Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

 Astral and other Flying and Solid Scale Kits

5 New ASTRAL "ACE" KITS 28° Span Flying Scale jobs, $8 / 6$ each.
BARRACUDA, TYPHOON, THUNDERBOLT, MUSTANG and the one you've all been waicing for, a really wizard model of the TEMPEST.

ENTIRELY NEW: Sheets of camouflage slide-off transfers in every colour and Silver. Absolutely supersede dope for camouflage of Solids. Give a really beautiful finish.
INVASION MARKINGS. INVASION MARKINGS. Just to hand-slide off transfers of Invasion Markinge for $1 / 72$ nd scale solids; state whether required for Fighter or Bomber.
Sond I/- and S.A.E. for sample packet assorted colours Camouflage Transiers and Invasion Markings.
MARVELLOUS MASCOTS. 12 designs for $1 / 72$ nd Scale. 3d. each. 12 for $2 / 6$
Larger, as in ASTRAL Adve. 6d. each. 12 for $5 /-$ Bombs Id.
GLIDERS! GLIDERS!! ASTRAL ARIEL, Junior I/6 Postage 4d. Senior $2 / 6$
WONDERFUL PERFORMANCE
ASSEMBLED IN A MOMENT

14. NEW BRIGGATE. LEEDS.I.

MODEL AIRCRAFT PRODUCTS

A First-Class Material-For a First-Class Job
Approved by all the Leading Model Constructorn
LATEST SELLING PRICES

AS SUPPLIEO TO: R.A.F.-A.T.C. AL TRAINING SCHOOLS, A.A. GATTERIES-ROC., ETC., ETC.

SPECIAL QUOTATIONS TO BULK BUYERS abo MANU. FACTURERS OF SMALL SIZES FOR USE IN KIT PACKS. Write and aik for full particulars and bert Expopt terms

Liberal diecoune
to the Trade
BANANA OIL No. I, Thick. GANANA OIL No. 2, ThIn. In ipintelna 4/- aach.
BALSA PLASTIC WOOD, In Ed.alxe tubes.
SPECIAL TISSUE PASTE, In 4d.alxe eubes.
SILVER DOPE in pint cina 4/- alch.

MODEL AIRCRAFI
thade associafiom
manufactured
by:
:
SLICK BRANDS

CROYDON 3171-3172

Pleze noze chat thls announcement is addrased to the Trada ONLY and private Individuals cannot be supplied direct, but SHOULD DEAL THROUGH THEIR LOCAL RETAILERS.

Talegranit:
" SLICKBRA," LONDON

ANROMDDPMLPB
 INCORPORATING"THE MODEL AEROPLANE

ESTABLISHED 1935

VOL. X

No. 118
SEPTEMBER, 1945

The Model Aeronautical Journal of the British Empire

Managing Editor :
D • A - RUSSELL. .M.I.Mech.E.

Editor:
C.S. RUSHBROCKE

Assistont Editor:
$H \cdot G \cdot H U N D L E B Y$

Published monthly on the 25 th of the month previous to date of issue by the Proprietors :
The Model Aeronautical Press. Led..
Allen House. Newarke Street, Lelcester.
Subscription rate 15/- per annum prepaid (including Christmas Double Number).

This periodical is so!d subject to the following conditions :-
That it shall not, without the written consent of the publishers, be lent, resold, hired out, or otherwise disposed of by way of Trade except at the full retail price of $1,-$ and that it shall not be lent. resold, hired out, or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade ; or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

EDITORIAL 483
SPECIAL ARTICLES
AN OLD CLUB MEMBER.. 485
ELEMENTARY AERODYNAMIC DESIGN .. 488
AN ELECTRIC R.T.P. MODEL 490
THE DUDE 499
HOW TO TRAVEL TO EATON BRAY
MODEL SPORTSDROME
THE HAMLEY TROPHY 504
THE SCALOGRAPH 510

REGULAR FEATURES
FRONTISPIECE 482
GADGET REVIEW 492
MODEL NEWS 494
CIVIL AIRCRAFT No. 22 496
PETROL TOPICS 507
MONTHLY MEMORANDA 514
AEROPLANES DESCRIBED 516
CLUB NEWS 519

COVER PAINTING
Aichi Navy 99 Val Featured on page 516

"INTO THE BLUE." The camera catches a competitor's model at the recent Hamley Trophy Contest. So portraying one of those satisfying moments known to all petroleers. A "revving" motor, nose up, and a steady climb into the blue.

dORLAND MALL AGAIN

IT is with very great satisfaction that we announce the second Arromodel.lek National Aodel Aircraft Exhibition, which will open at Dorland Hall, Lower Regent Street, London, in December.

Wide as was the scope of the first exhibition, held at the same hall last January, and considerable as was the enthusiasm aroused among modellers and the general public, wo are contident that in every way that initial venture will be eclipsed. To hegin with, the Januars' Exhibition remaincd open for nine days, including two Saturdays. In that time it was visited by some 20.000 people, but inevitably there were many who could not get to Dorland Hall at that particular period.

Arrangements made for the second Exhibition, howcver. should obviate any disappointment, at least for the vast majurity, for it will be open this time for twentythree day's, including five Saturdays, and covering the whole of the school holiday perind. The opening date is Friday, Dccember l-th, and apart from a Cliristmas holiday break from December 23rd to 26th, inclusive, the Exhibition will be open urtil the evening of Saturday, January l9th.

Not only are we extending the period of the Exhibition, we are also anticipating a much greater number of models on display. It was encouraging to have secured 700 last time, despite all the exigencies of war-the scarcity of modelling materials and time in which to use them, the restricted and uncertain transport, and the cver-present possibility of the resumption of air raids. Now, with the war in Lurope brought to a victorious conclusion, the consequent ending oi Civil Defence and Firc Guard cluties, and the restoring of the basic petrol ration, we look for thousands of entries.

There: is another reason for cxpecting a considerable increase in co-operation from model builders. Last time, we sensed a certain amount of "holding back," not directly duc to wartime difficulties, but to a somewhat natural hesitancy to risk models in an Exhibition of such magnitude, and held under war-time conditions. Potential exhibitors doubiless asked themselves:would the organisers be competent to handle with reason-
abble safety the volume of material they were proposing to put on display at Dorland Hall? And what were the prospects in wartime of securing sufficient staff to cope adequately with a large number of models and an even larger number of visitors, including-in these air-minded days-a high proportion of eager youngsters with undisciplined feet and fingers?

This time there should be complete contidence, for the number of models damaged or lost in the January Exhibition was amazingly small. Reckoned in terms of the volume of the exhibits, it was in the region of 08 per cent! We published the actual figures in the April Aeromodfliek, but for the henefit of new readers we would recall that the casualty list was as follons: five models were damaged when a group of enthusiasts in the gallery knocked down a large wooden aerofoil section; three more were damaged by visitors: thirteen suffered during the journcy to or from the Hadl, and ten disappeared into thin air; these may have been stolen, but as seven of them were so very tiny, it is quite as likelf that they were blown away and inadvertently swept up!

It was only to be expected that some small damage or loss would occur, and all the exhibits had been insured by the organisers for $£ 5,000$. Claims totalling $\$ 41$ were received, and these were promptly met.

The same care will be taken with the forthconsing exhibition, adequate insurance cover will again be secured, and the organisers have last January's experience of an Exhibition on the grand scale to assist them in the still more ambitious effort now projected. And when to these factors is added the lessening (though admitterlly not the complete disappearance) of wartime difficulties, we feel that we are justificd in anticipating a record number of models, with all parts of the country well represented

Further details, including information about the competitions to be held in connection with the Exhibition, will be given in subscquent issues. Meanwhile, we invite modellers to make a note of the opening date, and look into the matter of participation.

Conmting Your Votes

Our readers have responded magnificently to the recent invitation to them to state their preferences as to the types of articles to appear in the Aeromodeller. Several thousand forms were completed and returned to us, and our staff have for some time been hard at work sorting them and tabulating the information given. This information is interesting in the extreme.

It is characteristic of many poople sub-consciously to regard the ir oren opinions as entircly logical and so normal as to be shared by all other "reasonable" folk! This census of opinions would certainly have taught us, had we not already had similar experience, that there is considerable diversity of outlook amongst cntirely reasonable pcoplc. In short, even at the present stage of checking, it is clear that readers have provided ample justification of our reiterated plea for the viewpoint of "the other fellow."

It is particularly gratifving that so many readers with so many different viewpoints have co-operated, and, moreover, with such enthusiasm. It really does look like affording that which we urged so strenuously -as truly representative expression of aeronautical opinion. One reader voiced a complaint, and, morenver, in no uncertain terms! Why, he wanted to know, did we not print the census form on a separate slip of paper and insert it in the Aeromoveller instead of printing it on one of the pages, thereby forcing him to mutilate his copy in order to take part in the poll? Well, we are sorry about that (but paper control regulations won't allow of loose insets). but gratified that despite his little "grouse" he did send in his form. Several other readers also felt a disinclination to cut out the form, but were so keen to record their votes that they actually went to the trouble of copying ont the somewhat lengthy
wording on the form and so keep their Aeromoneller inviolate I

In urging all our readers to co-operate in making this poll really representative and therefore of practical value, we werc certainly asking the:m tu give us plenty of work -and they have done so! We are glad of this, and all those who took part may rest assured that we shall study attentively the forms sent in, lengthy process though it be, and consider with the utmost care the conclusions to be drawn. Later, we shall have more to say on this subject, but we wish at this stage to express appreciation of the way in which the idea of the poll has been taken up and acted upon by so many of our readers.

Progress at Eaton Itray

Before the next editorial appears, Faton Bray Model Sportsdrome will be in use. Not until next year will the full facilitics and amenities which we enuncrated in the July Aeromodellek be available-the concrete take-off area, the mobile control tower, the team of model " retrievers," the supplies of hot and cold water, the model materials store, and so on-and the formal opening of the Aerodrome will not take place until then. But in the near future the ground will be available to aeromodcllers at week-ends.

With the present cifficult labour situation, not to mention the none-toc-simple matter of material, the organising of Eaton Bray even to the initial stage of usefuluess has been calculated to afford a headache or two, but we have becn anxious to make the ground available in the presert Hying season as a kind of horsd'autre to the more substantial benctits and pleasures to be enjoyed next year when the scheme is completed. and because we belicve that with the large and everincreasing amount of model flying. such a thying-ground will be welcomed at the edrliest possible moment.

There is romance in the story of Eaton Bray. and modellers, we are sure, will be interested to hear about it when the appropriate time comes to recount it. As may well be imagined, so ambitious an undertaking did not fail to produce its crop of snags, and the way in which they were dealt with, often in unorthodox fashion, will be well worth the telling. Wic are sure that modellers gencrally will wish the venture all the success it deserves.

Low Speed Research

Latest news from the I.ow Speed Aerodynamics Research Association is that a News Letter is now being produced, and a copy of the first issue makes interesting reading. - The Association, it will be recalled, was founded last February by Mr. N. K. Walker, who has since been chosen as Director of Research. Dr. H. Roxbec Cox has accepted the Presidency.

The News I.etter rezords that about 100 penple have now applied for membership, several reports have been produced and are almost ready for publication-the declared policy of the Association is to make these reports short and suappy, revealing thereby a sound appreciation of psychology that one would like to sec manifested by other scientific bodies-and that eight wind-tunnels are in process of construction, including one by a well-known mudelling organisation under the supervision of the L.S.A.R.A. Among the subjects covered by" the reports referred to are " Boundary"

Layer Theory applied to the design of low-speed acrofoil sections" and "The Longitudinal Stability of Tailless (gliders."

The Association is now being oryanised in groups, each to situdy somo particular aspect of low-specd aerodynamics, some of the aspects being performance and stability, gust research, engines, jets, and tailless designs.

For the hobby of acromodelling to gain any appreciable degree of recognition in this comntry, states the L.S.A.R.A., it is essential that its important education value be recognised by the aircraft firms and national research associations. To this end the Association seelis to provide dependable data that will replace the hit-or-miss methods with which modellers gencrally have had to be content, and be of real value to the aircraft firms and rescarch institutions.

Readers should note that Mr. N. K゙. Walker has changed his address which is now as follows: 9, Alexandra Road, Farnhorough, Hants.

Modellinge Albroad

Thuse modellers who, during the war, have found supplies of material, especially rubber, cut almost to nothing, and anti-invasion ditches gouged out of their local flying-ground or vast conglomerations of warlike equipment cluttering it up, may well have pictured model fying as virtually extinct except in a fow highly favoured spots.

That this is far from a truc picture has been made abundantly clear by reports which have been coming in from various parts of the worlh. Much interesting information is now available of activitics in America, Alrica, Palcstine, Italy and Germany. We feel that many readers will be glad to have this information, and have accordingly arranged for a senior member of our staf, well qualificd by reason of practical modeliing experience and acquaintance with some of the countries mentioned and several of ous agents, to present the available material in the form of a series of articles. The first will appear in the ()ctober Akromodeller.

Frontispiece

Keaders will have noted a slight re-arranging of our Editorial pagcs, which we have now carried a stagc further, with the co-operation of the Astral Aero Model Co., who had a standing contract for their advertisement to face the first Editorial page. Until the early days of the war compelled us to cut down the size and number of pages in Aremomodeller, we had carticd for some years a photograph facing the Editorial page, and the Astral Company have been good cnough to agree to our transplanting their advertisement to facc the Contents page, so enabling us to recummence publication of a photograph facing the first Editorial page.

This month's photograph, taken during the recent Hamley Trophy Contest, shows a petrol model climbing steadily "Into the blue". For future issucs we invite realers to send in photographs which they feel will qualify for such an important position in the magazine. For each photograph published we shall be pleased to pay a reproduction fee of three guineas. It is essential that photographs are large and clear. They should be printed un glossy paper and the negative should be sent whenever possible.

