 1918 of a slotted thick wing was refused in Germany because the increase of lift by way of slots through the wing dicl not seem credible. This was almost as odd as the disbelief in the first

Whittle jet motor. "The slot has been one of the great milestones of aerodynamics of the aeroplane, whilst the continuous combustion jet engine has been the greatest advance in the aeroplane's power unit. Buth in their way have revolutionized flight.

The beginner to aeromodelling should examine the simple Fig. 1, which gives an indication as to why a slot is desirable to smooth out the airflow and increase lift at high angles of a wing's attack to the air.

It must be understood that slots can conlvol an aircraft after the stall as well as provide greater lift at high angles of attack, but open slots at low angles of attack give increased drag. or resistance. At high angles of attack, the slot reduces drag.

The flying display at this ycar's Royal Acronautical Society Garden I'arty, provided the most convincing demonstration of the value and use of slots for certain purposes. The German loiesler Storch, and the little low powered Zaunkoenig,

both full span slotted and flapped, and with permanently open slots gave wonderful displays of slow flight at great angles of attack, and of quick take off in a few yards with nose right up. with correspondingly impressively short landing runs. It is difficult to see how anyone with a reasonably careful nature could hurt themselves on these aeroplanes however small the flying field.
The open slots at low angles of attack, when in the ligher speed range, certainly reduce maximum speed through drag, but this is nothing to really worry about. For instance, the Zaunkoenig (Wren) with only if h.p. has a top specd of 87 m.p.h. with its permanently open slots.

The Prestwick Pioneer is a far more powerful aircraft, having the same slow landing and flying attributes, but is fitted with slots that close when desired, and flaps that withdraw. Naturally the high speed is greater, but the complication to close slots and withdraw llaps can prove alarmingly expensive for light aircraft.

For model purposes the fixed open slut appears to provide the answer for all except the duration power model, or the soaring glider, which must reduce drag to a minimum on the glide. The little Zaunkernig was described as a model in the Aeromodeller, September, 1950. This aircraft is of great interest to the modeller, for the fixed slot has a leading edge carried a little below the leading edge of the wing, and the slot shape thus proviles shrouding at low angles of attack when the aircraft is llying fast. As the nose is put up at a high angle of attack. the air runs through the slot and brings it into action gradually, thus preventing violent changes of trim. See lig. 2.

Col. Harrifria radia monfrolied lar-icimg moded han
nomply full apan alafn and pidpitatan on n dolia tald.
Thia aet-ap gilaen grnal atability.

Slot Openingr

If a slot is open, shall we say 1 in . at the front and also 1 in. at the back. i.e., having an egual opening front and rear, there is up to a 25 per cent. loss of lift. If on the other hand the slot is opened so that there is a smaller rear orifice than front opening, there is a big increase of lift at large angles of attack by the wing. The gains to be expected are given later.

If the main flaps of an acroplane are pulled down and the slots opposite the flaps are opened, but the slots opposite the ailerons are left closed, then the aircraft becomes vicious in flight. When the ailerons have a slot opposite them opened, a change comes over the aircraft. It becomes quite stable when stalled. A stalled landing can then be made with nose well up, and flaps down. In 1937 a Miles Falcon, during R.A.F. flight tests, with highly tapered wings exhibited unpleasant behaviour in flight, the stall being vicious. By fitting wingtip slots, satisfactory lateral stability at the stall was obtained. Numerous other examples can be quoted regarding tapered wingtips. Tip slots have cured many of my powered models having tapered wings with spiral instability. In flight tests 1030, using R.A.E. 31 section, square tips instead of rounded tips curcd wingtip stalling. The best qualities were found when a square tip with slot was used.

The above facts are highly useful for model designers, where tip stalling can prove so disastrous. No one can deny that the slabsided square wingtipped Wakefield models are very stable in rough weather. Beautiful tapered tips look delightful. but are they worth it? If washout is given to counter tip stalling, loss of lift is also provided! The square slotted tip is certainly wonderfully stable for radio models, as I have personally found.

Anmles of incidence

Handley Page (a household name in connection with slots) found on R.A.F. 19 section that the maximum slot effect was at an angle of incidence of 45 degrees, with the stall being delayed for 30 degrees above the ordinary angle. Also, that with R.A.F. 15 section, the lift was increased by fo per cent. above the normal value with the slot in action at big angles of attack. But although R.A.F. 1: gave this fo per cent. rise in lift the average lift un a thick slutted airfoil is in the region of 35 per cent. In some of these experiments by IIandley Page, the model wings used in the wind tunnel were 36 in . span, whilst others were up to

[^0]FIG. 2 the zaunkenng Shrouded slot

5 ft. span with 1 ft. chord. Mr. Editor, can we have an R.A.F. Section 15 shown? Sounds kind'a interesting, (apleasure Col. Dowoden-Kd.)

R.A.F.IS

A slot is of value at high angles of attack. At lower angles it is desirable to close the slot, if structural complication and cost warrant this. If this is not done for the higher speeds at lower angles of attack, an actual decrease of lift is found. For angles below 12 degrees incidence, opening the slot causes loss of lift, but on the other hand the considerable increases of lift already mentioned were noticed at low speeds and large angles of attack, when there is an actual decrease of drag.

From the model angle, if we use slots (full length) to give increase of lift at low speeds, such as on the inner wing of a turn under radio, we must design our models with a good high angle of attack. If we merely want to make a tapered wing laterally stable by adding slots at wingtips only, we can keep the normal angles of incidence. The tapered tips will then be controlled as the model comes to a stalling angle. But I repeat, decrease of drag at large angles of attack is of interest to modellers who dabble in radio, and power duration too.

Maximum performance drops rapidly when the maximum size of slot is exceeded. See sketches with this article, which give reasonable proportions for correct relationship between slot and wing.

Lachmann's original design of slots contained sharp angles on the upper surface, and it was only after their removal that satisfactory results were obtained. See Fig. 3 (B).

If a wing is flapped with a rear slot, when the lap is pulled down the slotted entry does not affect the efficiency of the front slot. The rear flap should have a rounded off upper surface which must form a smooth line with the wing's curvature. See Fig. 3 (C).

Stagger (positive) has been found to have a much greater effect than "gap". Sec Fig. 3 (1)). The staggered wing arrangement has a considerable effect on the characteristics of a biplane at large angles of incidence. Above the stall, lift is less on a non-staggered biplane due to shielding. A machine with a large stagger will recover from a stall quicker than one without stagger. Modellers should use the above facts found in the wind tunnel and in full-size flight. My model biplanes have always had this feature of large positive stagger, with wings flying at slightly different angles of incidence, and they have always been very stable. My first " record holder " biplane Kanga, way back in 1931 had this feature, and even in those carly days that model was found to be very stable. Slots should be fitted to the top wing of biplanes, the top wing forms a slotted effect for the bottom wing.

Endplates and square wingtips

Elsewhere I have remarked on the tests made with endplates and square tips, providing great lateral stability in a stall. In 1940 R.A.F. tests with endplates fitted to slotted and flapped wings, it was found that the greatest lift measured was 306 at 15 degrees wing incidence, and 55 degrees flap angle, for both circular and eliptical endplates, whilst a wing without endplates gave a maximum lift value of 289.

Let us hope to see some exciting slotted, and perhaps flapped, models in the Bowden Trophy Competitions of the future, now that they have returned to precision tlying for this event. Perhaps we shall sec heavily staggered slotted biplanes, with delta tails doing the most beautiful take-offs and landings?

Impression of the 1952 U.S. "Nats."

This report dues not pretend to be a plity-by-play account of the 1052 Narional Model . irplane Mect. but the impressions an Englishman (ex Chingford M.F.C.) brought away with him. There were too many events, ton wielely scattered, running simultaneously for me to get complete coverage.

The meet was held at Los Alamitos Naval Air Station nut from Los Angeles, California, just 1,289 miles from my home in Bremerton, Washington, quite a drive for my buddy, Bob, and myself. but well worth the effort. We were housed and fed by the U.S. Navy, on the Base, and I must give them credit for a line job, they really worked hard to give us a wonderful time. My most vivid memory was of the Indoor Flying held in the Santa Ana blimp hangar. A building 1,100 feet long, 200 fect wide, and $1 \$ 7$ fect high! What a paradise for the microfilm maniacs. Everyone moved around on tip-toc, breathing lightly. It even proved sufficiently contaginus to effect my dyed-in-the-wool U control fan, friend Bob, who looked so silly cranking a 50 to I winder for Bill stwood. It proved to be the winning flight in the Stick Class of 27:58. That's a long lime, and you really "sweat it out ". The hand launch glider boys fascinated me too, flipping their ships right up to the roof and comfortably exceeding a minute. I believe someone did 112 . My mind went back to the Abert Hall. Some differencel

In radio control the first place winner was a molleller from San Francisco. llis plane is a semi-scale job resembling a Piper Csuiser 7 ft . span. Jower is a $64 \overline{0} \mathrm{Cu}$. in Anderson Spitfire with two-speed ignition. His name is Alec Schneider. The radio unit is patterned after the lRockwood system, using a tuned reed audio filter to operate 5 channels of control. Alec buiit all his own gear except his transmitter. The receiver is a three-valve set which receives a tone modulated carrier.