ANY reference to carly aeromodelling must necessarily refer to the efforts of the pioncers of full-sized (or, in the language of the period, "man-lifting ") aircraft. In the years 1908-9-10, when I built my first models, these pioneers were closely studied, and, as with the aeromodeller of to-day, their efforts were confined mostly to the summer months, and any little success they had was duly noted. Early model enthusiasts used to adopt one or other of these early airmen, much as a young man of to-day has his favourite film star. The choice was small, as you could count them all on your two hands. I remember I favoured Santos-1)umont with his tiny monoplane, this itself, judged by prosent standarels, being only a model, as it was very much smaller than a present-day light aeroplane. It had an engine of about $25 \mathrm{~h} . \mathrm{p}$., and to give instance of its constructional simplicity, the phlot's scat was a sinall piece of canvas slung similar to a deck-chair, and seated in this, that great pioneer crossed the Swiss Alps.

I built a model of this machine from sketches and photographs appearing in a Londor. weckly illustrated paper. I must have possessed the outlook of a solid model fan, for to try its airworthiness never occurred to me. It was just a show piece, but it achieved something in starting a band of enthusiasts which were later to futin a mudel Club in my home torn, Worcester.

The next year, 1909, came the duel between Bleriot and Laytham with his " Antoinette," for the honour of crossing the English Channel first. Several models of these machines were built, as most daily papers gave drawings at the time. I remember our general construction: a fuselage of spruce, with piano wire struts turned at right angles and bound to longerons; buttjointed wood struts held by glue we could not conceive. This was due to the originals having uncovered fuselages. Wings were generally all wire with sparsely placed ribs, bound and soldered, silk covered and single surfaced. Supported, even if they did not nced it. by king posts and

plenty of wires, strainers, etc. Usually they were pewered by rubber about $3 / 32$ in. by $3 / 32$ in. square section, the only type to be purchased locally. I had llights of a few seconds duration, but these models were to scatc with a wing loading I dn not care to think about. Another trouble was the small tail and vertical surface, but we did not appreciate these faults at the time.

At that time no one had seen a full-sized aircraft in this district. and I remember how we envied the boy's who lived around Hendon and Brookjands, but our day was to come. The summer of 1910 brought a genuine Bleriot, which, however, finished up fatally for one onlooker. The enyuiries which resulted from this crash brought two gentlemen from the [Royal Acro Club to Worcester, Commander Perrin and Mr. John Dunville, and was I thrilled to come face to face with two eminent personages in aeronautics! I was the office loy of the local authorite thes visited.

However, to return to the models. It became m-
twin propeller has crept in, though one member has retained some resemblance of the old Antoinctte wing. This " A" frame construction became very fashionable, easy to buik, in fact anyone with a limited knowledge of aerodynamics could constract one of these models. They possessed little character, with their steamed birch propellers and piano wire wing. All this called for slight effort in construction. Occasionally vou brought off at grod tight, but generally the duration was about 30-41) seconds. As their flight was suift and straight, distance from starting point was sometimes taken for competitions.

The duration enthusiast to day has to put up with having his model called "paper hag filled with rubber" ; ours were nicknamed " flying darts," " flying sticks,' etc. There is no denying they depended on terrific speed to maintain flight as the wing surface of many show's.

Early 1912 found us giving up the twin propelier speed models for something with a better durationlarge single stick, tail first pusher models, with carved propeller about 14 in. diameter, and split bambeso parallelchord mainplanewith very pronounced upturned wingtips, covered with jap sils. The motor stick was well braced by means of king - posts at its centre. You will notice one or two of these models in the 1912 photograph of the Worcester Clint. I may mention here that gradual improvements in the performance of our models:

[^0]hegan to impress the gencral publir: who then riewed full-sized aircraft with a certain amount of suspicion, and model makers, well-just young cranks :

Here I should like to make a few comparisons of aeromodelling then and now. Materials were always a headache as there were no shops that catered for the constructor like they do to-dar. Iou conld purchase strip hardwoods, but the many small sundries an aeromodeller requires came from some quecer sources. Just the right tupe of cane or reed would be extracted from the sitting-room chair till it took on a bad list when sat upon. The small drill brace that every aeromodeller secms to possess to-day was not plentiful and far too expensive, so the kitchen efg heater would be confiscated as a geared winder, and when next found would have a forked end, which would not heat egrss. Cycle spukes, old clock springs, and canes from garden seed shops, all came in for the building kit

With one item, however, we were more fortunate than acromodellers of to-daty-this was jap silk; it was avail able at any drapers at sixpence or less a yard, all colours. (No coupons!) '1his silk was very fine and when treated with the special varnish on the market at that time it produced a wing covering which was pliable to it certain extent, and would withstand any anount of hard knocks. I should like to see silk, treated in this way. in use nowadays. True we had only one surface to cover, and I kanw weight would creep in, but it is at suggestion for large duration fans and petroleers.

The rubber lubricant we used then might cause consternation to-day, it was a mixture of graphite and glycerime, used, by the way, on professional recommendation. It would be a trifle messy in these days of choicely-covered fuselages, but I am sure our rubber lasted longer, though we may not have put it to so great a test then.

The vear 1913 saw the Worcester Chb still making headway, the late Earl Beanchamp was our l'resident. and our membership now had a respectable total. Students of the Victoria Institute Technical Schoul provided us with many mombers, and from this same source we swell our ranks to-day. I rementore it was every memher's ambition to complete sixty seconds duration. It would be interesting to know when the minute was first recorded by a model. I belicre some of the London Clubs had accomplished this in 1911 .

We had a good many" ficld days" in 1913-1914 y"ears (I do mot think we used the word "Rally"; this belonged to the carly motor cyelist). I recall the Worcester Club attending interclub competitionsat Birmingham, and what a wonderful membership they had there, complete with parilion and full-sized glider, and here we found the single propeller pusher models most in favour. We met aeromodellers frum many other clubs and I belicice the

Anocher old timer a flying scale madel of an early Taube monoplona beaulifully constructed by Mr. R. J. Trevithlick, one of Aeromodellings earllest pioncers. Even the wheels are bullt up with spokes! When completed, thir moded will most certainly demonstrate the art of real craftmanshlp.
best time of the daw was around so -on seconds-not so bad for thirty years ago.

Annther memwrable day was spent by the Worester Cluh in 1913, giving an exhibition to Jalvern College: the photograph with lady in centre: records this happy afternoon. Here history repeated itself. We gave a display at Malvern " W"ings for Victory" week in 1043 at the invitation of Sir Alan Cobham.

The single propeller models shown in this photograph stond first favourites for culute a number of vears. We had now arrived at a more efficient size, a 30 in. span by 5 in. parallel chord mainplane with $\&$ feet motor rod, and 10 in . to 12 in . diametor propeller. I use the word "rod" as this was of bamboo, alonot $\frac{1}{3}$ in. diameter which had a great deal of wark bestowed upon itsanding down, cte. Although we knew nothing about pre-wound rubber motors these were just around the conner. We were using a 6 feet long motor to this 4 feet rod, excelient for extra duration, but this long motor used to hand down and alter the centre of gravity:

Until the arrival of balsa the stick model was our best porformer, and fitted with an undercarriage it would damp the spirits of the built-up fuselage tractor enthusiasts, who used to be frequently putting in an appearance after the last war, althongh nn one knew they were on the right track. I still have one of these ohl models in my possession, whith is looked upon as a relic by present members of our club.

Here 1 must state that the Worcester Club lad a long period of inactivity, a stalemate which I believe was general until balsa came to our aid

Well. so much for the past, we now have a club backed by the local council, with several cups to he competed for anmally. The last photograph shows the Worcester Club at its ammal Holidays-at-Home Rally last August, which was highly successful, giving a non-stop cutertainment to 2,000 people.

In conclusion. I would suggest that there must be many cuthusiasts in the country like myself, who have been actively engaged in this pastine for 30 years or more, which perhaps suggests the formation of a "Company of Vetcran Aeromexdellers.

ELEMENTARYAERODYNAMIC DESIGN SAILPLANES

PARTI

BY」•HALIFAX
(FIg. I.) The modern formula! A 45 Im. span sallplane by I. S. Cameron, which hos a very fine performance. Notlce thehlghset tallplana and the sype (C) fuselage secton.

The spute of pecert correspondence regardin: that time-honowred controversy "Theory oersus Practice" preals that acere the Theagy presemed in a simpte. "easy to wnderstand " manmer, all the anti-fheorctical modellers sowld be only loo pleased to nole, and inerardyy dizest, lapge quantities of their former bete noire. This series has baen written with the abole obiget in view and the author, in the frot of the secies, will explaim the aerodymumic design provedure for a sailplame, covering the subject from start to finish in simple termathat shoult be understavdable is all. It a later seriss, when the essential principles have been grasped, ;ithe author will graduate to the design of pawered aircraft of both hubler and patrol-dricen typas.

THIS series is for the aeromodeller who has several machines to his credit, and now feels the urge to design a machine himself. I am assuming that this aeromodeller knows the very elementary principles of aerodynamics, but that his knowledge of mathematics is strictly limited. It would also be as well to state here, before we start, that we shall use " Nomographs" by R. H. Warring wherever possible. These lighten the burdened brain of the designer and cut out a lot of the drudgery in designing. When you have a copy make sure you understand how to use it.

Now before we can commence the actual design of any model, we must first visualise its gencral layout, and the first step in this direction is to determine the size of the model in terms of wing area. If we have a certain contest in view this will probably be laid down in the rules. If not, the decision must be based on such considerations as time, transport and building facilities. In any case, the wing area should not be less than 200 sq. ins., as below this size a wing is very inefficient.

My reader may be wondering why the size of a model is measured, in the first instance, in terms of wing area, and not span and chord. The reason for this is that the plan form of the wing depends, among other things, on its area. We shall investigate this in cletail later.

Having decided upon the wing area, we must now consider the overall weight of the machine. Here we have a definite lower limit for competition work. The F.A.I. (Fédération Aéronautique Intcrnationale) lays down that the wing loading must be at least $4-92$ ozs.
per sq. ft. In our particular example we will have an all-up weight of 8 ozs., which gives us a wing loading of 5.75 ozs. per squ. ft.

On the question of fuselages, we can thankfully take note of the fact that the slabsider versus streamliner controversy does not allect us, the streamliner holding undisputed sway in this field at least. Fig. 1 gives a fow fuselage sections in use to-day with notes on them.

The last unit in this very rough outline of our model is the tail unit. We shall see how to calculate the fin and tailplane areas in Part V of this series, so their approximate position will be the only thing we shall be able to decide at this stage. The best position for the tailplane is high up on the fin, as on the moclel in Fig. 1. In this position it is out of the way of most of the turbulence in the air set up by the wing, thus reducing its drag and giving it a more powerful anti-spin cffect.

We now have a rough idea in our minds as to the general arrangement of our model, so let us summarise all we have decided in the form of a specification before we commence the actual design calculations.
I. The wing area is to be 200 sq. ins.
I. The weight is to be S o\%s., giving a wing loading of 5.75 ozs. per scl. it.
III. The streamline fuselage is to be of circular section.
IV. The tailplane is to be mounted high on the fin.

With these foundations we will commence to build up the complete machine on paper.
(Fig. 2.) Fuselage sections. The dotted Hnes Mustrate the wing positions for lawert Interference drag.

Scale Effect and the Choice of an Aerofoil.

Always the first step in the actual design of a model is the choice of the aerofoil section. Of the whole compromise that we call an acroplane, the first and the greatest compromise is the aerofoil section, and a bad choice here will mar the performance of the machine at the outset. Before we make this choice, however, we must understand a little about scale effects.

Now one of the first things we learn in acrodynamics is that the coefficient of lift (C_{J} for short), is a constant for a cortain aerofoil at a particular angle of attack. (the angle at which the aerofoil is inclined to the airflow. denuted by \propto) being independent of the airspeed. When we learn a little more about the science, however, we find that this is not strictly true, and that at very low airspeeds (i.e., the speeds encountered in model flying) the maximum C_{K} is often much less than at the speeds associated with full-size aircraft. On closer cxamination we find that not only is the C_{L} affected, but the coofficient of drag as well (C_{t}, for short). This coefficient is usually higher, and thus the ratio of lift to drag (L / D to the learned), which is a measure of the efficiency of the aerofoil, is lower. lhere is, unfortunately, no apparent uniformity in this variation, as will be seen when graphs of low speed aerofoil characteristics are studied. Some aerofoils even improve their perfonnance, at least as far as the C_{L} is concerned, and generally speaking, the whole business is very irregular. Thus it is apparent that the data relating to our acrofoil musl have been collectod at mondel speeds.

Refore we progress any farther we must see what that mystic word " Reynolds Number " means. This is just the scalc used in measuring scalc effect. Thus in practice we do not say that the data for such and such an aerofoil was collecter at low speed, giving the airspecd, but that it was collected at a low value of Reynolds Number, giving the number. This is hecause scale effect is not an effect of the airspeed only, but the chord of the wing as well. Thus R.N. is equal to the velocity, times the chord of the wing in feet (VL for short), times a constant. At sea level this constant is 6300 .

$$
\text { Thus R.N. }=\mathrm{VL} \times 6300
$$

It is very evident from this that the R.N. is usually an uncomfortably large figure, but although it must remain so in full size practice, because the "constant" we mentioned varies with the density of the air, and thus is affected by altitude, there is no reason why we should bear with it in the modelling spherc. We assume that our models fy in air of standard sea level density, and as wind tunnel tests are also at this density, the only variable factors are the chord and the velocity. Thus it is usual in acromodelling to speak about VL values, and not R.N. Remember that V is in $f t . / s c c$. and L is in fcet. Thus a model of wing chord 6 ins., operating at an airspeed of $12 \mathrm{ft} . / \mathrm{sec}$., would have a vil, value of $12 \times \cdot 5=6$.