On the whole, the system is very similar to the d..1). 3 channel set. The servo system uses two electric servos with neutralising and limit switches. One channel is used for each control direction. That is one each for left, right, up and down. The fifth reed is used to operate the motor speed, giving high, low and cut off by means of an escapement.
Top to bottom of left hand column. Pive fool apan,
this huge controt-tino IFra Cabin C C'mas entiped
flahter anparenti hat fied MeCoy 20 "n, complete
cockpit detally and full complement of moketa
bencalh dita reing. Noni complata amle martel
enfered icas the Giral Latiea trainer biplane exhleh
hand elerator trim from the corkpif, all impertian
plater duplicalrd and exery ather pasaible detail
At inflom da one fram out ourn piana aercier,
beaulifully made binf most unfortunatrly tncarrcelty
marked on this mear furclage alde.

Left: Upmajet potocred Vampire Lofghad 8 lbs. sud tan abowl 5 fl . apan. Each u/c Leg han an electrie motor for
 thing. All pholos on these pages from the U.S.A. Nallonals.

Nec flies in a most spectacular manner making elevator take-offs. consecutive round loops. vertical dives, perfect stalled landings and several varicties of Immelman and reversement turns. Altogether a hair raising performance. He deserves more credit than meets the eye because his radio knowledge is nonexistent. The gear he makes is the Japanese copy varicty.

In speed the old battle of experts continues. I became very friendly with " Bahe" Hall and pat Massey one of the most potent speed teams over here; and in their models I saw some of the most perfect workmanship I have ever examined. Their models are an example of the model builders art both inside and out, and their motors (all McCoys) are a picture of good machine and fitting work. Apparently their big secret is the fucl they use, commonly called "Blast '". Should you ask what they usc, as I did, the reply is always "Methyl-Alcohol, castor oil, nitro methane. 'n stuff". I did notice, however, that they carried it in two bottles, one labelled "Nitro X" the other " 'N Stuff". and that they mixed only enough for each individual flight, and the mix would sometimes vary from fight to fight. On one occasion they mixed some and gave it to another entrant who couldn't get all the speed he wanted. only to have him turn in faster time than they had made. Such is sportsmanship.

Tho cvent with the greatest amount of furn, per fight, was the Navy Carner Event, in which 1 assisted 130b. who flew an Atwood Triumph - 10 powered ' Hell Cat ". featuring tail hook release. ewo-speed motor control (twin needle valves) and single acting flaps (down fap with up elevator), all controlled from the bell crank. Simple as compared with the majority' of other contestants, but effective enough to give him a ninth place.

Stunt followed the old pattern but with more good looking aeroplanes all the time. To my mind. the best of the bunch was "Smoothie " Palmer"s" Smoothic". which he few into second place although the new " Kienhi Cougar" takes some beating. This is the first kit stunt job. to my knowledge, that has the landing gear mounted on the wing. this is really a step in the right direction.

Looking around the free תight arca, I would say Lew Mahieu's "Zeek " was the most popular model, and when powered with a suitable motor they really gave the stiffest competition, howover, I must note that

Rights The Musfangefrom San Francises took 1st and 'und in R/C'irth s' rhannel recetrers on'23 mes. finnar in foreground boorn a cloen rosomblanca fo the Piper Super Crulaer ard da remarkably good booking for ifa spertactilar aitrobafic performanes.

I saw several that folded their wings at the centre dihedral break, a rather undesirable feature. There does seem to be quite an increase in the r.p.m. a lot of the boys are using. McCoys, Doolings, Torpedo 10's. running on small diameter props, with nitro methane in the fuel mix. made me wonder sometimes if I had not strayed over to the speed circles. Half A was by far the most popular. and the area appeared to be the centre of a mosquito cloud. How the timers kept things straight I will never know

In rubber there was little originality except for a few Californian style long jobs. Hank Cole was Aying a model with a fuselage almost 0 feet long, built with tin. square, covered with undoped jap tissue. When it turned into the concrete runway, immediately after take-ofl the results were disastrous. Towline jobs were in even a deeper rut, and I only noted one model which showed any advancement along European lines, I missed seeing it fy so cannot say if it made any impression. Irank Zaic seems to have the whole business sewn up, with the boys solidly behind the impression that " it takes a Floater to beat a Floater "

Team racing proved a popular event with some very beautiful entries, outstanding to my mind were the all metal scale jobs of the " Long Midget " and " Ballerina" type Goodyear racers. These mulels showed superjor workmanship, in sheet metal bending and riveting. I was surprised to learn that ready to thy, they weighed only 32 ozs.

A McCoy Diesel!! !

You may think that after the day's Hying was concluded we would be allowed to rest. but this was not so. We attended discuisions and on one evening we were treated to a conducted tour of the new McCoy factory.

and here was the biggest surprise of the mect. Keith Storey and bick Mecoy introluced the new McCoy - $04!$ líedheatl Diesel. It bears a strong resemblance to current British motors. most particularly the Froge 150. I immediately enquired about fuel, and was informed a suitable fuel would be marketed as soon as the motors bocame available (the date provisionally set was October). I hope it is better thath that which has been sold in the past. 1 have carefully stored my trusted E.D. and Atills as I did not hatve the heart to use local concoctions on them, and could not obtain materials to mix my own. I do not know what effect this move will have on the ! British Manufacturers, but if the motor brings with it a good tuel. it might serve as a shot in the arm. At least. I coult boost I3ritish Diesels which I cannot do now.

At the discussions I worked hard to get some interest in the F.A.I. even to aligning the A.M.A. Classes with the F.A.I. and at least found a strong ally in loick Everett, the contest manager (and juen friend of loon Warring, apparently). To the average modeller here, I am afraid the F.A.I. is a completely unknown quantity, so it will take some time. There was some interest, however, in the Nordic A2 Cliss and at least that is a stejp in the right direction.

One last impression. Bob and myself usually managed to get to bed at about 1.30 or 2.06 and climb out again at about 0.30. The last parting sound and first to greet us, was the scream of a motor or mutors running wide open, from the direction of the hangar set aside for building and repairing. Here day and night a bunch of fellows coukd be found, building. rebuilding, and checking for the coming events.

Of course, throughout the meet. Jim Walker, the " (irandpappy of U-Control " could be seen, Hying. fooling, and talking to everyone. He had the misfortune to wreck his I /C model the second day of the mect. but rebuilt it in time to place third. We put on his usual demonstrations with "Fireballs", Arden 19 powered. " Firebabys", Wasp powered, and his various other creations.

I ooking back this was probably the greatest landmark in thy modelling career, and I had thought I had seen a great deal.

Doug lieagley.

Rhodesian Nationnis

Held at R.A.F. Heany, a very large airfield with a vast surrounding area of flat "bundu ", the meeting opened with two blustery days and closed with perfect weather for third and fourth days. Highlights of the many ceents werc: a 05 in.p.h. Class B team racer by Bill Heckler of Salishury, who also put up a new record of $135 \cdot 4 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with his McCoy 60 speedster (at 4.500 ft., on a hot day) . . . a combination team race with so laps of Class A, followed by 160 with Class B.. Rublier was won by that hardy perennial a Korda Wakefield . . . Jetex (more powerful at this altiturle than at sea levell taken by a Little Stinker with extra span... P.A.A. Load, for the first time in Rhodesia A marathon for one hour. open to glider or power teams of two, won by a Frog 150 model averaging 100 secs and of course, the " natural" native recovery scrvice which is encouraged by substantial rewards. Incidentally the Rhodesian entry for the S. African Nationals, reported in our August issue, were forced down en route in the veld. They say the next trip will be made by train!

Iarael National Championships

Held at Meggido airfield, the first National contests of this country were elementary in nature, heing for most of the modellers. the first competition ever. Winters aggregates in the region of 10 minutes are indicative of hetter standards to come, and if the practice of using the Aero Club's Piper Cubs to chase o.o.s. 's is continued. we might say that there at least the Israeli boys are ahead of the rest of us.

[^1]Our correspondent in Israel tells us that after the contests. he can claim to know every bush in the district for miles around, as he was "acrial spotting " in the liper Cuh. On one fight, with Major Tuvia Sinai, he chased the winning Sandy Hogan seen in the photo on the opposite page. The total airborne time of the model was 22 minutes 28 soconds, far greater than that recorded on the ground, of course. During this unusually interesting acrial chase (surely the only organised scrvice of its kind outside Russia ?), we learn that the Sandy llogan became involved with a particularly strong thermal. shooting upwards at the rate of 800 ft . in perhaps $8-8$ seconds. At that rate of climb, the Culb was hard pressed to remain above the mostel!! It was successfully chased to its final lancling spot. six miles away on the Little Hermon mountain one of Israel's gliding centres.

As intimated in his reply to Col. Bowden by N. Kadmon. published in October issue, acromodelling in Israel is organised from the beginner stage upwards as an education and grounding for later "full-size" aviation careers. Typical of this high standard of organisation, was a puints system used to find their Champions and leading clulb. Competitors had to serve as retrievers, dispatchers or clerks in events in which they did not compete, and olficially approved timekeepers (who have to quality with certified good eyesight, as acromodelling instructors and pass an examination). had to function as timekeepers in all contests they did not enter. Most coveted job at this nationals. was the post of " ilying timekecper", a job which was taken in turns by the older and more active lads. Incidentally, all competitors were under 18 years old.

An unorthodox subject taken along for exhibition by Jacob Lore of Ra'anana is pictured on the page opposite. Modelled on the Sikorsky S.51 it is a semiscale IIclicopter, using a MeCoy 29 fitted with a normal airscrew, and mounted on the hub of the main rotor blades. The engine is started up in the normal way: but prevented from twisting by being held in the manner demonstrated, then when released. the torque reaction of the motor drives the rotors around. in the opposite direction to the smaller prop.

Swedish Nationals

Halmotad. a beautiful town on the west coast of Sweden, was the venue for 105 competitors at the Swedish National Championships. Thermal activity. with accompanying dowacurrents, made the contests something of a lotter;, and it was mot until the last flights of the day were made, that a decision could be reached on the champion Wakefield, Nordic A/2, and F/F I'ower flicrs. A six-minute maximum time was used. anel quite a number of top duration flights appear in the results. Anders Hakansson. member of the 'ro Wakefield team, won that class with a total of $13: 51$, a performance that helped greatly to bring his MEamo club as Tcam leaders with a gross total of $34: 15$ for one entry in each event.
In the Vordic Glider class, at which the Swedish boys excel, Ebbe Carlsson headed the list with 13:30. Power champ is our old friend Borrje Porrjeson, flying his own design " Pladuska" to raise 10:49 without maximums. a figure which would top our own recent power championships, which were run in very similar weather conditions.

Australia

The " Jaints '" M.F.C. of Manley. Sydney, ran a comp. for their special glider class limiting total area to 350 sq . ins. Top times were somewhat limited by terrain and wind: but a good close contest can be run
on these lines in restricted areas, and the idea might well be used by other clubs. From Ararat in Victoria. we learn of a four-member club trying harst to spread the gome word among the populace. At a local air pagent they atided considerably in ratising 280 towards improving the local acrodrome, which we trust will be available for mondel as well as full size flight. Already well established in the public eye is the M.A.A. of Quecnsland. for that active promotor of acromodelling "sold" the liobby at the Royal National show, Brisbane, ly arranging a regular show on six nights in the main arena before crowds of up to 20,000 . Known as the 195! Royal National Control Line Championships, hightight of the meeting was a new Queensland sped record established by 15 year ohd Ted Ward at $113.88 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with his Dooling e9. The Boys uut thero are curtently crazy about combat liying (stramer cutting) with up to four in the same circle.

Stoedish Wakefeld men,
Roald Olsson and Ilelge Roald Olsson and Melge
Eliasson, with their Eliasson,
almost transparent almosit transparemt
covered
teên geared models. Right, Sicedish Power Champ. Borje Borjeson displays. the specially made faience arcarded for first place. The book apparplace. The wook appar-

THE UNITEI KINGIDOM CHMLLENGE MATCH

REPORTED BY P. FOULKES

FOLLOWING England's win at the initial contest staged last year in Scotland, the North Western Area Committee was tequested to handle the organisation of this year's event, and arrangements were made at the official Area battlefield, Tilstock Aerodrome, near Whitchurch in Cheshire.

Weather conditions were very close to that almost mythical " still air " about which we hear so much, but never encounter. Wind was almost absent, the sun certainly was, and rather low cloud reduced visibility to a fair extent.

	RUBEER				
IRELAND.					
Osbourn, N.	4154	2:49	3:44	11:27	36 : 33
Draw, 6.	1108	2:03	2:19	8:30	
Gray,	1841	4:36	2:03	A. 20	
Clelland, T .	3:51	1:33	2:52	$8: 16$	
SCOTLAND.					
Finlayman, 3 .	1:43	3:10	3:16	11:39	
Owaton, R .	2:12	3:07	2:50	8:09	30:29
MeConnchie, W.	1:52	2:01	2:44	6:37	
Simoion, G.	: 53	2:05	1:04	4:04	
ENGLAND.					
O'Donmall. 1.	3:49	5:00	4:17	13:06	
Palmer, G.	t 30	4155	2:55	B:20	
Marcui, N.	: 30	3:15	4:04	1-04	2):50
Bennetr. A.	: 20	-	-	120	
WALES.					
Holland, F.	2:40	$3: 13$	1:36) 129	
Quick, E.	1:31	2: 47	2:36	7134	24: 24
Evari, ${ }^{\text {B }}$.	2137	: 58	2:32	6:07	
Crumplina ${ }^{\text {c }}$	$1: 14$	-	-	1:14	

Whilst competitors fairly regularly recorded tlights of 3 to $4 \frac{1}{2}$ minutes in all classes-as was to be expected with so many seeded International Team members present, only two maximums were obtained during the day. All contest fights ended within the airfield boundaries, with the exception of one case of timer failure in the power event, though most models landing in the far corner of the field lost a few seconds owing to poor visibility against the wooded background. Sparse thermal activity was about at considerable altitude, but was more than balanced by reverse offect from downdraughts, this being well illustrated by Faulkner of the English glider team who made two excellent $4 \frac{1}{5}$ minute plus flights, but with identical trim and from a perfoct launch could only record 1:35 for his last flight, the model sinking remarkably fast.

POWER					
ENGLAND.					
Bickarseaffo, J.	3:50	2:27	4:58	11:25	
Brookes, A.	3:10	3132	4:00	10:50	13: 13
Dallaway. W.	5,00	3:45	2:02	10:47	
Parkini, G.	2:29	2:49	4:53	10:11	
WALES.					
Qirch, A.	3:30	3:09	2:53	9:32	
Barker, D.	2:39	4107	2:13	$8: 59$	26:38
Narth ${ }^{\text {P }}$	2:43	2116	3201	8:00	
Madee, J.	: 07	-	-	: 07	
IRELAND.					
Gardiner, R.	2:32	1:37	2:32	7101	
MrMillera	1:42	1:19	2:09	5:10	20:26
Piddington, B .	14	1148	1:55	$4: 30$	
MeDonnall, F.	-	2,01	1:44	3:45	
SCOTLAND.					
Parioni, R.	1:45	1:51	2:45	$8: 21$	
MeMaster. J.	: 51	2106	1152	4149	20:26
Gillroy,	2:23	: 11	2:03	4:37	
Howltt, S.	2:39	-	-	2:39	

Samil of tha eictarion Englinh team are ahemen the Challenge Trophy by S.MIA.E. Vice-Chatrman R. P. L. Goaling. left to right they ares: Palmer, Afarmen, Lamblo, O^{\prime} Donnell, Parrance, Perkins and Bronfin.

Models for the most part fell into the International specifications, though a few of the Scottish boys favoured a larger power job. Only one " toothpick" was seen, and no exceptionally long Wakefield fusclages. It should be noted that whilst most models were conventional in design, all were extremely well built, and many showed-as was to be expected at this class of meeting-evidence of very careful trimming. This was evident from A. Birch (Wales) who topped the glider men with three very consistent flights with a conventional but well constructed model.

Main impressions of the meeting were of an excellent sporting occasion held in fair conditions that gave a genuine test of the models themselves and not their thermal capacities. There were some surprising failures in the England Rubber Team in the first round, only 42 minutes coming from four top class men. Bennett wrote off his model

completely, and only a " backs-to-the-wall " cffort by the remainder kept them in the rubber picture. Scotland obviously had some very good material present, and a very small variation could have sent the Trophy back to North of the Border. Ireland gave the impression of individual quality. only limited by lack of opportunity to compete in larger events prevailing on the "mainland".
Someone always has to be last, and this time Wales filled the position with considerable honour, for their performance was very consistent indeed.

```
ENGLAND
SCOTEAND
SCOTEAND N. IRELS
```

$$
\begin{array}{cccc}
R & G & P & \text { rotal } \\
2 & 5 & 5 & 12 \\
3 & 3 & 1 & 7 \\
5 & 2 & 1 & 6 \\
- & 2 & 3 & 5
\end{array}
$$

AMrikll Clllistans in my readers (all three of them!) May the festive scason bring good choer, goodwill, and happy landings for those types who crecp out carly Christmas morning for the odd fip

From correspondence reccived to date, it is obvious that the proposed contest rules changes are creating plenty of discussion, and it is to be hoped that responsible modellers will not just dismiss the matter as restricting their designing abilities, or just another attempt by the "non-Ryers" to alter rules just for the sake of it. It ghould be borne in mind that these fellows have practical experience of the fiers' requirements, but what is more important, they are much closer in touch with matters affecting the future of aeromodelling than the average contest man. It can only be by a juđicious consideration of all factors that the activities of the latter can be isafeguarded by the former, and anyonc with any knowledge at all of the situation must beaware that the greatest difficulty facing the movement at present is the flying field bogy".

Ireland

BELPAST M.F.C. provided cight members to represent Northern Ireland in the U.K. Challenge Match at Tilstock, and are naturally proud of the fact that they won the Wakeficld event against so many stalwarts. This success was mainly due to the sterling efforts of Norman Osbornc, Gordon Drew and L. Grey, who for once had no bad luck 1 Their power team had to be satistied with 3rd place, but the glider boys were obviously not experienced enough with the tow-line. the next clut comp. is a power precision event to be slaged on Buxing Day.