Now, as most modellers know, we have very little Inw VL data available at the moment. This is now on the mend, however, and with the L.S.A.R.A. in operation, we should soon be nut of this unfortunate position. As

it is, there are already several sections on which accurate low spocd data is available, and one of these is given at the end of this article.

There is one othrr thing we must look into before we choose our section-the Power Factor. A curve called the Power Factor curve can be drawn for every atrofoil section, and this is inversely proportional to the power required to heep the aerofoil in motion through the air.

This factor is found by bringing the \mathbb{C}_{L} for each angle of attack (or value of \propto if you prefer it) to the power of 1.5 (i.e., $C_{2}{ }^{1{ }^{4}}$) and dividing it by the C_{v} for the same \propto. Thus the power factor expression is $\frac{C_{h_{1}}{ }^{1.4}}{C_{D}}$

How this expression is derived is not within the scope of this article, so I must refor those more virtuous readers to any clementary book on acrodynamics. Let the rest of us be sufficed with the result of a high power factor, which is a low sinking speed.

Now we are in a position to examine the virtues by which we must choose our aerofoil. These are :-

1. High Power Factor, preferably with a flattened peak to the curve, so that it is near its maximum value over a large range of \propto.
2. High L/l) ratio.
3. Large maximum C_{L}
4. Low C.P. travel.

The C.P. (centre of pressure) is, of course, the point at which the lift acts, and this moves along the chord of the acrofoil as the angle of attack is varied. If this travel is very large trouble will be cxperienced with the stability of the model.
This is as far as we can go this month. Next month we will deal with the method of determining the angle at which we must build the wing into the fuselage for the lowest possible sinking speed.

This is as far as we can go this month. I should like in conclusion, however, to point out that the scope of these articles must necossarily be very limited. Thus I am compelled to stcer a straight and narrow course through the vast sea of aeronautics, dealing only with those points and formulæ which are essential for sailplane design. If my readers have any queries, by the way. I shall be glad to reccive them c / o The Fditor.

AN ELECTIBC IR.T.P. MOIDEL

BY ALANSLACK

THE chief interest of this article is the electric motor, the weight of which is only ? of an ounce. and I holieve is the smallest motor that has flown a model aircraft. The motor can easily be ritted to any type of faselage. I marle the moter as an experiment. and when driving a prop, the thrnst felt gonod enough to justify frving it out on a light-weight maxdel.

The next job was a plane to experintent with. After lonking over some old moxels I came across me I thoughe would do. The wing span is 24 ins. and the area de sy. ins. The first section of the fuselage was eut off, the motor lixed to a thin ply formar, and secured in position with two rubber hands. The total weight was 1 -5t; ounce. A camera triporl was uized als at "pole '", for which a distriloutor was made to fit the sorew at the top.

It was decided to have a 1 rial on the asphatt sipuare at the back of the house. This gave a maximum raclius of 5 ? ft . From the top of the t-iporl to the centre of the model. The wire used was 2 th gatge D.C.C. copper. A fow twists were given to the few wires to prevent them separating, and the onter end attached to the wing tip onethird form the leading edge. Thay wore tiverl to tho wing tip with cottom, then passed under the wing to the motor. The bulk of the weight is concentrated in the motor right at the front of the: fuselage. This meant that the wings had to be well iorward, and if the motar was used in a scale model it would have to be placed further lack, and a separate prop. shatt used hong euough to engerge with a cluiving fork on the motor shatt.

Tinc first trial was with current supplied from the mains theough at transformer of about 6 to 8 volts, but it was found that with the voltage drop che whe thength of the wire, and bow amperage, there was barely conogh juice to fly the model. However, with a sharp push the machine did: kave the ground and "hedge-hop" at at height of about 4 ins. This was not very satisfactory, so the thansformers were replaced by three 2 -volt accomulators connected in series. This miade a great differemec, and with the eripod about 30 ins. high the model eracefally took the air after a rum of about 1 is ft . It soon reached the lowight of the tripod, amd fiew round and round consistently at a speed of 111_{2}^{\prime} miles per laour. The accumblators were placed between the tripod kess, and as such at "trivial matter" as a switch had heon overlonded in the excitement, it was found necossary to ron in and catch the model--a foat at which unc can rapirlly lexome expert.

The next trial was with a wing of go sq. ins. area on the same machinc. It flew excellently, hut at only \& miles per hour, and it seemed more susceptible to the breezes it encountored at this spered. All timing was done が stop-twatch, A 20 volt, \% anip. iransformer has now heen successfully msed. This has a starter, each stud rising hy 2 volts. se mabline the voltage to be vedried. The longest tight to date has been around tharee minntes, and although the motor gets rather warm there has never leen empthing to worre about.

Construction of Motor.

The field and arnather were sawn and tiled to shape from $\frac{1}{x} \mathrm{in}$. thick slecet-iron. The gap betweon fied and armature shomkt beas small as possible. Two holes are drilled in the fiede. as shown, for the two studs $11 / 16$ in.
long which are sohlered in. On each stul a washer was suldered far the tribre back-plate to fit up to. The fiehl was wound with lun turns of at gatge chanclled wire, aurl the armature has fol turns of 28 gauge wire on each pole. Both fick and armature are connected in series.

The commutator hody was turned from libre, and Arilled a tight lit on the shatt. A dise of berss ahout lift in. thick was cut to the shape shomm, and eot into three equal segments. Fach one was drilled to take a small bras mail, the lookes being countersmak on the outside. Cormsponding holes were drilled in the tibre dise of the commotator. The suall brass mat is patesed through the fibre risc with its head on the sutsicle, the:n through the hole in the segment with the conntersink wh the outside. Whith the two pressed together. and the head of the mail resting on somethings solid. a spot of solder is applied aromad the comntersink with the nail protruding. The lugs on the pariphery of the: segments are bent over the dibre dise, and besides securing the segment at its onter edge are used fo solder the wire leads to and from the poles of the armature. The ends of the nails are cut off, and diled flesh with the brass segments. Riveting would be hopeless with such thin brass. The commutator is assembled on the shaft with the gaps in the segments reponsite the poles of the armature.

For the front bearing a strip of sheet bratss albut $1 / 64$ in. thick was cut and bent as shown. This wats drilled to lake a piece of brass tube soldered in to form the bearing and lightenced with four $3 / 32$ in. holes as shown.

The back-plate is of tibre $1: 16 \mathrm{in}$. thick, drilled to take the bearing tube, which must be a tight fit in the bole. The two brushes are attoched to the back-plate. and the
assembly then mounted on the two studs which extend front the field magnet. The brushes are of copper fuil bent to shape, and secured by small seriws which screw into the fibre.

The shaft is a piece of $1 / 1 \mathrm{in}$ in. stragiot steed wire. screwed at its front end $1 / 16 \mathrm{in}$. Whitworth to take the retaining nut for the prop. This is about all of the motor. which should be a simple joh for the average modeller. The propeller is 5 ins. diameter, carved from a hardwood block, $\frac{1}{2}$. wide, and $\frac{1}{}$. thick, the weight of the motor and propeller being only $\frac{\text { a }}{}$ an sumere

The distributor is screwed to the top of the triporl. and has given no trouble whatever. The drawings show its construction clearly, aud it is simple to make. The booly is a piece of sheet brass 1016 in . thick. l'assing through the top) of this is the coppor or brase rod. insulated from the brass sheet by the fibre busin. Around
this busis is the lawer brass tube which makes contact with the body: The tube is a tigeint fit on the bush, but the tube which revolves arommi it mast he an easy fit. A fibre washer fite over tho 1 י!pher ent af the centre rod. and rests on top of the bensh and fixed tobe. This insulates the upper picce of tube, which shouk revolve frecly around the centre rod. The lenerth of copper wire bent and soldered to each of the rotating tubes is important as they give a positioe rutatiomal motion to the tubes, whereas the thin wire passing rout in the model mat have a tenclence to wind romm them. The contacts from the transformer are attached, one to the body, and the other to the bottom of the centre romb.

In conclusion. I would say that here is a guod opportunity for anyone who has run out of rubber, and has anve moxlels he would like to see flying agam, to do so without a lot of trouble and in a very nocel way.

FIg. 1

FROM K. POTTER, of Hammersmith, comes a novel retracting and detracting undercarriage for rubberdriven models which is simple, foolproof, and presents no great constructional difficulties (Fig. 1). The airscrew shaft is fitted with a bobbin to which a length of thread is attached. As the motor unwinds the thread is wound up by the bobbin and the slide A is drawn forward through the thin sheet metal guides. When the slide contacts the extended portion of the undercarriage the legs are moved backwards. The length of the slide will govern the time that the undercarriage remains retracted; detraction takes place as soon as the slide clears the top of the undercarriage. The legs are pulled forward again against the stops by the action of the rubber band. When the slide clears the undercarriage the pin to which the thread is attached is pulled out of its slot and the slide remains at rest on the bottom of the fuselage. The nose should be planked as the pin is revolved rapidly by the airscrew shaft and might easily damage tissue covering. The distance X must be greater than distance Y otherwise the undercarriage will not detract.

We progress now from flying models to non-flying scale to investigate a gadget from D. L. BRUCE, of Greenford, Middlesex, another retracting undercart, this time for solids (Fig. 2). The tank A is made from thin metal and the joints carefully soldered airtight. An ordinary bicycle valve is soldered on to the bottom of the tank, and a sinall picce of brass tube, approximately $\frac{1}{8}$-in. internal diameter, is soldered to the side. The turbine is made as shown in the sketch, the shaft is an ordinary sewing ncedle. Fit the tank and the turbine wheel as shown in the drawing, then connect the side tube from the tank to the turbine with a piece of valve rubber. Form a small jet from wood or metal, insert it at the other end of the tube and fix it to play upon the blades of the turbine. Now a piece of cotton must be attached tant between the drum B and the lower part of the undercarriage legs. The working of the incchanism is simple :-ittach a cycle pump to the valve and give half a stroke to fill the tank with compressed air. A small wire clip must be made to fit over the valve tubing as close to the tank as possible to prevent the air escaping. When the clip is released the escaping air from the jet revolves the wheel, thus winding the cotton and retracting the wheels. By using a miniature piston and cylinder this mechanism may be used for opening bomb donrs.

Fig. 2

In Fig. 3 we have a neatarrangement which entirely obviates the bugbear of getting correct and equal dihedral on each wing. It was sent to us by C. F. J. TILLER, of Sale. The diagram is completely self-explanatory, but care must be taken to see that all the boards are completely flat and free from warps, and that the hinge fits absolutely flush. The apparatus can, of course, be made to any length to suit a wing of any span.

A neat method of making transfers for models comes from P. O'KEEFE, of Hawkhurst. Draw the insignia or letters on the sticky side of an ordinary envelope economy label, then paint them in with either cellulose or oil-bound paint using two or three coats. When perfectly dry rub over the surface of each figure with a dry rag dipped in fine pumice powder, to remove the shine. To transfer the transfers (!), soak them in warm water for at least five minutes then rernove and with a pocket knife gently lift up the top of the figure peeling it off the paper from the top downwards. Remove it, still hanging on the knife blade, to the model and lay it gently on in the desired position, fixing the bottom first and sliding the knife away as the top is laid down. The most important point is to make sure several coats of paint are used for the transfers, as if too thin they prove unmanageable.

For the edification of solid modellers comes an idea from J. B. MORLEY, of Farnborough Green, (Fig. 4) a method of making sliding cockpit covers thatslide. Make A, the windshield, from heated celluloid, trim and cement into place. Mould the sliding roof B over a wooden former and bend the bottom cdge inwards to fit grooves cut in the side of the fuselage. Mould the rear cover C , and curve so that B can slide over it. Cement a strip of paper over the groove to keep the sliding roof in place. For machines with hinged covers cut a strip of tin, bend to shape and cement the celluloid over it. Bend a strip of tin round a pin secured in the fuselage. Then cement on the windshield and rear cover to complete.
C. DOWELL, of Atherstone, Wanwick, sends us his method of getting over the difficulty of fitting interplane struts with pointed ends to model biplanes (Fig. 5). The struts are made from two pieces of hard balsa, soaked in dope, which are laminated together after having a groove cut down the centre. The wings are jigged as shown and two small holes are bored in the wing wherever a strut meets the wing. A long piece of florists wire is then cemented into hole X and the centre section strut is threaded on. The wire is then looped through Y, carried to Z . and another strut fitted on, and so on until the process is completed. The greatest advantage of

FIg. 3

PAPER.

FIg. 4

Fig. 5

CIVIL AIRCRAFT No. 22

A D.H.S3 "Humming Bird" (A.B.C. "Scorplon " 35 h.p. flat ewin engine) fyling at the 1926 IIght geroplane cor. p:thtions oc Lympne. "Fiinh, " Photo.

A private owner demanstrates how easy i. - to man-handle a "Humming Blrd" on the ground-iti, machine is fittel with the 22 h.p. Elackburne * Tomele " englne. " Fligh " Hhoto.

Fig. 1. Tha prototype "Humming Blrd" fitted whe the 750 c.c. Douglas motor -cycle engine.
" Real Pholographs Co., LIL"

Fig. 4. One of the later versions fited with a 36 h.p. B-Istol "Cherub III" engine. Phoso: E. I. Hiding.

THE 1D.I.53

BY E • J. RIDING

IN October, 1923, the " Daily Mail" organised a scries of trials at Lympne for light aeroplanes with engines of under 1,000 c.c. The De Havilland Aircraft Company designed and entered two identical machines and although they failed to win any of the prizes, many people considered then to be the best all-round practical aircraft at the meeting.