To round off the most successful contest season they have yet enjoyed, the control-line boys of the DUBLIN S.M.E.E. gave an excellent demonstration of flying at the Midget Car Club meeting at Swords on October 5 th. The programne included a masterly exhibition of stunting by Johnny Carroll with lis apecialityacrobatics whilst holding the handle in his teeth 1 A thrilling combat event between junior members Ridgeway and Murphy, and some hectic dicing loctween John Thompson and Kory Deale ended in the complete write-off of the latter's D.C. 350 " Stunt Queen "

East Anglian Area

The first East Anglian Team-Racing Rally, staged by the CAMIBRIDGE M.A.C. was an outstanding success. Watched by a crowd of over $\Omega .500$ spectators,
some 30 competing teams put their models through their paces in conditions far from ideal. Howewer, despite a strong, biting easterly wind and intermittent showers, competitors and spectators alike thoroughly enjoyed the event.
The majority of the climinating heats were flown of " two in a circle" to give competitors an casier taste and spectators more to sec.
The star attraction of the Rally was the first organised " A" race. Although this did not attract so many entries as was anticipated, it was a gallant attempt to kindle interest in " The race itsclf was flown over 75 laps and was well worth seeing. The sight of "six-footers " Butcher and Timms, with shorter Mason rotating rapidly in the centre of the circle, flying their tiny models on $20-\mathrm{ft}$. lines, brought forth many a laugh and cheer of encouragement from the crowd. The eventual winners proved to be the Harrow club.

In an exciting four in a circle class "A" final, Butcher (Croydon) flew his all red E.D. 2-40 powered " Sorcerer's Apprentice" to a well deserved victory. Although a long way behind at the start, he finished up several laps ahead of his elosest rival. A notable achievement during this race was a 4 second pit-stop by the Croydon Team.
Butcher again piloted the winning model in Class "B". the model this time being the very fast ETA 29 powered Wrangler V owned by Peto Wright.
Considering that this event was the first Tcan Racing Rally ever organised by the club, things ran extremely smoothly. The only criticism lovelled against the administration was that processing of the models was very slow and needed speeding up. No doubt this " trouble" will be cured at future Rallies.

Clanid A	Crowe Manon Mllford	(Harrow) (Bunhy Papk) (St. Albans)
Clase A	Butcher Masan Elton	(Craydon) (Eunhy Park) (MIII HIII)
Clan 8	Wricht Mason Crowe	(St. Albane) (Bushy Park) (Harrow)

Ken Lloyd, formerly of the Solihull club, has moved to Essex, and is hoping to start a club in his district. where a new town is in course of construction. Anyone interested should contact him at 37, Luncies Road Vangc, Essex.

Aouthern Area

Torrential rain greeted competitore arriving for the Area Rally at Andover on September 28th, but it cleared a little in the afternoon. The Grange boys found themsclyes hard-pressed to maintain their team lead over Boumemouth in the M.E. Cnp. two coast boys filling the first two places in the individual placings. However, Grange managed to total up 44:53 with Boumemouth following very close on their heels. The least said about the 1.5 c.c. event the better-though ono very well known member of Grange (who shall remain anonymous) managed a 75 second engine run 1 Yes-he did havead.t. At the Surbiton Gala the boy had a final fling. placing 2nd in the team event, and Tony brooks 2nd in the individual placings.

South Eantern Area

This was another Area to suffer from poor conditions on September 28th, a boisterous wind persisting throughout the day with rain towards the evening. Despite the weather there was an encouraging attendance, and the towline technique of the Brighton boys showed evidence of their considerable experience of flying A/2's in all weathers. Men of Kent completely dominated the rubber event. and Brighton were again supreme in the power class. One feature of this meeting was the enthusiastic co-operation of the farmer, whose son is himseli an aeromodeller I Results were:-

Glider	Gigala, P. Pultack, F. Boyall, F.	(Brigheon) (Tun. Walla) (Brighton)	$4: 11$ $1: 03$ $1: 05$
RUBEER	Gras, M.	(Man of Kant	5:45
	Норе, \boldsymbol{B}.	". ${ }^{\text {a }}$	3: 19
P	Haloway, P.	(Arighean)	6.130
	Lachyar. E.	(Eanthourna)	1143

In the Area Championships. Brighton led with 14:16 over Men of Kent 12:00 and Tunbridge Welle 8:03.

On the 12th October, the SOUTHAMPTON M.A.C. beat Portamouth in the " Hobart Trophy" by 27 points to 10 , making this the fifth win in succession. Each entrant in the teams of six had two tights each, top men being D. Smith 2: 42 (plider). D. Gordon 2:14 (rubber) and A. Sanger 2:50 (power), all being from Southampton.
SOLTHERN CROSS A.C. news-shect has the right answer to the flyaway model difficulty when stating that the " solution to the problem lies not with the models or their design, but with the modellers". We've preached that for years. but in so many directions it has fallen on deaf ears. I would like to correct a misunderstanding however-there is no attempt to alter actual model specification, only to modify launching. Keith Donald still leads the club championship with 8.8 points, next being Bill Gravett with 8.36 whe also won the club Nordic contest on October 5 th. with a total of $9: 071$.

Midland Area

The FORESTERS (Nottingham) M.F.C. finished the contest season quictly at Woodford, and now take a breather until the club winter comps. The most spectacular prang seen for some time occurred recently when a new member rolled up and paid his subs ! (Treasurer ?) He produced a beautiful new cabin job and proceeded to test fly-but right in the path of Johnny Howard's new Class B racer. The problem about immovable objects and irresistihle forces was solved with a bang! The racer was being clocked at at about 10 m m.p.h. with occasional bursts of 105 from the still stifi ETA.

SOLIHUL M.F.C. lads had a good day at the Y.E. News Rally, and were well satisfied with their prizes. Next mecting was the Area Rally at Loughborough, where wet though calm weather was experienced. Solihull supplied top team with J. Rogers as best individual with just over 12 mins. including one maximum. Arrangements are under way for the annual Glider Rally to be held sometime this winter, so look out for further announcements
Though not securing any top places, the WOLVES M.A.C. have had some success, with L. Haywood. P. Richmond and K. Foster gaining places in the A/2 and Power Trials. Like most clubs, members are being lost to tho Forces, so roll up all you modellers in the Wolverhampton district. Club micets every Tuesday night at Bingley Strect Schools.

The former Cedars club has amalgamated into the HINCKLEY M.A.C., with one of the finest II.Q. in the Area at the local community centre. Young members are being particularly cared for, with a series of lectures and demonstration classes by Mr. Nixon. a prize being awarded for the best model at each stage in construction.

South Wextern Aren

The final Area rally was held at Chagford Common in poor weather, when S. Gibbons (Exeter) made best showing in the Frog Senior event with 5:13, and the Plymouth Team scored 14:07 in the M.E. event. Other events staged by the Area placed Gibbons top in open power with $5: 18$: D. Brock (Plymouth) $5: 39$ in open rubber: and Junior M. Hurren (Exeter) top in the nomination event. Exeter won the Area Shicld with 109 points against runners-up Plymouth scoring 105.

The 6 th and final round of the PLYMOUTH M.F.C. championships was held on September 21 st in dry but mindy weather. D. Brock won the rubber class after a tussle with the Richards, while G. Lynn increased his lead to win the glider section. In power, A. Thomas, a junior, repeated his 1951 success with a total of 69 points, two other juniors fishing 41 h and 5 th. New club records were established in rubber. 12:43. power 5:08 and Jetex 7:57 during the course of the championship.

North Eastern Area

Formed just over a year, the WEST HARTLEPOOL \& D.M.A.C. membership stands at 35. Almost all flying is done at Greatham Aiport, where a hut houses models and bods when repairing. Some very good flights lately have pushed the power ratio record

up to 28: 1 by W. Hunter, and the sailplane record to 14:31 by, K. Lacy. Indoor Gying has become quite popular since the acquisition of a clubroom, where meetings are held every Friday night.

October 12th saw a gala day organised by the TYNEMOUTH M.A.C. when members tumed up in force to fly in fine but breezy weather. Outstanding success was Ron Pollard trying out a brand new " Jaded Maid", and winning the power event with 4:28. Other club successes are K. Mole's 2nd concours place at Sherburn, and the Area knock-out finals.

Western Area

SOU'I'H IBRISTOL M.A.C. scored some 43 minutes in the M.E. glider event at Lulsgate, following up with a control-line display at Filton for the Battle of Britain show. A single line team-racer has been designed and flown by Ron Hillman, success to date encouraging him to go ahead with the idea.

Despite a poor share of the better weather, SWINDON M.A.C. have had a good season, with new records being the order of the day right up to the last meeting of the season. which byt some welcome miscalculation was blessed with fine conditions! Trowbridge beat the S.M.A.C. for the first time by two points in the annual inter-club challenge match. The Slope Soaring Mect was flown off in almost continuous rain, but in spite of this some 60 dights were made to give a win to K . (Pencil) Smith of Swindon who scored 4:36 against the 4:28 of "Trowbridge's R. Taylor. After settling down to the shock of fine weather at the end-of-scason meeting, a grand day's flying was enjoyed. Jim Russell's " Marauder" acored a triple max. in the open glider event, followed by Junior J. Scandling, whose "Lulu" clocked 6: 24. The power event produced another club record, that of 14:22 put up by " Flip" Turtell's 1.3 c.c. powered " Mallard ". His three flight aggregate of $13: 45$ gave him an easy win. Open rubber winner T. Rogers did not exert himself to scure a modest $2: 51$.

North Wenterin Area

G. Evans of Cheadle won the glider section of the Area Championships held on October 13th with a total of 11 : 24 power lumours going to Gig Fitflander 5 : 29 , and rubber to Johnny O'Donnell (Whitefield) with 7: 24. Overall champ. was announced as Garth Evans by virtue of his win plus bth place in the rubber class. 32 entries were received for the M.E. Cup event won by A. Wrigley of Whitefield with an aggregatc of 11 : 26. whilst S. R. Targett (Whitefield) topped tho 1.5 c.c. power event with 8:57. Continuous rain from 11 a.m. to approximately 4 p.m. did not improve matters.

The fine weather experienced at the postponed D.D. Raliy probably helped D. Kcane of the OLDHAM \& D.M.A.C. in winning the junior power class. The model is his own design, and the two-flight total of 7 : 25 shows the normal standard flying of this member.

WALLASEY M.A.C. organised a trip to Pwllheli Butlin's contests, with the result that they picked up two lsts. Jim Done won the power event with a twoDight score of $2: 30$. and the team-race boys Pumford. Alexander and Worthington cleaned up for the second time this year. Most members are now looking forward to that long forgotten Sunday dinner, such meals having consisted for many months of a hurried bite from a sandwich and a swig from a thermos flask!

The WHITEFIELD M.A.C. has been somewhat hectic for the boys, with contests at the rate of one a week I Two members were selected for the English

" DAILY DISPATCH" RALLY RESULTS		
SENIOR CHAMPION A D. Bunnete	(Whicefleld)	
JUNIOR CHAMPION	(Whitafield)	
WOMEN'S TROPHY		
E. Mratiding TROPHY	(Whitefiald	
F. Leel J. Bridgawood	(Ashron) (Woodlands)	Luscombe fa Curtif Owl
JETEX		
H. O'Dannall J. O'Dannall	(Whitefald) (Whitefiald)	$\begin{aligned} & 5: 44 \\ & 3: 29 \end{aligned}$
Junior		
M. O'Dannall GIIDER	(Whlediald)	
G. M. Byrd	(Loughborough)	14: 43
L. Bacty	(Sollard)	16:30
G. Burton	(Outaws)	12:57
junior ${ }^{\text {H.O'Donnell }}$	(Whitafeld)	8:57
POWER		
J. Arden	(Asheon)	12:51
c. Lord	(Accrington)	12:42
R. Monke	(Birmingham)	9:19
Junior D. Kease	(Oldham)	7:25
RUBBER		
A. Wrigley	(Whitefleld)	10:00
E. Dewick	(Swallownett)	1. 27
A. Andartan	(Cheadla)	- 21
Junior ${ }^{\text {H. O'Dannall }}$	(Whitefiald)	6.31
EAM RACE Clas A		
S. Cooper	(Cheadle)	465 m.p.h.
Clase B	(Outlaws)	$63 \cdot 6$

team in the U.K. Match, and places were also scored at Pwilheli. The club topped the Area scores in the M.E. with $40: 40$. The weekend of October $4 / 5$ th was a profitable one for the O'Donnell family. On the Saturday, J. and II. flew in the Jetex finals at Fairlop, John being successful in winning both the Trophy and a very generous prize. Wimning fight was $4: 25$ on a 14 second motor run, the model being a very light 200 powered model-weight without Jetex unit 0.8 oz. 1 Construction was mainly $1 / 64$ shect. At Woodford the following day, the club collected no less than 10 prizes. Alan Wrigley won the rubber with 2 max's tlying the inevitable diamond-pylon-feathering-prop club design model, while Hughic O'D was top junior with 6 : 31, flying a similar job. In the junior glider 14 . O'D placed first with 8: 07 flying a 12 ft . maximum area design called the "Demoraliser". Among other wins, Mrs. E. M. Bennett won the Woman's Cup with $7: 15$, and to round things off A. D. Bennett collected the Senior Championship. and H . O'Donnell the Junior ditto.

With the end of this year's competition flying the CHEADLE M.A.S. can look back on a very active contest season. The liarrow Shicld team, Messrs. Harrison, Evans, liaulkner and Taylor put up a good show to aggregate 35 min . 18 secs. The day's activitics included a rebuild of Harrison's fus., Faulkner's wings, and a hectic recovery of Taylor's Wakefield, o.o.s. after only 1 minute.

The superb Sherburn Rally weather had lots of the boys worried, but as the wind freshened several maximums were recorded, Ian Harrison flying his 202.40 in . span lightweight into first place. Charlie Gardiner llew his curious 41 in . "Sizzling Liz" extremely long moment-arm, 10 per cent 'T/P and an E.D. $2 \cdot 40$ up front. Woodford cast its usual hoodoo over the Cheadle models, Garth Evans's new 12 ft .4 -minute job caught a nasty downdraught on its second flight, having " treed" on its first, breaking off a wing-tip. Andy Anderton (now R.A.F.) hooked some lift and took home 3rd in rubber. MLr. Cooper's lst in Class "A " team-race builds up the C/L boys.

London Area

The REGENTS PARK M.F.C. season ended with a glider comp., when, despite poor weather, times were quite high. G. Butt was the worthy winncr, his last Hight being a maximum. Recently the juniors flew against the seniors. and this time received a thrashing.

CROYDON \& D.M.A.C. spent a really miserable day at Fairlop on the last of the Area comp. days. Strong wind blew in the worst possible direction, and later gave way to steady rain. R. Gilroy topped the London Area glider results with $9: 12$ and the club managed just over 30 minutes for the M.E. Cup team. "Daffy" Dilly did three flights of 3 min . plus in the 1.5 c.c. ovent, his model being returned cach time by a different person. Lacky lad-it wasn't his motorll Just to show they could fly gliders. the boys cleaned up at the Surbiton Gala, Des Yeabsley winning the individual with $14: 45$. flying his 12 ft . monster, and, assisted by Cameron, Davis and Miller took the team event with over $5!$ minutes. Late in the day Ed. Bennett was out airing his geared Wakeficld, using a 24×24 prop and 16 strands of \ddagger in. Pirelli. Although showing promisc, it hardly came up to the 13ilgri standard. Mr. Pitcher has joined the big prop brigade: with a "straight" motor his model showed a slight improvement over the original layout.

South Midland Area

Starting in good weather. the Area Rally, held at R.A.F. Halton on 28th September, was deluged with rain from 2.30 onwards-apart from a ten minute break at about 5 p.m. Even so, hardy types flew free-flight in the rain when it became apparent that it was not going to let up, and all the team-racing finals were held during this wet period. The open rubber event for the "Battle of Britain" Cup was won by Rowe of St. Albans (5:12) with Knight (Northampton) sccond with $5: 10$ and Cooke (Henley) making best flight of $3: 04$ but getting treed. Painter of IIenley won the glider event with 7:01 for two flights including one max. Pete Holland (Apsley) placing sccond with 5:28. Open Power went to Fuller of St. Albans with $7: 40$, with an Irish visitor Knight as runner up with 6:16. Other winners were: Sills (Bedford) radio control : Muscutt (West Essex) class A team-race: Crow (Harrow) class 13 team.

LUTON \& D.M.A.S. Junior G. Moss won both the power ratio and scramble events recently-certainly a feat of endurance, as most of the seniors were whacked out before the day finished. Following week, the committee members turned out with models to fly off their own comp. while club members ran the comp. (Good idea that.) Sid Miller won with a glider converted from his Wakeficld. (Shades of pre-war glider comps.)

HENLEY M.F.C. are naturally pleased to learn that A. W. M. Cooke won the "Flight Cup" with a time of $14: 15$, this being their first national win. On the same day D. Painter placed 2nd in the C.M.A. Cup only 9 scconds behind the winner, this incidentally being his first national comp. He has since raised the club lightweight glider record to 15 : 14. Success again came his way at the Club Glider Cup comp. held in very windy conditions, score being $7: 04$ for two flights.

Northern Area

For the Filey Butlin's Contest the Area boys had the duty gale, accompanied in the early stages by rain squalls. Wise men used 2 mins. or less $d / t ' s$, and an A/2 at 2: 59 took some secing. Many were the lost and o.o.s. models, some under 2 minutes. At first Silvio

Lanfranchi thought his one flight of 2:40 in the power was sufficient but he had to make another when Les Fox of Leeds somehow managed a phenomenal 4 minutes on his 2nd flight-by far the best fight of the day. Vic Dubery's first two flights put him well in the lead in rubber. but he took no chances and put up a third flight to make certain. The glider event was won by R. A. English of Woodlands with Ernic Farrance chasing him closely. All fights of 2 minutes or more entailed a 1,500 yard assault course effort-a sprint on soft mud through the camp, scramble through a large over-grown ditch, up a llli, through a farm, across a road, a meadow and then a ravine 100 ft . decp choked with brambles, thistles, and a muddy stream. While all the steeplechasing was going on, the happy band of control-liners were tearing up the air in the team race (by courtesy of Barnsley Enterprises Litd.), W. Lavery and team won the Cup for this, while the Concours went to J. D. Broughton of Bridlington for his enormous Gipsy Moth.