In the hands of Messrs. Broadi, Hemming and Capt. de Havilland, the "Humming Bird," as the type had been named, were shown to be extremely manceuvrable both on the ground and in the air. Towards the close of the meeting Broad performed a series of loops and rolls, a feat never before attempted on a light aeroplane. It becaure obvious from this spectacle that the ' $\overline{5} 3$ was no mere toy and that it could be regarded as a really sound all-weather machine suitable for the sporting private owner.

The first two " Humming Birds" to appear on the civil register we:e G-EBHX and G-EBHZ and they were fitted originally with the twin cylinder $22 \mathrm{~h} . \mathrm{p}$. inverted Vee type Blackburne " Tomtit," and the flat twin A.B.C. "Scorpion" engines respectively. Later models were equipped with the 36 h.p. flat twin Bristol "Cherub III."

A small batch of D.H.53's were supplied to the R.A.F. for light communication duties in 1924. Some of these machines carried the serial numbers J.7270-3 inclusive, and another onc, J.7325, was used for experiments in connection with the dropping of aircraft from the airship R. 33 in 1925 . These service D.H.53's were painted aluminium all over ancl carricd red, whitc and blue roundels on the sides of the fuselage and underside of the wings only. Tiae rudder carried red, white and blue flashes with serial numbers in black (the blue stripe adjacent to the ruclder post). The majority of them were put on to the civil market during 1927-8, where they were soon snapped up by private owners who were quick to realise that they offered a cheap way of رutting in flying hours, thus J. 7272 ultimately became G-EBTT and altogether there were eleven machines of this type on the register.

At the onthreak of war there were still three or four
Humming Birds" lying about the country. One of these was the veteran G-EBHX, which says a lot for the design and construction of these carly light aircraft. Another one, G-EBXN, was still in excellent Hying condition, but it was unfortunately destroyed in a fire up at Hooton Park in July. 1940.

According to usual 1).H. practicc, the fuselage was built up from light spruce longerons and cross-members covered with plywood. The wings had two wooden box spars and " Γ " section ribs. The wings and tail surfaces were covered with fabric. The early machines had rubber coril shock absorbers on the rear undercarriage legs, but these were later superseded by pistons working in conjunction with rubber pads in compression inside steel cylinders.

The colouning of the civil machines was invariably aluminium all over with black, blue or green (as in the case of G-EBXN) letters and struts.

Speciication (Blackburne engine) : Span, 30 ft .1 in . ; length. $19 \mathrm{ft}$.8 in ; height, $7 \mathrm{ft} .3 \mathrm{in} . ;$ wing area, 150 sq. ft.; tare weight, 310 lb. : loaded weight, 490 lb . ; speed (max.), $76 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. ; cruising, $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. ; landing, $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

FR
 MODEL AIRCRAFT

International Model Aircraft have not been producing Model Aeroplanes for 5 years because their experts have been working hard on more important winners, but we hope soon that all the latest models will once again be available to model aircraft enthusiasts. These will include:-Frog Flying Scale Models. Frog Flying Scale Model Construction Kits, Frog "Senior" Flying Construction Kits. Frog "Penguin" Non-Flying Scale Model Kits.

Sole Concessionares: LINES BROS. LTD. TRI-ANG WORKS, MORDEN ROAD, LONDON, S.W. 19

THe DUDE

Following on the simple beginner's petrol model feotured in the March issue, we present a somewhat more adyanced machine of 64 in . span for engines of 4.6 c.c. The fine flying characteristics of this model make it ideal for competition.

WHHEN this model was designed, special attention was paid to the following points:-
A. Performance.
B. Appearance.
C. Strength of structure.
D. Good and easy access to engine and its innition systen.
F.. The ability to take hard knocks.
F. Mainplane mountine to be crash prool.
G. The tail unit to be light and rigidly fixed (experience has shown that all too often badly fitted tail units are the cause of smashed models and that rarcly is the tail unit damaged).
H. Provision to be made for more than one type of engine fixing.
The designer also considered the prossibility of scaling the design up to. say, 8 ft . span for radio control work.

Provided the instructions and drawings are followed and a little discretion is used no difficulty should be experienced in constructing this plane-so here we go :-

First of all study the drawing. Clueck up and sce which will be the best way to mount your engine. Make yourself familiar with every detail, and the job will be an easy one.

Fuselage. Bergin by laying a sheet of paper on the drawing; trace through the formers, numbering each one as you go along. Cut cach of these drawings out, allowing about $\underset{\underline{y}}{ }$ in. margin ; do not cut the centres out yet. Now ccment each drawing on to a sheet of $\frac{1}{s}$ in. balsa. Kecp the grain vertical. If only the wood available is soft it will be best to cement a shect of paper on both sides; this will prevent it splitting during the cutting and other operations to follow.

Cut the formers out and slot them as indicated. Steam three lengths of $\frac{1}{} \mathrm{in}$. by $\frac{1}{k}$ in. hard balsa to the shape of the three master stringers A, B and C. A way to assemble the fusclage is as follows : obtain about
three feet of $2 \mathrm{in} . \mathrm{b}_{6} \mathbf{2}$ in. deal and cut it up into lengths varying from 4 in . clown to 11 in . Nail thesc blocks 2 in apart on to a buidding board, kecping them square to a centre line, see plan.

A, 13 and C can now be fitted into the slots of the formers and the whole job squared up and cemented. Drawing pins pushed through the formers into the boncks will position them while the ${ }^{\frac{1}{3}} \mathrm{in}$. by $\frac{1}{5}$ in. stringers are fitted. (Avoid applying any unduc bending forces to the stringers, otherwise when the fuselage is ranoved from the jig it may distort.)

The stringers should be fitted alternately from side to side (it may be necessary to steam some of the stringers).

Now lift the fuselage away from the jig and fit the $\frac{1}{6}$ in. わ゙ $\frac{1}{4}$ in. strips and the remaining stringers.

Study the fusclage drawing and then proceed to fit the various parts is shown. Nute that one rear wing strut is staggered.

Undercarriage. Make up the undercarriage parts aul assemble as follows: Cut out two stringers from cach side of the fusclage betwcen stations No. 1 and No. 2 to provide accessi for fitting the undercarriage lears.

Thread the legs into place and cement the whole job up: all parts should be pre-coated with cement. Bind the ends of the legs with florist or hrass wire. line up and solder. Fit the spreader bar landing wheds.

Fill in the legs with balsa, cover with silk and dope. Replace the stringers.

Now fit the engine bearers. Linless your engine is intended tos run inverted I advise you to fit it upright. In any case, keep the thrust line as per drawing.

Sandpaper the fuselage all over until quite smooth.
From a soft block of balsa carve out the hatch slightly oversize, lay it in position and sand it to shape. Next hollow it out, dope it all over and when dry cover it with silk, now dope again.

Main Planes. It will save time if you work on luth

Full Size 40×60 ins. PLANS with ALL parts fully DETAILED

NS AILED

PRICE

Pose Free

Obtainable from

 $\pi /{ }_{10}$AEROMODELLER PLANS SERVICE LTD. Allen House
Newarke Street LEICESTER

ITH ACTUAL SIEE.

 Sentember lath uf this Jeit, she Spurtodreme wili

 to $91 . \mathrm{m}$ - Hater far drinkige mirmeres and ava
 able. free and in is helpet to make as ath
Gars motur orves and hiryoles maty he parked

 either iromen entuer to corner. ur from side to shit

Admiwhon charges are as under:-
Adnls. 1s. ter persum

Buth these rhargos will be redured hy hald for
 sumblars.

Vehictes bronght ont the Sipuds adtume will be chatged at the following tates:-
 Mator (Mrs

 chatrza
'Ther fullowing informations ia pulalisherd witla :
 to) Eaton llray Morlel sjourlsifobse :-

IRO.IT 'TIRAUML

1. Aeromodellewabmededing trum tha NOR'TH atad coming (fown Watling Sireet (Konto A.5) can branch off at Feans stralford and beroced throulh Stoke Hammund to Leighton \{3n\%atid 2) miles beyond which town is the village of Bhlliggtor, adiacent to which is the sportedtomeor ther may conthate down Watling sirece matil
 the villaze of 1 urdelific:. Tbsi turning leade throush 'filsworth to tho village of statheridge. which is ahrut $1 \mid$ miles horth-enst of the sports drome
D. Aeromidellera hearing Lefghton Buyzard take ithe Hemel Heruphtead rond (koute H. Siti) After ahmat a mile ther past over a level crossidg and whorly after bear left at a x fork. The romil rises klighty in the village of Billington, which is on the top of sprales. On the far (south) side of this ridge is a carnimg to the hot. which is
 Billingtanh Roud, on the sumth iche
mile ntang, is the Snurtedreme.
2. Sequmodullers turnimg oir WirtJing Sterest tund coming through 'Thsworth ann] stanhorldge take the Iaighton limzand frosid nilt of stanbridge. hut rery shurth turn loff, travolling south. and withis a dex humderi yards pass urer a levol crossing. afterwurds tuming slaspl right inte) the Billingtum lioad. Abs su to the Spirtsilcome
3. Aeromodellers arystoaching from thesol'ly or KONDON - IKEA. maku their way out ot Lumben rin one of other of the puntin romidi-1

 uf Wallink strect untll they miek un the rarning to the loft rhough to rilsworth (sece Foute : abいce).
i. Aeromodelleris from the mure westorly aide of Landan wund rume wit ria the Wationd BYPiss. taking the "ring Ruad through king Limpley; but hranedhag riphe in Boximone to Itemel Il(ambstead. Flum Hemel Hebmbstend they take the roall strakht thrutarh far Leimhtan Bu\%zard. D'a-singe thrcheh the village of Dhazall. crusing the Primg-Dunstable rosed, wad thrungh Edulesburough natil rearhilug the vilage of Billiugton, where fleg turn right alomg the Billizertion' Ruad aut vo to lhe sport-drome

It is most innpurtanf. for मeromasdellers trarelling nloug this flerael Hempesterid-Ledghton 13nzzaril mad to bear in mind that the village of kiatom Brar lies tas their risht. NND I'HAT THEX JUST NOT IDKE EITHEAOF THOO IRO.DIS

 LABFAM,
 thonld lierep ion tho main Hemel hampastaml road until thry ecome to the villase of lillingeton, nnd then turn right alung the Billimsten bosid to the sport-drume
suituble nermugements witla the lucal authori tics in regard to the crectum of signimsts have been made, atil once seromodellars are within a counle of miles or sn ut the sjourtsidrome. no martare from which direction they approach, thes will

find dear hatices suidine them th the surts－

 Ronte ！＂alwie\％
 Anming thromgh Maldiok antl Ifitchin．would
 til Harlington，athl til Troddmeturt then throuth Twhonith．where thes join Wathe
 ditte．Thas llay turn beft，facel daven Watlink
 iars right through Tilworth and itatibridge and so to the signt stmone：
 FAST＇，crning thrmeh Lutran．Wrollil make －taikht for fonstable and then up Wating Steen muth they met the Tilsworlh thining Cer Rollte i nlowe

 ruat．i．：．the junctinn that is directis unfler the letter＂it＂＇in stantuidere．There are ne butes

IRAIINII TUBAESL

Tomber the fill contimuing＂．war－tinae＂ons－

 althonsh．nes domht．when normal comilitione are mentablished．we shall be able to do this．

Stanbrideford Station js ahout 13 mbles－th reisonable walking detanice－from the Mudel
 hy 1 rain to Leighton Buzzard or Humstuble are advised to bring lieycles with them．
Meanwhile．the following train serviere front

L．M．s．，litspon ral bembron 115\％\％A1《い．			
SITIRJAT．		A1：NOM	
Irgmarl	． 1 rrive	Hepart	Irrive
7.35 atm ．	9．1 $\mathrm{n} . \mathrm{mm}$ ．	\％．5 $\mathrm{ar} . \mathrm{ma}$ ．	$9.35 \mathrm{it} . \mathrm{m}$ ．
S． 5.5 in．mi．	－10．151．m．	$9.111 \mathrm{H.14}$.	111.26812 .117
11．35 \％．m．	1.3 n \％．m．	11．35 $21 . \mathrm{mm}$	12．511 $11 . \mathrm{mm}$ ．

> LFIGHTON HERASRD TO EUSTON.

3.111 jum ．	（6．2011 $\mathrm{P} . \mathrm{m}$ ．	$\therefore .7 \mathrm{p} .4$.	6．1．3 1．m．
5．24 $1 \mathrm{p} . \mathrm{mm}$ ．	T．2 10．til．	$6.31 \mathrm{f} . \mathrm{mm}$ ．	7．54 11.1 mm
7．121 $1 . \mathrm{mm}$ ．	S．4．5 $\mathrm{P} . \mathrm{ma}$	$9.34 \mathrm{j} . \mathrm{mm}$ ．	$9.2 \mathrm{p} . \mathrm{m}$ ．
110.258 .15.	11.418 .818.		