In spite of the fantastic conditions of wind, rain and terrain a reasonable day was had by all and a highly profitable day by a baker's dozen of modellerslwho netted $£ 70$ between them

GLIDER	A. A. Englinh E. Farrance R. Firth	(Woodlands) (W. Yorkn) (York)	$\begin{aligned} & \text { 3: } 41 \\ & 3: 10 \\ & 3: 06 \end{aligned}$
RUBEER	V. Duberry P. Guate E. Jackson	(Laed』) (Barnalay) (Leed.)	$\begin{array}{l:l} 5: 58 \\ 4: 09 \\ 2: 54 \end{array}$
POWER	S. Lanfranchi L. Fox G. Lundy	(Bradford) (Leade) (C. Member)	$\begin{aligned} & 5: 23 \\ & 5: 11 \\ & 1 \end{aligned}$

CONCOURS J. D. Brougheon (Bridlington)
(Barniley)
A stunt-scale C/L contest is of course a very specialsed event. It was therefore gratifying to see a line-up of eight scale models for the Jess Woolland contest staged by the LEEDS M.F.C., though these had dwindled to five by the time the comp. started. Chairman Tony Mann won first place at the expense of some damage to a beautiful model, his flying being an example of excellent control over a relatively lowpowered model in a tricky blustering wind. Second placeman Ken Foster earned applause for his skilful playing of a model Fokker Tripe equipped with a baulky motor, while Gordon Butler flew a lipsy with over twice the b.h.p. into 3rd place, though here again troubled with engine gremlins. Results were very close, showing judges Trevor London and George Wilkin to be fair but exacting.

The CLUBMAN

NFW CLUBS

NOFOCASTRLA M.A.S.
R. F'. Sisnderson, 2. T'umulus Ave, Wellersille, Newcastle-on-Tyne 6

SFCRFTARIAL CHANGES

TYNMMOCTII M.A.C.
w. Pollard, 31; Donkin Terrace, North Shelde.

WOLVES M.A.O.
R.D.Nicholis, 10 . Green Lane, Tottenhnll, Wolvorhnmpton. WREKIN M.A.C.
G. 1). Shvege. f. Woollam Rd., Wellington, Shrops.

DARLINGTON M.A.C.
11. Sivindon. 17. Marwood Crascont, Brinkburn Are., Jarlington, Co. Durham.
LKICESTER M.A.C.
H. R. Hart, 13. Wheatley Rd.. Stocking Farm Kistate, 1,eicestar.
YLYMOUTH M.F.C.
M. D. Rk'hards, Jnr., 47, Willon St., Stoke, Ilymouth. PLUMSTEAD \& D.M.A.C.
A. H. Alcorm. 10ß., Preston Urlre, Bexleyhoath. Kent SOUTHERN OROSS, A.C.
G. K. Gated, 45, Boundary Rd., Hove 3, Sunsex.

What is Ruality

θAl.iry in a model aircraft may be measured in workmanship; or all three
To the average modeller who files his models, nerformance is most important, and as performance is inherent in design, it is design that concerns him most. For this reason, contest diers without the necessary technical knouledge to design for themselves, build and fly kit models, often beating on level terms contestants of greater experience. Their whole attention can be directed to the building and trimming of the model in the knowledge that the aerodynamic requirements are accurately fulfilled before they start.

Take two examples from this season's results.
Mr. Tony Upfold of the Hadley and District Club won the Sir John Shelley with a Mercury Mallard built from a kit bought " over the counter". The contest was flown in ideal conditions of thermal flying, and his times were exceptional : three maximum flights of over five minutes cack and a final decider of 9 mins.

The Southern Area free flight Championship was won this year by Lt.-Col. R. L. Yates, a member of the S.M.A.E. Council, also fying a standard Mallard built from a kit, the contest being held under the most appalling conditions of wind and rain.

That the Mallard can win contests under such contrasting conditions in the hands of modellers who are modest cnough to admit that they are by no means experts, is proof that the basic design of the macisine is right and the quality of performance is there.
(Adretifer's announcement.)

Shops showing this sign
 sell the best value

lowest priced and highest quality hondy home products.

Joy stixeat

Forthetands redthot heat Por use on Ideal He,ilers carengites, etc,

Joy STIXIN feplaces once and for all loose wles in furo warrounds and bathrooms. Ileat and waterprool. Sticks, china and heavy eath enware perminently. Tobes 1/- a $2 /-$ Tin $_{1}$ t lb. 2/-. 10. $3 / 3$. 1 lb. $5 / \mathrm{E}$.
JoyNU-LEATHER re-turfaceal bather leothers. Hor 4 unt on upholstery, enr interiors. etc In all colourl Tins $3 / 6 \& 6 / 6$

Nere Discoryyy

TRANSPARENT PAINY. A glass-bard iransparent provecling lacquer can be applied to Eliminates clcandur end preserves the vurtace. Price Cartons 2/-

products are sold clasp model shops. Joy- can buy. ately in all goodood Cement the best vou can bay. mf, 4 poutcanit to The of your neatest stockist.

Silverving Superb Solials

All to $1 / 72 n$ S Sale Price 2/6 inc. Tax. Also available but not. illustrated here SKYROCKET METEOR VIII SABRE - MIG 15

Build the Latest JETS the easy way!

THUNDERJET

SWIFT

HALEAX MODELSLTD

Richardson Street, Pellon Lane, HALIFAX, Yorks. $\star \star \star$

Here's the ideal gift suggestion - the Wolf Cub Electric Drill-which will provide endless profitable pleasure to every handyman-young or old. Specially designed for home use this powerful, popular-priced f' Drill does hundreds of drilling, grinding, buffing, sanding and polishing jobs.
YOU CAN GIVE A COMPLETE WORKSHOP . . . The "Cub" Drill is the power unit of the Wolf Cub Home Constructor Workshop Equipment which can bo built up as desired. You can add a Bench Clamp or a Drill Stand or select a Conversion Set to transform it into a powerful electric saw bench or wood turning lathe and the complete outfit including the Cub Drill costs only £15.0.0!

Stocked by all leading tool merchants Wite zaday for fully illustrated brochure "Profitoble Pleasure"

IMDISPENSABLE IN THE WORKSHOP HANDY IN THE HOME	
	instant use on crockery, glass, thousand and one thines hand led by the hobbjes enthusiast. Instantdrying, insulating, witerproos and heatproof. Durofix is grand for repairs io electrical, sports and leather goods. Durofix Thinner and Remover is sold in handy 2 oz . bottles.

SOLDERING IRONS MAKES sOLDERMG
This is a granmented eloctile tool which will pay for izself many times over by repeiring and piving longer life to metal household goods. In the prorkshop is is indirpenasole. Suppiled grith Standard his, Hatcher or Peocil bit Voltiges 100/110 200/220, 230 fas0 Univerad AC/DC

SILENT OPERATION QUICK PEMETRATION CAN BE USED IN A HAND BRACE Spiral fured masomry drills which can be uned in a hand-bract for boring clena round bole ealily and quickly in brick, stone, marble, tilc, ete. They lave fity timea the life of ordinary drills beraure the Durium Carteide tip is herder than any metal or elloy. Sizes form $5 / 32^{\prime \prime}$ to 1^{μ} diam. and in long lengtha for peoeraxing right through walli. syior

PLASTIC WOOD

APPLIED UKE PUTTY, DRIES LIKE WOOD
Can be cut, planed, polished and painted like wood. Will take nails and screws like rood. Ir does not blister, crack or decay. Rawlplug Plastic Wood is actually the best quality product of its kind on the market. Plastic Wood Softener and Remover is sold in handy 2 oz . bottles.

BURLINGTON HOBBY CHEST

Yyou have to handle the Burlington to appreciate the crattsmanship that goes into its making．
Once you＇ve tried the perfect balance of X －acto knives and tools and tested for yourself how scalpel－sharp X－acto cutting edges really are you＇ll be convinced that the craftismen who made them know exactly what craftworkers and modellers want．
If you are not using X －acto yet，see your X －acto agent as soon as you can．He＇ll show you the Burlington and the complete series of X－acto knives，blades and tools．

Wrife for illustrafed folder so

FRIX LTD．，（DEPT．K）．If，OLD EURLINGYON ST．，LONDON，W．I． rula in a gleamina mauldad cabinec． you to success through personal postal tuition

THOUSANDS OF MEN in important positions were once students of The Bennett College． They owe their success to Personal I＇ostal Tuition－The Bennett College way．You have the same chance to qualify for a fine career， higher pay and social standing．

One of these courses will lead to your advancement

Accountancy
Auditing
Book－keeping
Commercial Arithmetic
Costing
Agriculeure
Archlecture Alrcraft Malntenance Bullding Carpentry Chemistry Civil Englneoring Diesel Engines Draughtsmanship Electrical EngIncering Electric Wiring

Modern Business Methods
Shorthand
English
General Education Geography

Engineering Drawings
I．C．Engines Machine Dosign
Mechanical Engineering
Motor Enginecring
Plumbing
Power Station
Engineering
Press Tool Work Quantly Surveying
Radio Engineering

GENERAL CERTIFICATE OF EDUCATION．

Journallsm
Languages
Mathematics
Public Speaking
Police Subjects
Short Story Wrizing
Road Making
Sanitation
Sheet Metal Work
Steam Engincering Survaying Telecommunlcations Textiles Wireless Tolegraphy Works Management Workshop Practle and many others
R．S．A．EXAMS

 IMIPOIRTEIRS OF TIMIBEIR FOIR MODEL MANUEACTUURIIRS

AFRICA HOUSE. KINGSWAY. LONDON.W.C. 2 TELEPHONE:HOLBORN 7053 TELEGRAMS"'BALSAWUD'LONDON

THE
FLUXITE QUINS AT WORK
"And now let's begin Lesvon Iwo.
Heal the bit is the ment thing to do.
And when it ly seen That the flome's showing green,
The bit's nitecly heated right through.'