TOWN．			
S．ITl：RHAY．		sしさいいソ。	
Iepart	Irrier	Irsiarl	ir
7．2S 1.31.	－9．： 11.112	\＄．35 $11 . \mathrm{m}$ ．	10．28 $11 . \mathrm{m}$
$12.16 \mathrm{r} . \mathrm{mm}$ ．	－1．fis n．m．	－	
l．A．F．R．			
：3．33 1.2 m ．	－．31 10．11．	H．15；pr．m．	S．1： 1 1，
6．311 0．111．	8．35 10.11		

LEICHTON 以（：L\％． 1 ！ 11	$\begin{aligned} & \text { sTANBRGB: } \\ & \text { FORD } \end{aligned}$	MINSTABLE （L．M．s．）
12.54 1．011．	1.313 mm ．	1．111 $11 . \mathrm{ma}$
	3． 3 38 1.11 m ．	5．14；31．71．
7．$\frac{111}{1,117}$ ．	7.18 \％ 6.1 m ．	\％．．itim． 131.
		LF：はいてい 1 $\% \%$ ，
$1.16 \mathrm{j} 1 . \mathrm{mm}$ ．		1．：31 10．31．
6．111 p ． mm ．	6，．1＊ r ． m ．	
8．1．i $\mathrm{m} . \mathrm{mm}$ ．	col	S．3413．17．

JULY 8th, 1945

must have made this the biggest petrol gathering since the lifting of the ban, and a happy augury of things to cornc.

The Heading Photo shows a part of the large crowd Many well-knowa aeromodellers attended and are visible in the photosraoh.

Photo No. 1. "The Winmer!" R. C. Monks, of Birm ingham, and his winning model. Powered witl a 6 c.c. Baby Cyclone, it is of $5-f t$. span, 500 sq . in. area and weighs $3 \div$ lbs.

Photo No. 2. ". . . if I onlv had wings . . ." and a considerable difference it would have made, too! Hancock's mudel caught by the camera just as the wings parted company" and the fuselacre began its brief journey earthwards.

Photos Nos. 3 and 4. "Buosted take-offs." Left, G. W. W. Harris of Croydon, manages to get his model off from the raised end of the take-off board during the first part of the contest. Right, R. C. Mooks also succeeds.

Photo No. 5. "Carter Pallerson?" Not quite K. N. Ballisat, of Cheam, solves the transport problem with the aid of a ratorbike autl a catrying-box of gargantuan proportions.

Photo No. 6. "Lion-taming /" K. Tansley, of Northern Heights, " winds" his modifed Premier Liun amidst the admiring glances of a bevy of fans (?). H. J. Towner, S.M.A.E. Competition Secretary, seems to be the only person uatiected by the " Aeromodeller's Urge" to dress (or undress) for the accasion.

Photo No. 7. "Biling the dust!" The modified Quaker Flash belonging to A. Cripps, of Bradford, indulges in a burroving session at the far side of the tarmac.

Photo No. 8. "Seramble"-but in this case awas from the machine. (: W. W. Harris's model, which later tonk second place in lise contest, causes slight qualins amongst a group of spectators

Completitor.	'rotal Frror.
i. MONES (RIRMINNGHAMI) .	27
2. HARRIS (\%ROI'DON)	301
3. LANFRANOTI (BRADFORD)	35 40.9
5. GUEST (GENERAL AIHCKIFT)	40.9 42.5
6. TANSLET (NORTIEERN	
HE(GHTS)	$55 \cdot 5$

One Adverse Point was registered for every secund over the stipulated anginc run of 20 secs. No Adrerse Points ware registered fur engine rums belone 20 weow. One Adrerse Point was registared for everr second the machlne was airborne under or orer the 40 seconde stipnjatod. Toa marka were awarded for the quality of the take-off. any marks losit comuting as adverse points.

IHilVF, had an carnest request from a reader and would-tre "petroleer" to g^{\prime} b back to beginnings and write a "Petrol liupics" for the beneft. of the very large number of young (and not so young) chaps who, ill my own words in the May instalment are " itching to set cracking " on petrol models, but who were tos soung or who were duite satisfied to remain " rubbercars " before the war, and who began to beconce interested at a time when engines had long since disappeared from the shops, and, during the ban, from the flying field alsu.
One is apt to forget that the war, hawing lasted six long jears, has seen the growing up of a complete new gencration of wage and salary earners, who are prepared to lay out a diver for an engine as soon as one is obtainable, but who have nower evern seen an ensine under 100 c.c. capacity, still less handied one or tricd to operate one, and that therefore any trecimical references to engines, their operation, and esplecially any suggested modifications, are to them what square roots and formula are to me--just so much hot air!! Having long since forgotten the elementary principles of mathematics, I have to turn over the page mumbling probably very interesting and enlightening if I could conly work 'em out. Let's see what the author's answer cones to." Since he seldunz gives it, or if he does it applics to a particular case onls, I'm frequently little the wiser.

There have been several similar repmests from time to time and now at last I feel bound to have a crack at starting at the begiming for the benctit of the hundreds of chaps who have never yet handled an engine but who will undubtedly form the majorite of petroleens in this country within the next five years. Apart from the few veterans who pioneeted the "petrol game" in this country (and thes- the men who started before 1n3(1)can be counted on the fingers of two hands), there cannot be many petroleers who had flown petrol models for more than five vears before the outbreak of war, and we can fecl fairly coufident that at least twice this number will start within the first five vears after it.

Probably what I have to say will be considered highly unorthodox by many men who have been in the game Jonger than i have, but then my own beginning was unorthodox, as I came to the game practically unhampered by any preconceived notions of rubberpowered models, and l am not ashamed to admit that [had never built or wished to thy a cluration moxdel before building my first petrol model. I first built a 20 in. scale Miles Magister with a geared scale prop. which gave it a gradual and realistic take off, but llound that cenen with a super mown golf green or seaside sands a realistic landing came only once in ten times, purely by luck. Next I built a 30 in . scale Miles Falcon low-wing cabin jol, with nice big wheels inside "trousers." By the time I'd fuished strengthening and modifying its structure and fitting first a searbox and finally an antomatic relay bringing a second motor into action as the first one: faded out, and trying a new airfoil and a sprung undercart, the wing loading had gone up to about 10 oxs. per siq. ft., and she was fast hecoming a projectile.

I couldu't help feeling that just is she had gained decent altitude, and the second motor had cut in and all secmed set for a nice steady Hight, she started losin! height again and the fight secmed over before I'd had time to reach for my camera ! ! On the other hand if I
built a slow-flying duration model, looking like nothing on earth or in shy, there would be no objest in getting a snapshot anvwas! Then again, I have never mastered the technique of making a rubber motor last a season. I always wanted those few extra turns which ended in internal cxplosions within the creature's bolly accompanied bj bits of stringer and jap tissue dlying in all directinns folluwed by hours of repair work. "No Sir,"
I said. " l'm going to buikl something big and strong that will stay up as long as I say and not just as long as my rubber motor savs.'

Just then I met Col. (then Captain) Bowden who was flying what to me scemed a huge 7 ft . Kanga Kite. which used to make the most delicious landings after lovely slow and stcady flights, and having already half built a scaled down model based on onc appearing in an American magazine, resolved from then onwards to concentrate exclusively on petrol models. Fortunately for me. but very unluckile for him. I was in at the death of a perfectly good Cyclone engine when this big mudel glided into a stone wall, and he pointed out his knock-off mounting which had never previously failed to save damage to his engines and had only failed to do sor that time owing to sheer had luck, the hub of the airscrew having struck the wall between two projecting stoncs which prevented the normal knock-oft action occurring. This taught me a sound lesson from the outset which I have never regretted, and I have never yet huilt a model with a rigidly mounted engine or without some form of knock-off engine mounting or airscrew shaft.

Unfortunately from the point of view of immediate success, thongh it certimly led to some interesting experiments later, 1 ignored his next piece of advice. Instead of building a large amply-powered model I thought I was being clever in starting with something very small for petrol models in those days, and bought one of the tirst baby engines of between 2 and 3 c.c. This proved quite incapable of maintaining even level tlight from a land launch, so that in the end I had to buy a second and more powerful engine. I know of several people who have made the same mistake, and in the hope of saving others, I would remind every beginner that however small or large the engines, within reason, the minimum weight of reliable ignition equipment which includes the ignition or spark coil, the batteries and flight timer remains the same, and though the idea of a really small and portable litte model which van be carried about in an attaché case is very attractive to many people, its realisation in practice is very difficult. Even with the American Microlvene "Super Atom" engince which by all previous standards is in a class by itself for power/weight ratio, and develops as much power from its 1.5 c.c. as many earlier engines of three times its capacite, it is still $\begin{gathered}\text { rery real problem to design }\end{gathered}$ a model of 3 ft . span which will take off and land well in any but the most ideal conditions of weather and terrain. It can be done, and has been done, if little regard is paid either to appe:arance or to durability of the model as a whole; the use of very thin stringers and jap tissue covering and the carcful selection of the right quality bulsa for use in the right places enables one to save a few ounces on the airframe, but umless the wing loading is kept to less than $120 \% s . / \mathrm{sq}$. ft., the gliding speed necessitates a very robust undercart judged by rubber model standards, and it is one of the biggest prohlems to design an undereart that will not become disturted with
repeated use, and yet will, when added to the irreducible weight of engine and all its accessories, weigh as little as $\frac{1 \mathrm{l}}{\mathrm{t}}$. The difference in strength and immunity from tears in hedges, etc., between silk covering and tissue or even bamboo paper coverings is out of all proportion to the slight saving in weight, and one of iny chief joys on first flying silk-covered petrol models was arriving home at the end of days of gruelling flying including landings in trees and bedges and finding no repairs and patching of the covering necessary.

Since writing the above, I have had an opportunity of trylng one of the new silk substitutes (called PLANEFILM), and though it is too soon to come to any conclusions on its long term durability, or whether in the course of time it becomes brittle or not, it is certainly much lighter than silk and seems immensely strong. It is an impervious film, somewhat like cellophane in texture, slightly clastic and therefore capable of covering compound curves, and because of its impermcability, requires much less weight of dope than is required to fill the interstices of silk.

The really small petrol model may sound attractive. especially if an ideal flying ground with really short grass is always at hand, but I certainly don't recommend it as a beginner's model, and it does not give the characteristic performance of the larger model, and most important of all, with few exceptions, the very small engines under 4 c.c. (i.e., approximately -225 cu. in. by American classitication), were not quite as easy to manage as their larger brethren of around 6 c.c. and over. Obviously the smaller the model, the less latitude exists for increase in weight with age. Even rubberears know how the weight of a model gradually goes up with minor repairs, modifications, additions and absorption of rubber lubricant, etc. Thesc are all proportionately bigger on petrol models but the addition of 1 oz . on a 3 or 4 lb . model makes little difference to the wing loading.

I have flown models with loadings of if lbs. per sq. It., but I don't like it, nor do their undercarts. Although the theorists will tell you that the only effect of increasing wing loading is to increase the gliding speed (i.c., the formard speed), I am quite convinced that the sinking speed also increases on a badly streamlined model, and on a small model under 5 sq . It. in wing area, the weight of undercart strong enough to stand up to repeated landings at wing loadings of over $1 \mathrm{lb} . / \mathrm{sq}$. ft. hecomes disproportional to the total weight.

Going to the other extreme of light wing loading has never been one of nly failings (or successes!). In this country we have nearly all "built fairly heavy," but in America petrol models with loading of under $8 \mathrm{ozs} . / \mathrm{sq}$. ft . have been fairly common. I have seen models of this loading in action, and personally I don't like their behaviour either under power or on the glide as much as a more heavily loaded machine, and when it comes to landing they are ton inclined to bounce off into a stall, instead of sticking to the deck.

For all (reasonable) weather flying I would recommend a wing loading of between 10 and $140 \% \mathrm{~s} . / \mathrm{sq}$. ft. The outstanding difference between the flying of petrol models and duration models is their landing. There is bound to be a certain element of luck in the sort of air conditions met with just before touching down, especially in " bumpy weather," but it is here that the more heavily loaded model scores, as it is less affected by incqualities in air density and velocity near the ground and is therefore more likely to make consistently good landings. Another point of prime importance in the flying of petrol models is to ensure that there is no tendency to stall.

So far as the landing of a duration model goes, slight degrees of stall do not matter very much as the model probably noses over in any case and no one seems to care (though personally it gives me " the willies"), but this sort of thing on a petrol model may lead to quite serious damage. It is absolutely essential if consistent and crash-free landings are to be made that the glide is steady and free from any stalling tendency. However gentle the stall, switchbacking ensues and sooner rather than later the model will touch down at just the wrong point of the switchback and either dive in and nose over or bounce high and probably stall within a few feet of the ground.

The fitting of built-in or " letter-box" slots to wing tips has come in for a certain amount of criticism of late and I have heard it said that they make not the slightest difference to a model's stalling tendencies, and even that they increase such tendency, as proved by covering them over with silk or gummed paper. I think there is no doubt they are not quite as effective as Handley Page slots on outriggers, but they are less casily damaged and ccrtainly add less drag, and if properly designed and positioned, without unduly blunting the leading edge of the shortened airfoil behind them, they undoubtedly work very well. At all events the use of good slots, which do work, help a model to negotiate the abovementioned hazards including that very likely stall following a bounce landing, and I still intend to build them into all my wings, both land 'planes and flying boats.

Basic Principles of Model Aircraft Engines:

Quoting from the letter from the reader who finally urged me to write this "beginners' instalment" of Petrol Topics, he states: " How many, I wonder, are, like mysclf, ' lone hands' who know no experienced 'petrolecr ' and whose knowledge of an engine could be stated in a few words: An engine derives its power from petrol and oil : is about the size of the palm of your hand and weighs about 3-5 ozs. ? Probably the majority of these enthusiasts who are "itching to get cracking" have never even scen an engine stripped." He goes on to ask for a simple explanation of the working and parts of an engine.

In my book on engines I laboured the point that hitherto we have not seen a model aircraft engine pure and simple, designed throughout and exclusively for the job we aeromodellers call upon it to do. There were plenty of new makes and new models of old makes, but nearly all followed preconceived notions of general layout based on marine- and stationary two-stroke engines. This layout is by no means ideal for our purpose, and there is a great deal of room for improvement in post-war designs, of which I hope we shall not have to wait much longer for concrete evidence. Pending the production (I hope in Britain as well as America) of new designs, I base my remarks on engines obtainable before the war.