See that FLUXITE is always by you-in the housegarage - workshop - wherever speedy soldering is needed. Used for over 40 years in Government works and by leading Engineers and manufacturers. OF ALL IRONMONGERS, IN TINS I/- upwards
TO CYCLISTS! Your wheels will not kecp round and true unless the spokes are tied with fine wire at the crossIng AND SOLDERED. This makes a much stronger wheel. It's simple - with FLUXITE - but IMPORTANT!

FLUXITE SIMPLIFIES ALL SOLDERING

Write for book on the art of "SOFT" SOLOERING and for leaflet on CASE HARDENING STEEL and TEMPERING TOOLS with FLUXITE, Price Ild. each.

FLUXITE LTD., Bermondsey Street, S.E. 1

Flying High! HIGH POWER ELFIN LATEST
 providing an efficient answer to many power problems,

Made by AEROL ENGINEERING LIVERPOOL, 3 Home Trâde distribution through:
E. KEIL \& COMPANY LTD., LONDON, E. 2

AMBITIOUS ENGINEERS

Have you had your FREE copy of "ENGINEERING OPPORTUNITIE"?

Whatever your age or experience you must read this highly informative guide to the best paid Engincering posts. The handbook contains among other intensely interesting matter particulars of
B.Sc., A.M.I.C.E., A.M.L.Mect.E.,
A.M.S.E, A.M.IM.I. A.M.I.P.E.,
A.M.Brit.L. R. E., CITY AND

GUHDS CiVIL SERVICE and other important Engineering Examinations: ourtines home-study courses, in all branches of CIVIL, MECHANICAL, ELECTRICAL. AUTOMOBILE, RADIO, TELEVISION. AUTOMOBILE, RADIO, TELEVISION. AERONAUTICAI, and PRODUCTIOX GOVERNMENT EMPLOYABENT. BUILD. ING and PLASTICS. GEN. CERT. OH EDUCATION, ecc., and exptains the unique benefits of our Employment Department.

We definitely Guarantee "NO PASS-NO FEE",

If you are carning less than f 15 a weck, you cannot afford to miss reading "ENGINEERING OPPORTUNITIES": it tells you everything you wan to knows to secure your foture and describos many chances you are now missing. In your own interests we advise you to write for your copy of this enlightening guide to weil-paid posts NOW-FREE.

BRITISH INSTITUYE OF ENGINEERING TECHNOLOQY
901 , Shakespeare House.
17, is \& 19, Stratford Place, London, W.I. \ddagger

Ryzitux

39, Parkway, CAMDEN TOWN, London, N.W.I. Phone:GULliver1818 (one rainute from Northern line tube station).

REMEMEER RIPMAX FOR CHRISTMAS AND RIPMAX FOR ALWAYS MODELLERS, LEAVE THIS COPY RUST WHERE YOUR WIFE, SISTER SWEETHEART OR AUNT WII SPOT IT I SHE IS BOUND TO NOTE THE PERFECT CHRISTMAS PRESENT FOR YOU IN THE COMPREHENSIVE RIPMAX RANGE
FOR THE BEGINNER
The new FROG range of pre-cut llying model kits at $3 / 6$ each scamp. High Wing. Near Scale
Skippy, Low Wing.
Minnow. High Wing. ", "
Midze. Low Wing

FOR THE

POWER MODELLER
Allban 5 diesel motor E.D. 46 diesel motor $\ldots . .55 / 7$ Frog 5 diesel motor $\quad . . .5$ 49/6 The above afe sultable for :B.M.A. Point five... ... 9/6 Froz Zephyr $52 / 6$ Mercury Tiger Moth ... 34/7
E.D. I c.c. diesel motor ... $57 / 6$ Froz 150 i. $5 \mathrm{c} . \mathrm{c}$. diesel motor $49 / 6$ froz 1501.5 c.c. diosel motor $49 / 6$
Allbon 1.49 c.c. diesel motor $68 / 9$ Allbon 1-19 c.c. diesel motor 68
The above are sultable for :The above are sultable for :-
Veron Skyskooter (E.D. I., . $\begin{array}{lll}\text { Veron Bee Bug (E.D. ; c.e.) } & 14 / 8\end{array}$ K.K. Ranger (Team Racer)
(Allbon 1.49 c.c.)
$12 / 10$
Mercury Mallard (Allbon Ï. 49 cc.)

Frog 500.5 c.c. Glowplug motor
Elfin $2.49 \mathrm{c}, \mathrm{c}$ diesel moror 70/~
The above are suleable for :-
Veron Focke Wulf C/L ... 25/8 Veron Sea Fury C/L … $28 / 8$ K.K. Pacer C/L $18 / 4$ geods sent C.O.D. Orders of E1 TO ORDER :-Send cash with order or goods sent C.O. Od Orders of El and over ore Past free (G.B. onfy). SAFE PACKING and POSTAGE.

Better

 than Ever!
AERO MODELLER ANNUAL 1952

HERE ARE SOME OF THE PRINCIPAL CONTENTS... latest aerofoll sections : russian threehour worlo record glider : czech con. test power by worlo record designer husicka : selection of american long fuselage wakefields : jetex rrom germany vie smeed's queen's cup winner : powered TAILLESS PUSHER FROM ISRAEL : LATEST POWERED AUTOGIRO : MANY OTHERS : SOLID SCALE MODEL. ling and de havilland comet for $1 / 72$ or I/If SCALE: AEROMODELLING dictionary in french, german, itallan. swedish - only ONE IN THE WORLD : AEROMODELER'S SKETCH BOOK - HOW TO DO EVERYTHING IN PICTURES what it costs - the e.s.d of aero. MODELLING : YOUR FIRST ENGINE: PROPELLER selection : ducted fans : field repaiks : POWERED AUTOGIROS: CHOOSING PROTOTYPES for flying scale : Contest results to date : INTERNATONAL MEETINGS: GOVERNING BODIES: national and werlo records.

HERE a month earlier than usual in response to world-wide demands is the fifth AEROMODELLER ANNUAL ready to provide its usual meod of "gon" articles on all phases of model aircraft construction and flight. The usual wide selection of plans from the principal aeromodelling countries of the world inclade contribations from Israel, Germany, France, U.S.A., Czachoslovakia, Italy, Canada, and Gt. Britain-and enthusiasts will find adequate detall on them all to enable scaling up operations to be attempted, especially with the help of our axticle of Scaling Up Plans. The re-awakening interest in Solids has been catered for as well as such new developments as ducted fans, powered flying scale design and practical model autogiros. There is more reading, more helpful gen, and more of the sort of articles that our readors have been asking for than in any previous annual-get gours now while they are still in good supply!

160 pages size $8 \frac{1}{2} \times 5 \frac{1}{2}$ ins. Over 100 plans and sketches, numerous half tone illustrations, bound in cloth with goldblocked title on spine and face. Threo colour dust cover of De Havilland Comet in light. Price

Or direct from the Publishers $10 / 9$ post free.
 MECCA
204-206, WITTON ROAD. IRMINGHAM 6 .
for M.A. Kits and Accertories, Trix "00" and L.M.S. Co. "O" Rouge. S and 50 buses pass the door. Write, phane or call

BOLTON

Tel.: 7097

ROLAND SCOTT

The Madel Spocialise 147. DERBY STREET

The obwious shop for all Madel Arerof fiequirements

CARDIFF

Tel.: 2906s

BUD MORGAN

The Model Airctoft Specialist 22/22, CASTLE ARCADE

The Morl Order Service Send for latest Price Lisi

TC.: 3728
HESET MODEL SUPPLIES
81, BRIGHTON ROAD.
SOUTH CROYDON, SURAEY
A 100 per ceme, modelling ihap. nundy a modeller for modellers

CROYDON

WOODSIDE MODEL AIRCRAFT SUPPLIES 12 SHIRLEY ROAD. CROYDON, SURREY
Send SA.E. now for datails of our free Coronaluon Yeat Offer

DARTFORD

MODERN MODELS
12. THE MARKET.

LOWFIELDSTREET, DARTFORD. KENT
Don'e despair until you've tried us by Post or coll. Send S.A.E. for our lisi

FALKIRK
"MODELCRAFTS"
112. HIGH STREET

Specialists in all Acromodel. Mosbies and all Model-making requirtments

HARROW
 Tel.: Pinmer 6459
 THE MODEL STADIUM
 5, VILLAGE WAY EAST.
 RAYNERS LANE. HARROW MIDDLESEX
 The onty hure purchare specialists offering
 so deposit terms to cstublished customers

ILFORD

Tel.
Haincult 2007
PAGE'S or ampicingside
3. GROADWAY PARADE FENCEPIECE ROAD
Everything for the model maker. 3 mins. welk from farilap dirdrame

LONDON

7el.: Lor. 3928

BATEMAN'S

 SOLID KITS151. HIGH STREET,

WALTHAMSTOW. E.IT
Avro7078-METEOR II NF. - YAMPIRE -
Conberra A. Mk. II - Conser - Seunder: Roe A.l. Fiying Boat - jet Figheer

LONDON Tel:2 M/U Hill 2 z 77

H. A. BLUNT, LTD.

JJJ, THE BROADWAY, N.W. 7
All the troding makers kits, engimes and accessories

LONDON
Tel.: Hod 3482
MODEL AIRCREFT SUPPIIES LTD.
171. NEW KENT ROAD, 5.E.I The oldest established model aircraft shap in London
Servica with salitaction from
Harry York

Wotellers can be assured of personal service conpled with expert knowledge of aeromodclling requirements at any of the follow. ing shops.