I think it may be simpler to start with the prop. (the only thing that is common to rubber and petrolpowered models) and work backwards. The prop. is mounted on a shaft (usually $\frac{1}{\frac{1}{4}} \mathrm{in}$. diam.) and is driven by a disc known as the driving washer whose front face has either spikes or serrations to bite into the wood of the prop. A nut (sometimes in the shape of a spinner) and washer clamp the prop, hard against the driving washor. The shaft itself is usually hardened and ground steel and carries on its inner end a crank pin and counter balance weight, and it revolves in an accurately-fitting bush or
hearing. sumetimes bronze, sometimes dural or other suitable alloy. Power is cosweyed to the crank pin by the usual piston and con-ral or connecting rond of amy reciprocating engine whether stomm or internal comabustion. In a steam engine power is applied to both sides of the piston altermately givitig beth a push amb pull action, but in intermal combustion engines the power is applied on the far side of the piston only, and the monontum thus gained by the revolving shaft and connterbalame woight carrios the shaft and prop. round the ervater part of a comulete revohotion, so pushing the piston to the top of its stroke ageain athed ready for the meal application of pemer.

The pistom slides up and daws an enclosing cylinder the one being an cxact and gas-proof fit within the other. Some pistons atre fittecl with cast iron spring rings, but most are accurately lapped into their exlinders and to begin with are at lenst as gastight as those foted with rimes, thongh they may not wear quite as long as rings. The end of the cylinder is of course closed by what is called the cylinder head. Which may or may nut be in one piece with the colimoter itself, and through this is thereaded the sparking plug with a gastight washert

A mixture of vaposurised petrol and air is introducer into the cylinder and compresised by the piston until it reaches the end of its stroke towards the evilinder heat. The ratio beiweren the volumes of the space in the cylinder head into which the mixture is compressed and the volume of the mixture before the compressien stroke begins is known as the compressiom ratio, and this is so arranged that when the compressed mivture is igniterl bu a spark form the ploge, it does not detonate or instantaneonsly explode, but burns at a definite rate cansing progressive expansion of the gats, thus forcing the piston down the cylinder and tuming the crankshaft wioe the: con-rod.

The pecoliarity of a two-stroke engine is that the complete eycle of exents takes plate in one revolution of the shaft iuvolving onlo two strokes. one up and one down, of the pistou. The mure usual four-stroke engine used in cars and aero engines, etc., is much more efficient, but iswolves the use of valies timed to open and close at half the crankshaft speed, thus entailing another shaft (the cam shaft) and its reduction gearing from the crankshaft. The only moving parts in a two-stroke engine are the piston and its "sudgeon" pin on which the con-rod pivots; the con-rod and the crankshaft.

Whereas in a four-stroke the gas is forst sumed in through the inlet value (elownstrule), second, compressed while all valves are closed (upstroke), thicd, ignited to give the firing stroke (downstrake), fow th, exhausted through the now open exhaust ralve (upstroke). giving ahmost complete scarenging or clearance of exhatust gas. In a two-stroke, the crankcase in which the crank and connter balance weight revidve is utilised as a recemer of mixture, and while the piston travels to the top of its stroke compressing the gas in the cylindel head, it simultaneously sucks mixture into the crankease cither throush a port or opening in the sirle of the cylinder uncovered by the piston at its point of " top dead contre" or through an opering in the side of a hollow crankshaft or through a hole in a disc rotating with the crankshaft wilhin the crankcase, timed to open and close at or war the print of revolation at which the piston is at top dead centre.

N the piston refurns on the firing stroke, the mixture trapped in the crankcase becomes compressed and just before bottom dead centre is reached the piston unceners

two more openings of ports in the cyliuder wall. The larger one which begins to open a little before the smaller one is the exhaust jort through which the spent explosion projects the usual delightful stink and blue smoke associated with petroleers! The smaller and later opening port is the transfer port and allows of the transfer of the already compressed minture from the crankease to the colinder.

On most engines the piston top is so shaper that this incoming jet of mixture is directed upwards to the cylinder head su assisting to drive out the remaining exhaust gas, but it is obvious that in a two-stroke engine there must be some mixing of exhaust and incoming gases as complete scavenging is not possible. Much rescarch has gone un over many years in the placinfir of ports and in the shapes of piston topsi and deflectors. and even amongst full-size engine designers there is no one and only final way of ohtaining the highest efficiencs:

The conditions governing the perfect operation of this two-stroke cycle of events at the scemingly amazing speeds of :,omo and eren 10,010 times per minu r, would take at least an article in themselves to describe, but I need a long breath before procecding! There entail the: description of the induction and ignition spstems, and what is far more important, their intelligent operation by the budding petroleer. All of the foregoing recars whether the operator likes it or not, and what he is far more elirestly concerned with is providing the fuel in the rigite propertion, i.e., the petrol, air ratio and the means of consuming or combusting it, i.s., e. nice fat spark a: the plug points at the right moment. Next month 1 will attempt to describe some of the most widely used systems, and my own. pessibly unorthertos methode of operatione t! orm 'i

- 'IIE SCALIGHAPI

DESIGNED BY C•E•MOTH

TN all cases it is more accurate to reduce rather than enlarge.
The mechanism has been made with two short arms of 8 in. length and two long arms of 24 in . length, fitted together so that the two short arms form two sides of an 8 int. square with the 24 in. arms forming the other two sides which run on for the slides to slide up and down on.

There are two adjustable points.
An 11 in. template as illustrated will reduce from $7 \frac{1}{3} \mathrm{in}$. to 3 j in.; these being the limits of all aerofoil sections with this template.

Any size section can be drawn from an original without the tedious development method being required mure than once.

For clarite I will call the slide that slides on the graduated figures A, and the slide that slides on the 24 in. figures B, the point where the short arms intersect at the copper tubing \mathcal{C}, and the glider pin at the intersection of the large arms D

Suppose a section of $5: 1$ in. chord is required, using the 11 in. template. Multiply the template chord by the length of the short am (8 in.) and divide by the required chord length :-

$$
\frac{11 \times 8}{5: 1}=17.255
$$

With the arrow on slide IS facine towards the glider I, slicle \mathcal{E} until the arrow point comes directly over
 proint to dix in position : then, as for 13, slide A on the graduated scale until it also is at 17.0 in. Screw home the pin point and lock into pesition. Fix the pencil, which in this case is a spring latad pin vice, into the copper tubins, by inserting the spring first, then handle end of pin vine. Incatine the $1 / 16$ in. hole in the handle through the slon in the eside af the tuthe with a piece of If sandere wire. Tise If peracil lead. Furce the pin at 1 into the drawins board, pin drawing paper with drawing pan conveniently ander pencil. place template in a position so that when the trammel at 13 is placed at the trailing edge and leading edge the pencil does not fond
the template, press home the two pins under the temphate into the drawing board, then commense drawing, kecping the trammel romning smouthly and chascty round the template. The pencil will draw nut the required chord size but with one exception. The upper and lower surfaces of the trailing edge will have to be produced to a point to be exact. The reason for this is: The trammel at 13 is $\frac{1}{8} \mathrm{in}$. diameter section on the working edge. therefore to get alcad centre $1 / 1 \mathrm{i}$ in. was taken off all round the template; that explains why the template does not measurc 11 in . chord length, but it was plotted to an 11 in . chord first, and then the $1 / 16 \mathrm{in}$. was removed. When using a trammel of this kind all templates must have this $1,16 \mathrm{in}$. taken off.

To enlarge or reduce from a drawing use pin prints. Remove pencil lead and replace with pin point made for the purpose. Kemove trammel and replace with pin point on B slide, then using as before or with rearranged formula, prick out at small intervals, and"connect prick holes produced. A tranumel at C and a pencil at B can be used, but I do not advise this method.

A smaller square can be used to separate the limits still further in the required chord sizes but the"larger the square the more accurate the work produced. I find sin. on a 24 in . mashine is ideal. On no acomunt can the fogures un either side be uved if the syware is continually heing altered.

1 can vouch for the complete accuracy of this mechanism: its real secret being that all points A, T_{3} and C must be in a straight line. The theory of the mechanism is. of course, entirely depemdent on this fact, fromwinich is worked out the graduated scales.

This apparatus would apperer to be a zaviation of the \%-1l-knuisì Pantograph.

H: miderstand that the designer. Mr. C. E. Moth, is
 The mochouispm marketod. Il hilst ace pubiosh this descripdion, coppright of the mechunism is retained by Mr. Moth. sitho adif be inlivesten to reciece anpuiries from fersons
 pleased to ioss on enguiries to .14\%. Mohn....Ed.

1/2 ACTUAL SIZE.

LONG ARMS $24^{3 / 1} x^{3 / 14} x^{3 /}$ 解 COPPER (ON ORICINAL)
any available metal will suit, hardwoods may also ee used.

Berty's ald type tail turres

Betty raid scene from lateral blister turret of another

Benty modal 1 - r. ocer Palems buns", Sumatra

JAPANBSE

NOW Ready-the only Book of its kind yet published!

$\star 84$ FULL COLOUR PLATES $\star 45$ THREE-VIEW DRAWINGS $\star 96$ PHOTOGRAPHS $\quad \star$ TECHNICAL SPECIFICATIONS * GUIDE TO PACIFIC WAR ZONE

A complete and accurate record of Japanese Service Aircraft

JAPANESE AIRCRAFT is outstanding for its colour plates, its black and white illustrations, and its authentic information. A work produced with less regard to cost than to authenticity. Now, when public interest is centred on events in Asia, "Harborough " proudly offer this volume as a complete and accurate record of Japancse Service Aircraft.

Japanese aircraft has been written, compiled, and illustrated by John Stroud, the leading authority in Britain on Japanese aeroplanes. He reveals in this book information hitherto only conjectured.

In JAPANESE AIRCRAFT you have a scrious and authoritative contribution to aircraft literature. In it are facts, figures, and illustrations not otherwise obtainable in onc complete book of reference, and as such JAPANESE AIRCRAFT may easily rank as the standard work on the aircraft of Japan.
See top of next page for further details -
Belo:c is Beaty, the maid-of-all-ravk of she Fopunese Nayl. Normally sharc-based tut knocint

The BOOK ITSELF -its Size, Cover, Paper and Binding

On Art paper, size $8 \mathbf{1} \mathbf{x}$ 11 ins., 64 pages, sewn, stiff board bound, in blue cloth, gilt blocked. Leok on the bookstalls for the red, yellow and black dust cover, as illustrated.

PRICE 25s. or, ory pois

The Illustrations In this advertisement are small repruducrons from the drublepage sprcad featuring the type "Betty." In the book the four drawings on the left ase in full realiscic colours. The three-view deawing belen is also of "Betty" and caken from the same two pages. In addition to the double-page illustrations chere are Eight P'ages of Photographs of over Fifty Different Types, a Section illustrating Second line Aircraft, Two Pages of Three Vicw Drawings of new Japanese geroplanes released since this work was begun, including the Pileted Flying Bomb.

Altogether. in this one volume, there are ${ }_{4}+$ Full-Colour Plates, 96 Photographs, is Thre-View Drawings and a full-page Colnured Mar of the Pacific War Zone

The CONTENTS - Arranged for easy reference

Types are Classified according to their rype and oury, and subdiwided alphabetically according to their code names. Each of the 21 operational acroplanes bas two facing pages on which appear a 'rechnical Specificarion, a Genera! Description and History, a Photugraph, a Threc-Vics Urawing and Four Full Colour Plater.

Code Nomes Explained. As you may know, code names are used by the Allies for all Japanese Service Aircraft. The author explains how hoys names are given to fighters and girls' to most other aircraft.

Naval or Army Aeroplanes? On going into production Navy acroplanes are given an ofticial name and a function and model number. Army aeroplancs are given a designation comprising the designers' name, rype number, function and model number. The author explains the system fully of how Naval and Army planes are coded with examples and a complete list of the code letters used.

What is KANA? Kana is form of Japanese ideography used by the lesscr efucgred. It comes into japanese airCRAFS because it is on some of the acroplades. Mr. Stroud explains its uses and cffects, and has included a table for translating Kana.

Aeronautical Terms are included with their equivalent in lapanesc, and in the Japmese ideography.

Japonese Aircroft Monufacturers. Short histories, with details of their acroplanes, have been given.

Jopanese Aero Motors are listed with the name of the manufacturer and a translation of the Japanese names.

Map of Pacific War Zone. A specially drawn and fully coloured map is also included with a number of topographical details of the area.

What You should do to Secure Your Copy

To be sure of your copy of japanest alrchaft you must place your order NOW. Shortage of paper has limited the number of copics. Therefore delay may mean disappointment. JAl'ANESE AIRCRAFT is a book you will be proud to own. Apary from its wealth of acclisate information, the colour plates alone are worth the price of the book. Make sure of your copy. Ploce your order immediarely with your local Modelshop, or Beokseller, or if you prefer, post ditect to the publishers - send today.
Order now from Your Modelshop or Bookseller or send direct to-

(Nex Yerk Times Pheto.) RUFISH: Seohowks are now widely ured in the Pacific.

(1 ickers-tom (trinnes lhand
G-AGOK: The firat protorype Viking. sccond Brlish civil oirliner to fly since VE-doy.

 SIXES AND SEVENS: (Above) the Spiefire VIl high-leval fighter as used ae one periad on the Italian Front and belowi the Splifire Vill experimental high-level fighter

Pacific Sporting.