LONDON

REPLICA, LTD.
159. SLOANE STREET. S.W.I.

The exclusive moded shaw roarrs cambining a datig range of tha datest toyn

LONDON

ROBSON'S

HACKNEY'S MODEL SHOP

149/I51. MORNING LANE, E.9

LONDON

Tel.
CHAS. STEVENSON \& SON
235, 241, H1GH STAEET. LEWISHAM, S.E. 13
Lewishom's model shop
MANCHESTER
Tel.: BLA. 6159
MODEL SUPPLY STORES
17. BRAZENNOSE STREET MANCHESTER 2
Moncherter's Main 'Mecca' for every moke of KIT. ENGINE, \& ACCESSORIES. Solarto Bulshete.
Northern SKYLEADA Foctor.

ORPINGTON ${ }^{\text {lef: }: 0 \text { op. } 7903}$

CRAY
 MODEL CRAFT

68;70, WELLINGTON ROAD.
ORPINGTON, KENT
The only moded shog in Orpingean

SHEFFIELD

RAY'S MODEL STORES
157. INFIRMARY ROAD, 3

Prompt postal service. Send S-A.E. for list

SURBITON

You can purchate all the trading Makes of Kits and Engines. etc. advertised in this journal fram :-

WHITEWOODS MODEL SUPPLIES IOJ BRIGHTON ROAO
Why not poy us a risil?

NYLON

Wm．K．Smith， 42 Warbreck Hill Road． Blackpool，N．S．

The finest covering for strengthening your models．
38 ins．wide per yard
Pall 30 ．

TRUCUT PRECISION AIRSCREWS

BUSINESS

Well sanhlwhed Modis］and llandicrart Buaiuczs in Larpo Went－ country Town．Nain road postion．Takings about ex，500 p．a． Excullent prosprates to incronse．Ill－heath forcee ulisporal．El．000 including premisoo，S．A．Y．approx．化00．No lirlag accommodation． 30×373.

WANTED

Mans of pere－1941 l3ritiab and American petrol modela，any type． condition unimportant，prorer obsolota styles．Pre－1941 American euxinew，any condition，prefar obsoleto．Exchango id gionplug engines，now，for dlacels．Lt．Codding．Shationkury Military Hogpleal． Shaftewhury Dorset．

EXCHANGE

F．D．Racer． 9.40 ． 1 st clnas mondition for Frok 800 plo－plus．sood condition．Litte，Cnlabirn，Hawlek，Scotland．

GIG FIFFLAENDER 36－HOUR REBORING 8RRVIOR onda ftarting troubles and ensures sucometill 1853 seamon．K．D．Heen，
 Gliug $12 / 9$ others $18 / 9$ HALF co．englea $18 / 8$ C．W．O．ALLA Gllaravtrieb jo DAYB．G．O．U．1／3 extra．Sond NOW to OIG EICLD

WORKERS，full and sparottime requirod to mako up giruple l＇ralanlanta noveltied at home．experienco unnochasiry，sood reten， atamped addrensod enselope．Preataplasta Producta，AlI BOM／195． London，W．i．．l．

TAADE

North Frazt Fingine Depot，Flctorln Street，Goole，Yorks，Engine part exchnnge upecinlista．Modellors like donling with un．

Ampricnin magazinow，ono year＇s supply，poat free．＂Model
 For full list mend atamig to Willen Lud．（Dept．1）101，Fleet street， Loudon．E．C．1．
， Haywanl．St．Oeytior Iane．Oundle．N＇hants．
 completo．Ifundreda acronautimal books，mayraince．Oolleotion
 Honicknowle．Plymouth．

Ohlewn 60．Eide port，spark iknition，grood enndition，es6．Ohlsson 19，\＆4．Davis，22．Woodnere Way．leckonham．Keut．

3 E．D．Stulature Rocolvars． $45 /=$ esch．As now，all Junt retarnod from Li．D．，Jnoring perfertly，not need since．G．Hockey，Stapleton， Damorimm．Furdmisbrider．Inanta．

Books

Actunmodelling booky and 1／7end Scala Plans．Send 5d．In finmpand S．A．E．for 10 －mpo list of titloa and ranpe of 500 plans． 1914－1948．Alat particulars of unlqua＂Spochal Offer＂．Harley＂ ford Imblicationa，Mnrleytord，Marlow．Ilocha．
＂Douglas Whotos．Aviation Bookmellor＂． 500 Flying Books． Magazinew In stock．Flying looks bought．Rykneld Wryy，Little－ over，Derby．

Have your AEROMODELLER
 Send the year＇s twelve

 copies，securely packed toAEROMODEILIER BINDING； DEPT．，
38 ClaRENDON ROAD． WATFORD．HERTS．
together with remittance of $12 / 6$ ．

INDEX ior 1952

will bo included with cach mome．Indices are arailabla to all reader： on receipt of a stamped and addressed enrolope．

KUTTON
Tel．：Vigilane 8291
sarsay＇a Bobby Centre
E．L．S．MODEL SUPPLIES 272，H1GH STREET， SUTTON，SURREY
Stockist of all aermodelling occessories Also roilwayr．ships，cars，etc．By return postal service

SWINDON

Tel．： 4778

HOBBY＇S CORNER

o．rodbourne road
All the teading makes of M．A kits and occestories in stock
Dublo－Thix－Graham forish Traint

TEDDINGTON MODEL SUPPLIES

ab，BROAD STREET

TEDDINGTON，MIDDLÉSEX
for alreraft，Boats，rodis corteof，resin bonded olywiod obech！for boat builders

E. LAW \& SON (TImber) LTD.

272-274 High Street, Sutton, Surrey For the LARGEST selection of the HIGHEST quality and the LOWEST priced BALSA WOOD OBTAINABLE ANYWHERE Same popular sizes.

Note the Price!!!

Sheet $\ln 36 \mathrm{~m}$. Length

Our 1952 Price List, contalning full details of BALSA. OBECHE, and SPRUCE sizes, also DOPES, CEMENTS, clc., Is now ready. Send 6d. stamp for your copy.

Postage on RETAIL orders: Up to $10 /-1 / 6 ; 10 /-$ to 20/-. 1/9; over 20/-, POST FREE.
TRADE SUPPLIED AT FULL DISCOUNTS. WRITE FOR LISTS.

Condivions of Sale

This parlodical is sold subject to the following conditions:That it thall not, wit hout the welcten consent of the publish ars, be lant, resold. Mrod-aue, or asherwise diapased af by way of Trade except at tha full ratail price of $1 / 6$ and that It ahall not be lant. resold. hired.ovi, or othorwlac disposed of in a musilated condision or in any unauthorhed covar by way of Trade; or affixed to or as pare of any publication or advertising. iltarary or pictorial mattor whassoover.

THE "AFROMOIDELIEEN", 38, (J.ARENDON ROAD, WATFORD, HERTS.

Talephone: WATFORD S44S

Ohntsuas Yhourase

FREE FLIGHT POWER

CABIN

Southern Mite … 32- 12 /10 Pirate Bandit Ladybird Outlaw Junior 60 . Southerner Souther
Falcon PYLON Slickar Mize Slicker Slicker 50. Supor Slicieer Skylon JETEX
Gort Space Ship.. Cub
Skyjet 50 .
Skyjet 100
Skyiet 200
CONTROL LINE
TRAINERS
Phansom Mice $. . .16^{*} 14 / 1$
$\begin{array}{lll}\text { Phantom } & . . . & 21^{\circ} \\ \text { Scom } & 22 / 8\end{array}$
Scout Biplane
STUNT
Sikystreaik 26 Skystreak 40 Stum Queen
TEAM RACERS

Rangar (' A ')	Pacer ('B') $\quad \cdots 30^{\circ}$	12
18		RUBEER PQWERED

Get your sopy To-day 100 pastes of gen,
photos and K.K. Kits.

30" WINGSPAN

High Performance

The DOLPHIN
Truly an ideal model for beginner or expert! The Dolphin is really easy and straightforward to build. It is an easy plane to trim, and flies beautifully.

PRicE

NEW!?

SPITFIRE
Newcomer to the well-known K.K. Rubber Powered Flying Scale Series. Fine model of a very famous Fighter.

HURRICANE
Accurate flying scale model of this never-to-be-forgotten fighter of World War if. The building of the Spitfire and Hurricane would make an excellent Xmas holiday project.

NEW!

Supermarine SWIFT
Powered by the lecex 50 fet motor
NEW!
4^{\prime} lnc. Tax.
\qquad

[^0]: The fall-alag Zaumboinda af rent dinglagn ifn leading edge alofk and large trailing edge Hapm. Thim aimroft rnin be flosen at remarkably loter mpealn, and the marme fight characterintirn arm duplimied eractly by the 3s inn, mjnm mala model ehich can bo bull from I monnodelfer Plams.

[^1]: C'sechalornkian moriellera go in for big glidern, and in sonic parta are opemaling oner anoichausid flelala. If you are intereatad, ire hare addreninn of arceral fiech modeHera keen ta hare Briliah pen-pala.