Designed to replace the Fingrisher two-seater, the Curtiss SC. 1 Seahawk single-seat floatplane is now in service with the US.S. Pacific Flect as a high-spued reconnaissance aircrait. Seven prototypes were built. the first flying in February. 1044. The Seahawk has a wiel speed range, giving high performance for combat aul bow cruising specds for flect shadowing. It can also be used for air-sea rescue. A nine-cylinder Wright Cyclone radial is fitted, with a four-blader Curtiss-Electric dirscrew. The similarity to the Japanese Rufe is interesting.

In the Dakota Class.

The Vickers-Armstrongs V.C. 1 Viking civil airliner made its first flight on June $22 n d$ last, and became the second British transport completed since VE-day to Hy. The Viking is a medium-range, mediurm-capacity aircraft with a crew of four and accommodation for 21 , 24 , or 27 passengers. It is the first British aircraft corresponding to the Dakota or D.C. 3 formula and is expected to he in wide use on airlines both in this country and abroad before very long.

The Viking combines " Crooletic " Wellington-type wings with a mow stressed-skin fuselage and is peovered by two l3ristol Hercules 130 radials of 1.675 h.p. each. Span is 89 ft. 3 in., length 62 ft .7 in . and loaded weight $33,000 \mathrm{Ib}$. Cruising at 210 m.p.h. with 6,!ar lb. of palyload the range is 1,000 mules

The first Viking was all-silver and was registered G-ACOK

A Centaurus-Warwick.

The Vickers-Armstrongs Warwick V^{-}has now been ammounced by the dir Ministry. The Warwick V' is powered by two of the new 2,500 h.p. plus Bristol Contaurus eightern-cylinder sleeve-valve motors and is fitted with four-blade airscrews. Wanvick VV gemeral reconnaissance patrul-bombers have been flying in this country since early in 1945 and many havo been sent out to South-Fast Asia to operate against the Japanese Nary. The Warwick $V^{\prime \prime}$ has an angular glass nose, the dorsal turret is deleted, and a retractable I.eigh Light is fitted, As on the WVellington S゙IV. Armament includes one 50 in. machine-gun in the mose and at cach beam pusition and four 303 in . guns in the power-driven tail turret. With a luaded weight of over $45,000 \mathrm{lb}$., the Wanvick V has a top speed of about 290 m.p.h.

The Warwick V has white Coastal Command camunfage and one batcl2 was numbered PNesto PN 80s, PN sus, etc
(.l.7.!", Ph 10.) PACIFIC RECCO: A Worwick V, used as a genaral reconnalisance bomber' n S.E. Asla.

Another " Crikey."

The fantastic wing span of the Westland Welkin single-seat fighter-70 ft.-seems as likely to evoke the celel.rated cjaculation "Crikey" as did the high sperd of its prodecessor, the Whirlwind, on its first aquearance. The Vl:clkin was prexluced at a peried when the Luftwafie was showing interest in the high-altitude bomber and attacks on this country were considered a possibility. The attacks never materialised, so the Werlin was built only in limited numbers amd wäs not used by operational squadrons. The teper froved useful, however, for experiments with pressure-cabin apparatus, a line of research in which the Westland Company is especially interested. The Welkin is generally similar to the Whirlwind, but has mid-wing layout instead of low-wine, and a much higher aspect ratio. It is powered be two Rolls-Royce Merlins, a Merlin 72 or 7ti on the starboard side and a Morlin 73 or 77 driving a Rotol cabin supercharger on the port side. The Welkin has a torp speed of $385 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. . a range of 1.500 miles, a londed weight of $17,500 \mathrm{lb}$. and an armament of four fixed 20 mm . camons in the nose.

First British Operational Jet.

The Gloster Meteor single-seat jet turbine-propelled fighter first went into artion with the R.A.F. against the flying-hombs in the summer of 1944 and later operated from bases on the Continent. The prototype first flew in March, 1943. 'He Metcor has a span of 43 ft . and a length of 41 ft . and is fitted with twin Rolls-RoyceWhittle Derwent or Welland gas-turbines spaced well out along the wing. The top speed is reported to be in the: 500 m.p.h. category. Armament consists of four 20 mum. cannons in the nose.

R.A.F. Flashback-10.

With the close attention now being paid to transport aircralt as a vital factor in air warfare it is interesting to see what was being done in the R.A.F. fifteen years ago. In 1930 the standard troop-catrier was the Vickers Victoria, a large hiplame with two Napier T-ion motors and a span of $8 i \mathrm{ft} . \pm \mathrm{in}$. The Victoria weighed 17,460 lb . loaded, carried 22 troons and had a top speed of $118 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It was the equipment of Nos. 76 and 216 Squadrons in the Widdle Eiast until 1935-36 when the slightly improved Valentia came into service. The Victoria Vl had two Bristol fupiter motors.

The Victoria was doped all-silver and had the usual roundels and red, white and blue tatil stripes of the period.

MIDDLE ERST, 1935: A Vickers Valentia troop-carrying biplane. Sea R.A.F. Flashback on this page.

R.N.Z.A.F. ECHELON: Corsalr fighters baaping New Zealand markings, and lbelow HIGH ASPECT: A Welkin high-level fighter.

THE SQUADRON SERVICE: The Gloster Meteor was zhe first jet-propelled fighter to operate with the Royal Alr Force.

THE AICHII NAUY 9 ? VAL

SIILL in large-scale service with the Japanese Navy until about a year ago, the Aichi Navy 99 Val dive-bonnber became one of the most famous aircraft of the Pacific War because of its major part in the attack on P'earl Harbour on Sunday, December 7th, 19+1. During this fatcful attack, which brought the U.S.A. into the War. Val divebombers operated from Japancse aircraft-carriers in co-operation with Nakajima Navy 37 Katc torpedobombers, and the bombers were escorted by Mitsubishi Navy 00 Zeke tighters. The dive-bombers and torpedo-bombers inflicted a crushing blow on the United States Pacific Fleet, and the months that followed served to dispel still further the beliel that Japanese Air Power was of second-rate quality:

We intend to feature a number of the more outstanding Japanese aircraft in future issues, and Val has been chosen as being representative of the modern aircraft with which Japan began the War, and the existence of which came as such a surprise to the United Nations.

Val was first produced in 1939 and was put into full production by the Aichi Watch and Electrical Machinery Co., in 1940. In general layout, Val bore a remarkable resemblance to its American counterpart, the Duuglas SIBD Dauntless, but could be easily distinguished in combat because of its elliptical wings and fixed undercarriage, the Dauntless having straight taper on the wings and a rctractable undercarriage.

Three versions of Val were produced, differing mainly in the type of motor fitted and detail revisions to the cockpit hood. Aichi 99-1, 90-2, and 99-3, have had successively larger and more powerful motors. Aichi 99-2, used at Pearl Harbour, was fitted with a Mitsubishi Kinsci \&t fourteen-cylinder air-cooled radial. Aichi 93-3, the first example of which was discovered by [I.S. Marines at Munda Airstrip, was fitted with a Nitsubishi Kinsei 54 motor of $1,250 \mathrm{~h} . \mathrm{p}$., an advance of
$220 \mathrm{~h} . \mathrm{p}$. over the $1,000 \mathrm{~h} . \mathrm{p}$. of the Kinsej 44.
Val was fitted with dive-brakes beneath the wings and the bomb was carried on a crutch beneath the fusclage. The crutch was lowered prior to relcase so that the homb fell clear of the airscrew. For easy stowage on aircraftcarriers the wing tips of Val were hinged about half-way along the aileron span and folded upwards. In combat, Val fell an easy victim to U.S. fighters because of its lack of armour protection and self-sealing fuel tanks. C. Rupert Moore's cover painting this month shows Val dive-bombers going down through the flak to attack a U.S. aircraft-carrier.

After three years of operations, which included the important Battle of Widway where Vals were widely used, the Aichi Navy 99 was finally retired in the autumn of 1944 . Val was replaced as the standard Jdinanese Navy dive-bomber by Judy, a two-seat mid-sring monoplane with either in-line or radial motor.

Specification (Model (5)-3): One Mitsubishi Kinsei 54 radial motor of 1,280 h.p. : crew of two: stressed-skin metal construction; span, 47 ft .7 in : length, 35 ft .5 in . : loaded weight ($99-2$), $8,828 \mathrm{lb}$. ; maximum speed (09-2), $241 \mathrm{mp.h}$. at $7,700 \mathrm{ft}$; maxinum range, 1,250 miles ; servicc ceiling, $27,200 \mathrm{ft}$; climb. 1,740 $\mathrm{ft} . / \mathrm{min}$.; twin 7.7 mm . synchronised machine-guns mounted iu the cowling and either one or two manual 7.7 mun. machine-guns in rear cockpit: bomb-load, $1,050 \mathrm{lb}$. carried externally.

the Mscca of the Midlands

 The finest Model Shop in the World
model Aerodrome

NEWS

$$
B Y \quad C L U B M A N
$$

Abstract

Members of the Bosingstoke M.A.C. wish the Mayor of Basingstoke, and our ald friend Rip on the right.

IDON'I' know how many of my readers are still sccuring copies of the American modelling magazines, but I have recently been fortunate to reccive a fow current numbers of "Air Trails," that very fine monthly publication edited by aercmodeller "Bill" Winter. In general control line dlying seems to be receiving the major share of interest in the States, and some very goodlooking designs are appearing. especially in the scale type class. I note with approval the steady improvement in the looks of the average " gas-jot," over there, a large amount of the out-and-out freakishness having' disappeared from recent published designs.

In his monthly discourse, " Dope Can," Carroll Moon (the American "Clubman" ?) discloses that he has been studying some of our methods, and comes to the conclusion that "the average British gas job is powered will "a Brown or some similar $60-c$ buic-inch motor and weighs about 5 lbs. . . . It's quite evident that our English cousins aren't' hep' to the conditions of an American gas contest. First of all, a plane such as they describe would place a positive last, and demonstrutc that even a brick can fly twith sufficient power. Wilh anything more than a motor yun of 20 seconds.- most American contest jobs would be gone forever, and many of them have flown away with runs of as short as ten seconds. Even our heaviest models soar beautifully and demonstrate their airworthiness with fine records. Bull to the British this type of flying is not worth while. . . From where we sit it is easy to guarantee that the average British gas job would be handicapperd fremendonsly in any American gas contesl.'

Well, what have our own gas fans got to say to that? From what I have observed mysclf I am inclined to agree that if it came to a straightfonward contest between teams from both countries, we should be in line for a fairly severc beating. There is still too much motor trouble on the field, and I honestly thinh that some chaps use a competition to iron the bugs out of their machines ! I fully agrce that we have been handicapped over here by the ban on petrol model flying, lack of new engines and spares, plus the lack of spare time on the part of those chaps who would in the nonual course of events be the high ranking fliers of this type of model. However, one camnot get away from the fact that petrol model flying in this country' is still very much in the " hit-andmiss " stage (with one or two notable exceptions) and if it comes to the point of a resumption of International contests, we must start putting our models in order without delay.

Moon gues on to say" This hrings up something
that has been advocaled by several American airmen returned from the European theatre. They suggest (and cven plead) that somu outstanding . Anerican pul up a cup similar io the Wakefield Cup, to be competed for by flying teams of all nations-uith only gas jobs elizible. They udmit that special rules should be dcirsed, bui irold that these ruies would not spoil the fun of competition as long "s it was on a frie-fight basis."

I don't know how far the Bowden 'lropl:y contest satisfics the requirements of an lnternational event, though if memory serves me right one factor that detracted from a full popularity with outside contrics was that the contest should always be conducted in this country. I would give as my opinion that any contest set up as International must be so in all respects; and not confined to any one area or country.

Well, gas fans, there's plenty of food for thought in all the above, and I shall be pleased to hear from you on all aspects of the petiol model situation in-so-far as it affects coutest and club matters, as I feel the time has come to start putting our house in order so that when we are again able to cutertain teams from other countries we can at least put up a good show.

Results of two more S.M.A.E. contests to hand show a better spreading of the honours around the country, though times have not been all that remarkahle. Howcver, that times are as good as shown is all the more credit to the winners in view of the poor weather conditions that have obtained over most of the country recently. I am advised that a correction is required to the result of the "Solids Contest" as announced in last month's issuc, P. Shepherd, of Kughy, being second place wimner, and not Mr. Skinner as published.

S.M.A.E. COMPETITION RESULTS PILCHER CUP

H. Langley	Eston	677	agg.
J. P. Taylor	Rhyll	482.5	"
G. Whistle	Whitefield	462	"
A. G. Telford	Blackpool	378.2	"
A. H. Taylor	Bushy Park	354.7	"
G. Crux	Rochdale	351	"

FLIGHT CUP

W. A. S. Geddie	Bromley	536.2	",
J. M. Hardman	Rhyll	408.9	",
R. H. Warring	Blackheath	322.5	

The newly formed WOODFORD \& D.A.S. has had a goud start, D. Scrivener's moditied " Leander" having broken the British Class "A " glider record (subject to official confirmation) with a fight of 42 mins. 3 secs. o.o.s. The model was winch launched from a 250 ft . towline, and vanished from vicw some three quarters of an hour later, being lost to sight mainly through eye strain. After launching, the: model gained height very slowly, trawelling in tight circles on various headings, but never far from the ficld for half an hour or so, then gaining height it gradually moved off in a S.IV. direction and was finally given up when under hayg commlus cloud at some $2-3,000 \mathrm{ft}$. altitude. Other records in the clul) are: H. I. rubher driven. $8: 50$ by M. J. King. and H.L. glider 50.2 secs. by C. A. Rawlings.

The BIIRMINGHAM M.A.C. effort in the Pilcher Cup event was marred by bad weather, D. W. Harrison making top time with all aggiegate of $5: 02 \cdot 5$ Mying his new 6-ft. span streamlined F.A.I. glider, and winning a club event at the same time, rumers up being K. Monks and R. Demnitt. Flight Cup day saw hetter weather, but times were again rather pior, top man being Chuck Doughty, flying a diamond fusclage, micl-wing jols for an aggregate of 2: 47.9. Four members made the trip to Hounslow for the Hamley Trophy: R. Monks being the winner, as reported elscwhere in this issue.

The TORQUAY \& D.M.A.C. recently conducted a South Devon Aeromodellers V.E. Day Gala on Milber Downs, results as folluws :-

Senior Glider.

L. Long	Torquay	$4: 31$
L. Webber	Newton Abbot	$3: 0.5$
J. Higgins	Corquay	$2: 5.5$
Junior Glider.		
I. Webber	Newton Abbot	$2: 38$
W. Wills	Torquay	$1: 13$
D. Nosworthy	Torquay	$: 55.5$
Duration.		
G. Wilde	Newton Abbot	$2: 0.5$
L. Webber	Newton Abbut	$1: 44$
J. Cole	Torquay	$: 44$
Nomination.		
G. Wilde	Ncwton Abbot	2 secs.
		error.

Team crent.
Torquay
Newton
251 proints
Exmouth

178

104 ..
$1 / 24$ h scale Mosquito buite by C. A. Echertdge, Incorporasing
hollow fusalago, fully detallad cackpli and retracting under-
carriage.

Many gliders were lost during the day; one belonging to J. Brroks (loryuay) being recovered from about 10 miles away. The final live miles was over the water, the model being retrieved br a Naval Patrol, taken to Plymouth, and retumed the same day to Torquay. Thanks Navy I!
R. Dobls, of THE PARK M.A.L. put up a flight of 18: $\mathbf{1 7} \cdot 5$ from Mitcham Common with his Atalanta glider on July 8th. The model, which has brown fusclage with white wings, was lost, and any nows will be welconed by the owner.

The SOUTH BIKMINGHAM M.F.C. held an exhibition, under the auspices of the Fducation Committee, on June 23th. Over a hundred models were cxhibited, among them being Jock Bishop's elcctrically driven "Spitfire," which, though only in the 16 -inch span class, weighs one pound, and clocks 27 m.p.h. round the pole! F. J. Boonham, having lost his "Acolus" following a fight of $4: 33$ was notified by a farmer that it had landed on his ground, $18 \frac{1}{2}$ miles across the county of Warwickshire.

Received word this month from a very old (!) friend of pre-war S.M.A.E. days. D. A. Gordon, formerly of Hornchurch, is now in Cambridge and gives news of a newly formed club there, the CAMBRIDGE M.A.S., who hold meetings cvery Friday evening at Wesley Hall, Cambridge, where local and other lone fliers will bc heartily welcome.
So far this year, glader flying in the LUTON M.A.C. has proved costly; no fewer than eight models being lost in June. Models have varied widely in construction and design, une model in particular causing great controversy. This job, built by junior member R. Minney, is 90 -in. span, with wings dowelled onto a streamlined fusclage, witi a rib spacing of 4 -l This model, which is putting up a remarkably consistent performance, has a dihedralled tailplane and twin fins, and tows up very straight and fast. The Brown Trophy for duration models was a battle royal hetween Minney ("Ajax") and R. Brown (" Northern Star ") resulting in a dead heat. It a fy-off on a later date, Brown proved the winner, and carried off his own trophy!! July 8th was the datc for the Faunch Cup, and was flown in almost perfect weather, the lack of breeze being the main cause of complaint. Shades of " Damage" cup days !!! The contest was for F.A.I. gliders, and Minney won with his first tremendous tight of $43: 03$ o.o.s. with the aforementioncd cuntroversial model. A claim has been sent in for the British Class " B " record.
J. E. Wintle of the WEST COVENTRY M.A.C. took full advantage of decent weather on July 8th, and broke the club glider record with a time of $1: 52$; also won a contest with the best flight of the day $4: 16$ o.o.s.

The BASINGSTOKE \& D.M.A.C. kcep a club log of weather, etc., and a rather interesting table shows that up to July $6 t h$, three Saturday evenings and two Sunday afternoons were good for flying, while ten flying mectings were complete washouts or gales. How does that compare with other club's findings?

Chaps from the BLACKPOOL \& FYLDE M.A.S. have been getting around a bit lately, visiting the Northern Rally. Bradford and Huddersfield, and have collected a number of valuable contests in consequence,
plus a lot of experience. Four members went to Huddersfield, and collected first three places in the open duration event. Pete Uttley losing his lightweight after being timed 0.o.s. for nearly hive minutes. J. Owen also took third place in the open glider event. IIttley won the glider event at the Northern Rally with a flight of over five minutes, Bentley collected second place in the Concours, and Owen came third in the Consistency event. It pay's to get about lads, as I found time and again before the war, and I recommend the Blackpool spirit to all clubs-and lone hands.

Members of the GREAT YARMOUTH M.A.C. are handicapped owing to lack of ronm at their H.Q., these being partly occupied by the military authorities! Howerer, they have secured use of the local recreation grounds for the season's flying, and despite the assistance from helpful (!) children, some gond flights have been recorded. G. Bullent with his "Elite No. I" won the glider event with an aggregate of 3:30-05, while K. Mancini's "Cloudhopper" broke the existing clob duration record five times in one evening, his average time for the five flights being 1: 32-05.

A good start to the NORTHAMPTON M.A.C. ontdonr scason was made by D. Holland who lost his converted
Diasphere" glicler on the first outdoor meeting after an o.o.s. time of 8 minutes. The moxlel was retrieved from a nearby airfield after a total flight of approx. 15 minutes. On the same day the N.M.E. Cup was won by N. A. Eettitt with a total of 20 s points. The club glider contest on Jume lst was won by A. Goodman with a time of $3: 155$, having earlier flown this model
away with 2: 50
Much gond friner has been accomplished in the NOTTINGHAM \& D.MI.A.C., petrol models being well to the forc. Gr. Pike has been getting a speed of nearly 70 m.p.h. with his " U" control jol-breaking three props in the process, Pete Waller broke the club record with a fine flight of $\%$ minutes o.o.s. the machine disappearing at about $1, \overline{0} 00$ ft. altitude.

MERSEXSIDE M.A.S. was well represented at the Northern Rally and scored some measure of success. Mr. Gosling's beatiful so-in. span sailplane " Heron descriedly won the Concours, while I. S. Cameron wor third place in the " All-in " duration event

Sunday, July Sth, seems to have been a perfect day Over most of the country, and the DONCASTER \& D.M.F.C. were one of the lucky chubs flying that day. Two models were lost early in the procecdings, $\dot{\mathrm{D}}$. Helliwell's " Hoppity" disappearing after $7 \frac{1}{2}$ minutes. High light of the afternoon was F. Gearing's big scale biplane " Hornet Moth," which took off under it's nwn power and slowly circled above the crowd before coming in for a porfect landing. Not so perfect was the landing of W. Monks Flight Cup model as it spun to the ground after the nose and prop fell out abont 1 ,0un ft . up. What's the jdea-a new kind of dethernaliser?
A / A Waller, of " B " Squadron, 2 flight, Apps Wing; Cranwell, would appreciate news of his "King Falcon glider lost after a 10 minute fight on the 7 th July. The machine had a red fuselage and white wings, with detachable tips fitted with slots. (A/A Williamson, whose lost moxel was reported in the June jssue, had his

THE AEROMODELLER'S NIGHTMARE
job returned some six wecks later．）
J．Walden，of 82，Spen Road，Thames Ditton，Surruy， is endea souring to form a model clut in the Esher district． whilst Geo．A．Lovett of 26 a ，Wanwick Street，Worthing． is prepared to start a club in that area．Any readers in these districts would do well to contact these chaps， as there is nothing like teaming up with others of like interests

And so，for the present I leawe you－as the chap in the travelogue films says．Here＇s hoping the end of the season seces more settled wedther than we have enjoyed（！） so far，particularly for the very interesting Handley Page contest．The success of this venture should do well for model aeronautics，and I trust everything goes off withont a hitch．Cheerio blokes，until next month， and don＇t forget to let me have your views on the petrol contest situation as mentioned at the beginning of these notes．

The CLUBMAN．

NEW CLUBS

BRISTOL AEROPIANE CO．M．．．C
Y．La Autia，5s，Wader Rond，Filtod，Bristol．
BRENTWOOD \＆H．M．A．C
D．Geary 31，Trobiu Hood Iosed，Brontwrod，Febex SPIINGPARE M．A．O．
A．H．Hodd 30 ，Highfleld．Weet Wiekham．Keat．
RAYLELGH \＆D．M．A．
K．J．A．Strowlger，6i？．＇rrinity Road．Rayleigh，Lieex
WOODFORD \＆D．A．S．
K．Rt．Smith，11，Wansford Roal．Woorlford（Sreen，kreex \triangle HKRDOFEY M．F．C．
P．C．Warner，Pantiedsl Lodge，Aberduves，Mer
HENLEY M．F．C．
P．Pooke＂＂Kister，＂Nommas Avenue．Henley－on－Thanure． HRAMLEX（Lecels）MA．C．
G．Fishburn，17，Hightield Road，Sramley，Nr．Ideedr．
CALDFCOTK M．A．O．
1．H．Marolinal．The Wroudandr，Caldecote，Bighterwade，Beds FARNBOROUGH \＆D．M．A．C．
J．Rnaditer＂Medmerry，＂Fighfiell Atenue，Alderehort．Hants． CANHOLI SCHOOL MCS
P．B．F．Moore，Leomard＇r Lionse，cantord School，Nr．Wimborde． Dosset．
LF゙FK M．A．C
D．Hemper，1 ¢，Nah Hill Avenut，INerk，Statrs．

THE

KESTREL＂

TRULY A＂MASTERLY＂DESIGN

SECRETARIAL CHANGES

WHLFEDMK
 GRANTHAN MA．
J．Bink ${ }^{3}{ }^{13}$ Launder Terrace，Grant hana，Liears BRENTWUOI S（：HOOL H．A．

A．12．de 「ury，Fitan Ladine，Siation Lane，Hernchurch，Fgsuex． CORRECTION
Mr．O．H．Maxwell asks un tu pint ut that he is a Committe
 stated in the July Elliturial．
＂TIP－TOP＂MODEL AIRCRAFT STORES 10，Kingston Road，Portsmouth
All Model Accessorjes in Stock．
Waterslide Transfers of all Nations．
Special Large Range of Cockpit－Covers．
Limited Supply．Send S．A．E．for List．

JONES BROS．

LAR GE STOCK OF KITS，DOPES AND ACCESSORIES．
SPARE PARTS FOR SOLIDS Sond 3d．for lize．
56．Turnham Green Terrace
Phone： CH 10858

CHISWICK，W． 4

LUTON MODEL $A^{\text {IRCRAFT }} \mathbf{S U P P L I E S}^{\text {U }}$

we have the finest selection of
－KITS AND ACCESSORIES IN

BEDFORDSHIRE

＂THE WINDSOCK，＂1a WALDECK ROAD LUTON

COLINS MODEL SUPPLIES

KITS，DCPES，PLASTIC SOLID FOR MODEL ACCESSORIES，INSIGNIA， ALUMINIUM AND CELLULOID TU日E，OBECHI STRIP，GLUES，
PETROL CEMENTS AND PIANO WIRE．
NES．2－10 c．e．WANTED．Damagod or otherwisa．
MODERN NAVAL CRAFT PLANS
postage on orders and enquiries to：
48－52．West Street
Berwick－on－Tweed

CANE，Easily modelled to any shape． Light．Very strong．$\frac{1}{4}^{\circ}$ to $\frac{5}{8}^{\circ}$ diameters．Send S．A．E．for your re－ quirements or $5 /-$ will bring you assorted parcel．
」．WILKINSON \＆SON

AIR MAIL
STAMPS of every kind boughe，sold exchanged． J．H．Wilkinson Ia，LONGSTONE ROAD，EASTBOURNE
＂MODEL AERDCASTINGS＂
THE NEW METAL ONE PIECE SOLID SPITARE． HURRICANE．MUSTANG．TEMPEST．THUNDERBOLT： MOSQUITO，LIGHTNING，WELLINGTON，BEAUFIGH－ER． FORTRESS．HALIFAX，LANCASTER，STIRLING
Ready for filling and polishing to make a very handsome replita maseon Send SA．E．for full descriptive price lise．
A．ANDREWS，7a，PARK AVENUE，BELFAST．

WATKINS
The bess Kils，Dopes and all Aocessories stocked． ADVICR FREE ！
Purchase your Booke，Plam and the Aeromodiller from WATKINS，6，Waungron Road，Llanduff，CARDIFF

J．McGARRIGLE \＆SONS

FOR MODEL AIRCRAFT AND SHIP KITS FAMOUS CLOUDCRAFT FLYING MODELS．SOLIDS $1 / 72$ ， $1 / 48,1 / 36$ SCALE－ALL ACCESSORIES．COVERS．STRIP，WIRE，INSIGNIA． TRANSFERS，PLANS．DOPES，CEMENT．PILOTS，BOMES．ETC． WATERLINE NAVAL CRAFT，GALLEONS．ETC．STOCKISTS OF WORCRAFT，SKYLEADA，AEROMODELS．TRUSCALE，CLOUDCRAFT． SOUADRON＇AND MODEL DOCKYARD KITS．
SPECIALITY：POSTAGE STAMPS，RUSSIAN and AIR MAILS．
43，PURBECK ROAD，ROMFORD，ESSEX

[^0]: Lower photogroph on prevlous paga shows the Worcester M.A.C. in 1912 with the author on the extreme right. The correct garb for a flying meeting in those days was considerably less abbrevlated than is is to-day!

 Left, the Club ta-day. A happy group of members with an inseresilig vartety of models. On the extreme iefi, th

